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How to Maneuver Around in Eccentricity Vector Space 

Theodore H. Sweetser* 
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, 91109  

The GRAIL mission to the Moon will be the first time that two separate robotic orbiters 
will be placed into formation in orbit around a body other than Earth.  The need to design 
an efficient series of maneuvers to shape the orbits and phasing of the two orbiters after 
arrival presents a significant challenge to mission designers.  This paper presents a simple 
geometric method for relating in-plane impulsive maneuvers to changes in the eccentricity 
vector, which determines the shape and orientation of an orbit in the orbit plane.  Examples 
then show how such maneuvers can accommodate desired changes to other orbital elements 
such as period, incination, and longitude of the ascending node. 

Nomenclature 
a = semi-major axis 
ad = a disturbing acceleration vector 
C = a circle considered as a function of time 
E = an ellipse considered as a function of time 
e = eccentricity 
ex = the x component of e 
ey = the y component of e 
e = the eccentricity vector 
M0 = the initial value of the mean anomaly 
p = the semi-latus rectum 
r = the magnitude of r 
r = the position vector 
RP = the radial component of a perturbing acceleration 
s, t, u =  position offset vectors 
s’, t’, u’ =  vectors which are vertical reflections of s, t, u 
TP = the tangential component of a perturbing acceleration 
v = the magnitude of v 
v = the velocity vector 
V = the magnitude of the velocity (used in Ref. 4) 
α = the true anomaly at a point in an orbit (used in Ref. 4) 
γ = flight path angle (from horizontal) 
∆v = the velocity change vector from an impulsive maneuver 
∆vR = the radial component of ∆v 
∆vT = the transverse component of ∆v 
θ = the true anomaly at a point in an orbit 
µ = the Gm of the central body 
ϕ = an initial phase angle 
ω = the argument of periapse 

  

€ 

⊥  = an operator which rotates a vector by -90 deg (i.e., a left-handed rotation) 
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I. Introduction 
HE  GRAIL mission1 will launch two orbiters in the fall of 2011 to go to the Moon, where they will arrive a day 
apart on December 31, 2011, and January 1, 2012, and insert themselves into coplanar polar lunar orbits. A 

series of maneuvers will then be performed by each orbiter to circularize the orbits and in the process adjust the 
relative phasing of the orbiters so that they end up in the same low lunar orbit with an along-track separation of 
about 75 km. During these maneuvers, out-of-plane components will be included to correct orbit plane errors. The 
entire maneuver design for making this transition from the arrival orbits to the science orbit will be described in 
another paper2; this paper describes a method for understanding geometrically how to control changes in eccentricity 
e and argument of periapse ω, which make up a crucial part of that strategy, and how those changes can interact with 
desired changes in period and orbit plane. 

The natural way to examine changes in e and ω is to combine them into an eccentricity vector e, which has 
length e and angle ω in polar coordinates, so that if we identify the eccentricity vector space with the orbit plane the 
eccentricity vector points toward the periapse and when scaled by a, the semi-major axis, it is exactly the vector 
from the center of the orbit to the focus at which the central body sits. In Cartesian coordinates, 

€ 

e = (ecosω,esinω) , 
where the x-axis is the line of nodes, with the ascending node on the positive x-axis so that motion in the orbit is in 
the usual direction, i.e., the angle to the orbiter increases with time in this right-handed coordinate system.   

The eccentricity vector space is particularly useful for seeing the evolution of an orbit under the influence of 
perturbations; Figure 1 shows how the GRAIL orbit shape and orientation at the Moon change during the three-
month Science Phase.  Note how easy it is to see that three months is as long as an orbiter can stay in low lunar orbit 
without doing a maneuver to change its eccentricity vector, and that in order to avoid orbit maintenance maneuvers 
for that long the eccentricity vector at the beginning of science needs to point close to the left edge of the plotted 
region (which is bounded by the eccentricity limit outside of which the periapse is below the lunar surface for this 

T 

 
Figure 1.  The eccentricity vector evolution for the orbits of GRAIL-A and GRAIL-B during 
the Science Phase of the GRAIL mission. The units used for eccentricity are periapse altitude 
in kilometers for an orbit with 55 km mean altitude. (Figure provided by Sara Hatch at JPL.) 
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size orbit).  To make it easy to relate the orbit to the lunar surface, eccentricity is affinely transformed to the periapse 
index altitude (i.e., altitude with respect to a sphere whose radius is the mean equatorial radius of the Moon) for an 
orbit with a semi-major axis of 1792.4 km; thus the units for eccentricity in Figure 1 are kilometers and the origin is 
at 55 km. 

The challenge that GRAIL presents to the mission designer is that the two orbiters arrive into large elliptical 
lunar orbits on 2011-12-31 and 2012-01-01 and must maneuver themselves into science formation and check out 
their instruments in time to begin science operations on 2012-03-08.  The science formation has the two orbiters in 
the same orbit with a semi-major axis of 1792.6 km, with GRAIL-B about 85 km ahead of GRAIL-A at the start of 
the Science Phase, and with the separation slowly increasing at a rate of 4 km/day.  The series of maneuvers2 to do 
this must not only reduce the orbiter periods in such a way that the two orbiters end up with the right period and the 
right relative anomalies, but must also put the orbiters in the same orbit plane and with the same eccentricity vector 
at the left edge of the safe region in the eccentricity vector space shown in Figure 1. In the process the final 
maneuvers must compensate for the natural tendency of the eccentricity vector to move across to the right while all 
of this is being done.  And of course we want to do this with the proper balance between the minimum number of 
maneuvers and the minimum total ∆v. 

 

II. Maneuvering to Change the Eccentricity Vector 
There are two ways to look at the problem addressed here: given a desired change ∆e in the eccentricity vector, 

what maneuver will accomplish it; conversely, given a maneuver, what effect will it have on the eccentricity vector 
e?  Actually the answer has been known for a long time, at least at the infinitesimal limit, and is derived vectorially3: 

 

€ 

µ
de
dt

= 2(v⋅ ad )r − (r⋅ ad )v − (r⋅ v)ad . (Eq. 10-75 in Ref. 3) 

When the orbit is circular so that r⋅v=0, this can be reduced to a simpler form as follows, although these 
equations were derived in the reference4 directly from Gauss’s equations: 

 

€ 

dex
dt

=
2cosα
V

TP +
sinα
V

RP ,

dey
dt

=
2sinα
V

TP −
cosα
V

RP .
 (Eqn. in Ref. 4) 

We can see directly from these latter equations that when the perturbing acceleration is tangential, the change in 
the eccentricity vector is in the direction of the radius vector at the point at which the acceleration is applied; thus 
the direction of the eccentricity change is -90 deg from the direction of the acceleration, and this is true whether the 
acceleration is in the velocity direction or is opposite to it.  Similarly, when the perturbing acceleration is radial, the 
direction of the eccentricity change is -90 deg from the direction of the acceleration. By the linearity of derivatives, 
we can take any maneuver and break it up into tangential and radial components; the change resulting in e from each 
component is -90 deg from that component’s direction so that the total change would be -90 deg from the original 
maneuver except that the magnitude of the change from the tangential component is twice as big as the change from 
the radial component.  It easy to show that the maximum deviation from the rough rule that “the change in e is at 
right angles clockwise from the maneuver direction” occurs when the maneuver direction is about 35 deg away from 
radial (more precisely, the arccosine of the square root of 2/3), and that in this case the direction of ∆e is about 
-70.5 deg or -109.5 deg from the maneuver direction (more precisely, arccos(1/3)), depending on the signs of the 
components. 

In the following sections I will use geometric methods to show that the above rule also applies to impulsive 
maneuvers on elliptical orbits to first order in e, i.e., ignoring terms in e2 or higher, with a bit of a twist in the 
elliptical case.  More explicitly, to first order in e, we have 

   

€ 

Δe ≈ 1
v
2ΔvT + ΔvR( )⊥ 

 (1) 
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where the symbol   

€ 

⊥  stands for the operation of rotating the vector perpendicularly to the left, i.e., by -90 deg, and 
where the meanings of transverse and radial in separating the maneuver into the components ∆vT and ∆vR have a bit 
of twist, which will be defined at the end of this section. 

A. Easy Moves in Eccentricity Space I: Radial Maneuvers 
A single impulse can be used to rotate the line of apsides (the major axis) of an orbit of eccentricity e and semi-

major axis a through an angle Δω in the plane of the orbit5, where the size and shape of the orbit remain constant, 
since the initial and final orbits intersect.  Specifically we can apply an impulse of magnitude 

 

€ 

Δv = 2esin Δω
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

µ
a(1− e2)

 (2) 

either at the intersection of the orbits near apoapse or at the intersection near periapse.  
In order to derive this equation, let us first note that 

 

€ 

Δv = 2˙ r       and        

€ 

Δω
2

= θ , 

where r is the radius from the center of the gravitating body and θ is the true anomaly where the maneuver is done, 
at the intersection between the initial and rotated orbits.  So we need to solve for 

€ 

˙ r  in terms of a, e, and θ for a given 
µ. 
 To start with we have Kepler’s first law, conservation of energy, and conservation of angular momentum: 

 

€ 

r =
p

1+ ecosθ
 (3) 

where p, the semi-latus rectum, equals a(1–e2); 

 

€ 

−µ
2a

=
v 2

2
−

µ
r

 (4) 

where v is the magnitude of the velocity; and 

 

€ 

r2 ˙ θ = rv cosγ = µp  (5) 

where γ is the flight path angle (the last equality in Eq. (5) can be derived at periapse using the vis-viva equation, 
which is Eq. (4), and using the fact that the radius at periapse equals a(1-e)). 

 Equation (2) can then be derived by differentiating Eq. (3) with respect to time and plugging in Eq. (5): 

 

€ 

˙ r = p
(1+ ecosθ)2 (−(−esinθ) ˙ θ )  

 

€ 

=
r2

p
esinθ

µp
r2

= esinθ µ
a(1− e2)

               

Figure 2 shows how such a radial maneuver changes the eccentricity vector.  Note that from Eq. (2), if we ignore 
terms in e2, then the magnitude of the change is: 
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Figure 9 shows how what’s possible in changes to the eccentricity vector can depend on constraints on how 
much the period should change and what plane change is desired.  The size and direction of the red tangential 
maneuver on the left in the figure is determined by a desired period change, and its position is constrained to one of 
two positions by the desire to cause a pure inclination change. The red horizontal dashed line at the tip of it shows 
all possible radial maneuver components that can combine with it and keep the period and plane changes fixed; one 
example radial component is selected as a solid arrow. The effect in eccentricity space is shown in blue—the 
example maneuver gives us a ∆e which is down and to the right and we can achieve just the eccentricity vector 
positions on the blue dashed vertical line by changing the size of the radial maneuver component.  

Choosing the other node of the orbit would allow an alternative vertical line of possible positions to be reached 
in eccentricity space equally far to the left of the original position instead of to the right. By accepting a little 
inefficiency in the plane change we can open up the area available in eccentricity space. The range of maneuver 
positions on the right is within 20 deg of the ascending node so the worst inefficiency in getting a desired inclination 
change in the out-of-plane component is less than 6.5%, and the inefficiency in the total maneuver is less. Moving 
away from the node also introduces change in the longitude of the ascending node into the plane change, but this can 
be reversed in a subsequent maneuver, which may or may not share the burden of inclination change. 

 I have framed this discussion in the context of inclination and node change to make it easier to describe the 
changes, but it applies equally well to any desired plane change.  Note in passing that no radial maneuver can cancel 
out the change from the tangential component, i.e., it is impossible to change the period in a single maneuver 
without changing the eccentricity vector of an orbit. 

C. GRAIL’s Transition to Science Formation (TSF) 
The GRAIL mission begins its TSF Phase with the GRAIL-B orbit larger than the GRAIL-A orbit, and both 

outside the science orbit. A series of TSF maneuvers (TSMs) will systematically step down the periods of the orbits 
at times designed to establish and progressively refine the phase relationship between the orbiters.  The period 
reductions for GRAIL-A are 14.4 s and 29 s, with tangential ∆v components of 1.4 m/s and 2.3 m/s respectively; the 
period reductions for GRAIL-B are 180 s, 25 s, and 4 s, with tangential ∆v components of 14.4 m/s, 2.0 m/s, and 
0.4 m/s respectively.  At the same time, radial and out-of-plane maneuver components will adjust the eccentricity 
vector so that the science phase starts with GRAIL-B’s eccentricity vector on the left and close to GRAIL-A’s 
eccentricity vector and will adjust GRAIL-B’s orbit plane to match GRAIL-A’s orbit plane. In order to analyze the 
effects of maneuver execution errors on the size and timing of subsequent maneuvers through the TSF Phase, 
GRAIL mission designers have constrained the total sizes of the TSMs to 21 m/s for GRAIL-A and to 30 m/s, 7 m/s, 
and 2 m/s for GRAIL-B. 

 
 
Figure 9.  Given a particular period change and a need to do the maneuver within 20 deg 
of the x-y plane (so that inclination change is efficient), only the shaded region of the 
eccentricity space is accessible. 
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The evolution of the orbits and changes from maneuvers in eccentricity space are shown in Fig. 10a.  Since the 
evolution of the eccentricity vector caused by the gravity field of the Moon is quite independent of where it is in the 
eccentricity plot, and the maneuver effects are similarly independent of initial location, I have reordered the 
segments of the orbit evolution and the maneuver effects to gather all the maneuver effects at the end as shown in 
Fig. 10b. This points out that the end points of the TSF Phase are very close together for the two orbiters and lets us 
see the total eccentricity change desired from maneuvers. We can see directly from Fig. 10b that the combined 
maneuvers for each orbiter need to result in a ∆e which is to the left and about 0.20 in magnitude (to convert to the 
units of Fig. 10, a ∆e of 0.20 is about 35 km change in periapse altitude). 

Given the constraints on the TSMs which are described above, each maneuver can achieve the region of possible 
∆e which by is shown in Fig. 11 (since TSM-B3 is so small on this scale, it is left out). Each region is an annulus, 
where the inner region is “forbidden” because the prescribed period changes determines a tangential maneuver 
component which in turn entails a minimum ∆e which can only be increased by a radial maneuver component.  The 
outer boundary of the annulus is actually somewhat flexible because it is determined by the amount of ∆v allocated 
to the radial maneuver component. To generate the figure, I decomposed the total maneuver allocation into the 
prescribed tangential component and a cross-track component, which I then allocated equally into radial and out-of-
plane components. If a particular maneuver does not require any out-of-plane component then more can be used in 
the radial component; in TSM-B1, for example, the length of the vertical line showing possible radial maneuver 
effects would increase by 41%, which gives an 85% increase in the width, or thickness, of the annulus. The 
“forbidden” regions for the GRAIL-A TSMs are much smaller, so the gain from reallocating ∆v from out-of-plane to 
radial basically increases the diameter of the annulus by about 40%. 

We can see immediately from Fig. 11 that the GRAIL-A TSM maneuvers will need to be positioned near the 
equator with large radial components relative to the tangential component. This means that inclination changes will 
be efficient but that node changes will be difficult. Fortunately, this dovetails well with the mission requirements, 
which do not include any constraint on the longitude of the ascending node of GRAIL-A. It is similarly clear that 
most of the ∆e needed for GRAIL-B will be accomplished by TSM-B1 and it will need to be positioned roughly 
near the ascending node. There is much more freedom in placement of TSM-B2 since the period-change 
contribution to the ∆e is relatively small and TSM-B1 can be adjusted to compensate for direction swings in TSM-
B2; this is consistent with the rule of thumb developed by Sara Hatch in her TSF maneuver design work that plane 
changes to match the GRAIL-B orbit plane to GRAIL-A’s should be done at TSM-B2. 

 
 a)               b) 
 
Figure 10. Orbit evolution and maneuvers in the GRAIL Transition to Science Formation Phase. 
Figure 10a shows the effects of the orbit evolution segments and the TSMs in the order they 
happen, while Fig. 10b reorders them to move all the maneuvers to the end of the TSF, making the 
cumulative maneuver effects clearer for each orbiter.  (Figure provided by Sara Hatch at JPL.) 
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