Compact Probe for In-Situ Optical Snow Grain Size Stratigraphy

Daniel Berisford1, Noah Molotch1,2, Thomas H. Painter1, Michael Durand3

1. NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA
2. INSTAAR, University of Colorado, Boulder, CO
3. The Ohio State University, Columbus, OH

Presented at the American Geophysical Union fall meeting, San Francisco, CA
December 13, 2010
Traditional Grain Size Measurement

- Hand lens grain size estimation
Radiative transfer from hand lens

Painter et al., *Journal of Glaciology* 2007
Traditional Grain Size Measurement

Snow Grain Shapes

- Rime on Plate Crystal
- Early Rounding
- Faceted Growth
- Early Sintering (Bonding)

- Wind-Blown Grains
- Melt-Freeze with No Liquid Water
- Melt-Freeze with Liquid Water
- Faceted Layer Growth
- Hollow, Faceted Grain (Depth Hoar)
Contact Spectroscopy

- Advantages
 - Less subjective
 - Repeatable
 - Faster
 - Data applicable to remote sensing

Painter et al., *Journal of Glaciology* 2007
Contact Spectroscopy

• optical equivalent grain size
• obtained by integrating absorption feature and comparing to RT model
• Painter et al., 2007; Nolin and Dozier, 2000.
Spectral Profiler Probe

- Send optics down bore hole
- Lateral reflectance spectra
- Fiber optic sends signal to surface
- No snowpit!
probe carrier body

drive tube

fiber optic to spectrometer

optical inspection camera

spectral reflectance probe

aluminum sleeve with machined slits for lateral viewing

nylon brush
Spectral Profiler
Probe Hardware

- drive tube
- clamp
- fiber optic to spectrometer
- aluminum sleeve
- base plate
- reflectance probe
Spectral Profiler Probe Hardware

- Optical inspection camera
- Spectral reflectance probe
- In-bore light source
- Nylon brush
2 configurations

fiber light

spectrometer

light source on

In-bore light

spectrometer

light source off
Probe stowed for transport
Field testing
Niwot Ridge April 2010 results
Storm Peak Lab Feb 2010 results
Future Work

• miniaturize probe
• add density measurement
• algorithm for on-site grain size retrieval
• take measurements over large geographic area
Acknowledgements

- Alex Arnsten
- Jennifer Petrzelka
- Part of this work was performed at the Jet Propulsion Laboratory/California Institute of Technology under contract from NASA.
supplemental
hole 4 grain size for 2 passes of in-bore light probe

- depth from surface (cm)
 - pass 1
 - pass 2

- optical grain diameter (um)
 - 200 to 1000

- range of depth from surface
 - -140 to 0 cm

- range of optical grain diameter
 - 200 to 1000 um