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ABSTRACT 
The primary goal of NASA’s current ICESat and future 
ICESat2 missions is to map the altitude of the Earth’s 
land ice with high accuracy using laser altimetry 
technology, and to measure sea ice freeboard.  Ice 
however is a highly transparent optical medium with 
variable scattering and absorption properties.  
Moreover, it is often covered by a layer of snow with 
varying depth and optical properties largely dependent 
on its age.  We describe a modeling framework for 
estimating the potential altimetry bias caused by 
multiple scattering in the layered medium.  We use both 
a Monte Carlo technique and an analytical diffusion 
model valid for optically thick media.  Our preliminary 
numerical results are consistent with estimates of the 
multiple scattering delay from laboratory measurements 
using snow harvested in Greenland, namely, a few cm.  
Planned refinements of the models are described. 

1. INTRODUCTION, CONTEXT & OUTLINE 
In view of the potentially dire consequences of partial 
loss of Greenland and Antarctica ice sheets, accurate 
and well-sampled altimetry in the cryosphere is 
critically important to climate science.  So well-
coordinated international programs have been 
established for land-based, airborne, and satellite 
measurements.  They each have their pros and cons but 
together guarantee success. 

In this paper, we address a particular problem faced by 
space-based laser altimetry as implemented in NASA’s 
current ICESat mission [1] and as planned for its future 
ICESat2 mission, which is a “Tier 1” element of the 
Earth observation prioritization for NASA laid out in 
the National Academy of Sciences’ Decadal Survey.  
Space-based laser altimetry is inherently over a 
relatively wide footprint determined by laser beam 
divergence and orbit height.  As in any form of remote 
sensing, it is important to have a conceptual model for 
how the return signal is formed, starting with the shape 
of the transmitted pulse and following it through the 
atmosphere and the terrain.   

Each interaction with atmospheric and surface materials 
can impact the shape of the received pulse.  For the 
most part, we expect in altimetry a simple reflection 
that does not change the shape of the pulse, only its 
energy.  Consequently, tracing peak energy in the pulse 
is a direct measurement of the two-way path, hence the 

targeted altitude.  Digitization just needs to be fine 
enough to detect the maximum with high precision.   

If the footprint contains variable terrain, either a gentle 
slope or a degree of roughness, then the width of the 
received pulse is wider, but the timing of the peak still 
reflects the average altitude in the footprint … as long 
as each detected photon has undergone a single 
reflection.  Multiple reflections in the terrain add path 
to the light and will move the peak, leading to 
somewhat negatively biased altitudes.  That effect will 
be studied in detail elsewhere.  Here, we examine a 
physically analogous effect that occurs when the target 
surface is somewhat transparent.  Specifically, we will 
devise a modeling framework for estimating the extra 
path length cumulated by laser light as it penetrates 
snow covering the ice.   

In Sect. 2, we set up the time-dependent radiative 
transfer (RT) problem at hand, and we demonstrate on a 
specific case its numerical solution using a Monte Carlo 
scheme.  Results are compared with preliminary 
analyses of recent laboratory measurements of 
polarized laser pulse penetration into snow sampled in 
Greenland.  In Sect. 3, a useful approximation to the RT 
is set up that uses time-dependent diffusion theory; this 
model has the huge advantage of being analytically 
tractable.  Both Monte Carlo and diffusion models were 
adapted from versions used successfully to probe 
optically thick stratiform clouds with pulsed lasers and 
innovative receivers from ground [2] or aircraft [3]; the 
latter configuration was subsequently considered to 
probe sea ice thickness [4].  The simpler diffusion 
model, with closed-form expressions, may prove 
valuable later on if corrections are required to remove 
the extra path length from the received signal.  
However, both models still need some refinements. 

2. UNDERPINNING RADIATIVE TRANSFER 

2.1 Time-dependent azimuthally-invariant 1D RT 
Let I(t,z,Ω) ≡ I(t,z,cosθ) be diffuse radiance at time t≥0, 
depth z and direction Ω, determined by polar angles 
(θ,φ), in an optical medium 0<z<H that is, along with 
sources, both (x,y)- and φ-invariant.  This field obeys: 

c−1∂t + µ∂z +σ (z)⎡⎣ ⎤⎦ I =

σ s (z) p(z,Ω⋅Ω ')
4π
∫ I(t, z,Ω ')dΩ '+ q(t, z, µ)

, (1) 



 

c being the speed of light in the medium; this describes 
the conservation of radiant energy in a small volume in 
phase space (t,z,µ) where µ = Ωz = cosθ. Coefficients 
σ(z) and σs(z) are respectively probabilities per unit 
length of extinction and scattering events, p(…) is the 
phase function, assumed to depend only on scattering 
angle θs = cos–1Ω.Ω’.  For an infinitesimal laser pulse 
impinging normally (direction +z, µ = +1) on the upper 
boundary (z = 0) with unit energy, the volume source is  

q(t, z, µ) = exp[− σ (z ')dz '
0

z

∫ ]σ s (z)p(z, µ)δ (t − z / c) .  (2) 

Boundary conditions are I(t,0,µ) = 0, µ > 0, at the upper 
boundary and I(t,H,µ) = 0, µ < 0, at the lower boundary 
(z = H).  The quantity of prime interest here is I(t,0,–1), 
the time-dependent back-reflected radiance, in essence, 
it is the “lidar equation” for all orders of scattering. 

2.2 Monte Carlo solution for a typical scenario 
The easiest way to obtain I(t,0,–1), by far, is implement 
a numerical solution of (1)–(2) using forward Monte 
Carlo simulation.  We did this for a representative case: 
the doubled Nd:YAG wavelength (532 nm) irradiating 
15 cm of snow above 2 m of ice.  Ice optics were 
described for propagation by an effective extinction 
coefficient of 4.5 m–1 followed by isotropic scattering, 
hence p ≡ 1/4π, and the absorption coefficient is 0.07 
m–1.  Snow optics were described as purely scattering 
with σ = σs = 1634 m–1 and p(cosθs) computed from ray 
tracing (geometric optics) in a monodisperse collection 
of ice spheres of diameter 0.4 mm embedded in air, 
corresponding to somewhat aged snow.  This phase 
function is plotted in Fig. 1 where we note the very 
strong forward (diffraction) peak; as expected, it 
contains ≈50% of the overall scattering cross section. 

 
Figure 1. Adopted phase function for snow generated by a 
ray-tracing code [8,9]. 

In Fig. 2, we plot I(t,0,–1)δt normalized by its integral 
from 0 to ∞.  Here, t is equated with 2z/c, z being the 

usual range inside the medium, with δz = 0.1 m.  With 
this relatively coarse temporal binning, 84% of the 
probability is in the first 10-cm bin.  If that probability 
is assigned to range z = ct/2 = 0, then the mean delay 
<ct>/2 for all orders of scattering is 3.7 cm; if it is 
assigned to δct/2 = 5 cm, then <ct>/2 ≈ 8.7 cm.  
Although this seems like a long delay, recall that it is 
only for the fraction of the laser light that actually 
penetrates the medium.  Light returned upon specular 
reflection, with ct/2 ≡ 0, is not presently incorporated 
but the low-biased estimation of <ct>/2 mimics this 
contribution.  A physics-based model for reflection by 
the micro-roughened snow-air interface is required to 
improve the model in this important respect. 

Laboratory measurements were recently performed on 
polarized laser pulses (~1 ns FWHM, equiv. ct/2 ~ 15 
cm) returned by real Greenland snow collected in 2006. 
Interestingly, preliminary analyses based on increase in 
FWHM yield ≈3 cm for delay of parallel light [David 
Harding, pers. comm.].  However, parallel returns 
emphasize very low orders of scattering, i.e., shallow 
penetration.  Moreover, it is not known what part of 
these returns is from the surface per se and what part 
comes from the volume.  Here, we only model the later. 

 
Figure 2. Returned waveform computed by Monte Carlo 
simulation for an infinitesimally narrow incoming light 
pulse.  This impulse response must be convolved with the 
actual pulse shape to obtain the measured return. 

3.  “1+1D” RT IN THE DIFFUSION LIMIT 

3.1 Diffusive transport problem definition 
Assume total radiance I(t,z,µ) ≈ 

 [J(t,z) + 3µF(t,z) +  fcol x2δ(1–µ) δ(t–z/c)e–σz] / 4π,   (3a) 

and, accordingly, p(µs) ≈ (1+3gµs) / 4π.             (3b) 
We used here 

J(t, z) = 2π I(t, z, µ)dµ
−1

+1

∫ ,  (4a) 

F(t, z) = 2π µI(t, z, µ)dµ
−1

+1

∫ ,  (4b) 



 

and the asymmetry factor g = <cosθs> = ∫µsp(µs)dµs.  
The snow phase function in Fig. 1 yields g ≈ 0.9.  The 
implicit model for diffuse (once or more scattered) 
radiance in (3a) is a two-term expansion of the angular 
dependence in spherical harmonics.  This bland picture 
is reasonable deep inside optically thick media.  So we 
require H, the outer scale of the problem, to be much 
larger than the inner scale, mean-free-path (MFP) 1/σ. 

The transport problem in (1)–(2), for uniform media, 
now reduces to 

c−1∂t J + ∂zF = −σ aJ + fcol × σ s exp(−σ z)δ (t − z / c)
c−1∂tF + ∂zJ / 3 ≈ −σ tF + fcol × σ sgexp(−σ z)δ (t − z / c)

, (5) 

with σa = σ–σs (= 0, here) and σt = σ–gσs = (1–g)σs+σa 
being the coefficients for absorption and “transport” (or 
“scaled”) extinction, respectively.  Boundary conditions 
for the pair {J(z),F(z)} are 

J + 3χF( )
z=0

= 4(1− fcol )δ (t) and J − 3χF( )
z=H

= 0 ,   (6) 

with χ = 2/3 when fcol, the fraction of collimated 
illumination, is unity.  In standard diffusion theory, we 
furthermore assume that ∂tF ≡ 0.   

The first predicate of diffusion theory in (3a) is not a 
good approximation near (within a few MFPs of) 
strongly anisotropic sources and absorbing boundaries.  
Similarly, (3b) is a poor model for strongly forward-
peaked phase function such as displayed for snow in 
Fig. 1.  These liabilities can be largely mitigated by 
using δ-Eddington rescaling [6]: replace (3b) with  
p(µs) ≈ [ f x 2δ(1–µs) + (1–f) x (1+3g’µs)] / 4π, yielding 

σ’ = (1–ϖ0f)σ,  with 

σa’ = σa  and  σt’ = σt.  (7) 

The new parameter f is the fraction of the single-
scattered light that is reassigned to directly transmitted 
radiance, and ϖ0 = σs/ σ ≈ 1 is the single-scattering 
albedo.  The first and last relations in (7) lead to g’ = 
(g–f)/(1–ϖ0f).  A natural choice here is f = ½, to account 
for the diffraction peak.  The snow phase function in 
Fig. 1, with g = 0.9, will now use g’ = 0.8. 

Outgoing hemispheric flux at the upper boundary is 
then Rcol(t) = ¼ [J–3χF]z=0 = J(t,0)/2.  Therefore, the 
new lidar equation for multiple scattering is  

I(t,0,–1) ≈ Rcol(t) / π,  (8) 

making the assumption of isotropic emittance from the 
illuminated side of the optically thick target medium. 

3.2 Solutions in Laplace space 
The above problem in coupled PDEs is then Laplace-
transformed in t, ∫[0,∞)(…)e–stdt, yielding a classic ODE 
problem in z, indeed a close analog to the well-known 
“δ-Eddington 2-stream” model used in climate models 
for solar radiation parameterization, with s/c being the 
equivalent of a gaseous absorption coefficient.  We find 

dF∗ / dz = −(s / c +σ a )J
∗ + fcol × σ s exp[−(s / c +σ )z]

dJ ∗ / dz ≈ −3σ tF
∗ + fcol × 3σ sgexp[−(s / c +σ )z]

,   (9) 

with 

J ∗ + 3χF∗( )
z=0

= 4(1− fcol ) and J ∗ − 3χF∗( )
z=H

= 0 .   (10) 

The resulting Laplace transform R*
col(s) = L[Rcol(t)] has 

a closed-form expression provided by Davis et al. [5]; 
similarly for transmitted flux, T*

col(s) = L[Tcol(t)]. 

Another problem of interest here is when fcol = 0 in (9)–
(10), with no exponential term in (3a) for I(t,z,µ), 
corresponding to a pulsed isotropic boundary source.  
The quantities of interest are again the time-dependent 
reflectance Riso(t) = J(t,0)/2–1 and transmittance Tiso(t) 
= J(t,H)/2 or, equivalently, their Laplace transforms 
F*

iso(s) = L[Fiso(t)], for F = R,T. 

Thinking about a simple model for semi-transparent ice, 
this last problem of diffuse pulsed illumination is of 
interest in the limit H → ∞.  This corresponds to an 
isotropic source on the upper boundary of a semi-
infinite medium, which we must now take as weakly 
absorbing (0 < σa << σs ≈ σ).  This yields a time-
resolved albedo for the ice denoted αiso(t), and the 
associated α*

iso(s) = L[αiso(t)].  Specifically, we find 

α iso
∗ (s) =

σ t / 3 − χ σ a + s / nc
σ t / 3 + χ σ a + s / nc

,       (11) 

where n ≈ 1.31 is the refractive index of ice; c/n is the 
group velocity of the transported energy, we account 
for it by scaling s, the Laplace conjugate of t, by n ≥ 1.  
We note that this expression is invariant under the 
δ-scaling in (7).  The so-called diffusion length scale of 
an optical medium is Ld = (3 σaσt)–½ and it should be 
smaller than H to justify the semi-infinite assumption. 

Returning to the two-layer medium with snow over ice, 
we can obtain its overall albedo in Laplace space, R*(s), 
using the classic decomposition into path radiance 
(reflectance with a black surface) and successive  
surface reflections, assumed isotropic [e.g., 5]: 

R∗(s) = Rcol
∗ (s) + Tcol

∗ (s)α iso
∗ (s) 1

1−α iso
∗ (s)Riso

∗ (s)
Tiso

∗ (s) .   (12) 

What can we do with a diffusion-theoretical expression 
for the Laplace transform R*(s) of πI(t,0,–1)?  First, we 
can readily compute the total albedo  

R = ½ ∫J(t,0)dt = R*(0).  (13) 
Then we can compute low-order temporal moments, 
starting with  

<t> = –∂lnR*/∂s|s=0;  (14) 
from there, the multiple-scattering path delay is ½<ct>. 

3.3 Results and analysis 
As in Sect. 2, we follow [4, and references therein] and 
consider ice as a weakly-absorbing (σa ≈ 0.07 1/m, due 



 

to impurities) isotropically-scattering (g = g’ = 0) 
medium using an “effective” (i.e., transport) extinction 
coefficient σt that can range from 3 to 6 m–1.  This puts 
Ld in the range 0.9 to 1.3 m, significantly less than the 
2-m thickness used previously, thus rationalizing our 
use of the semi-infinite medium assumption. 

From the same source [4], we take snow to be a 
densely-packed purely-scattering layer of thickness H 
between 0.1 and 0.5 m with spherical mono-disperse ice 
particles of diameter 0.1, 0.4, and 2 mm; these choices 
lead respectively to σ = σs = 6521, 1634, and 326 1/m 
(no absorption at 532 nm).  This gives us a range of 
snow optical depths τ = σH going from 32.6 to 3260.  
Scaled optical depth τt = (1–g) τ = (1–g’) τ’ is then in 
the range 3.3 to 330, which is plenty to establish a 
diffusive transport regime throughout the layer. 

In Fig. 3, we plot overall albedo R from (13) for logτ 
between –1.5 (τ ≈ 0.03) to +3.5, with the region of 
interest being +1.5 to +3.5, for the extreme ice opacities 
(σt = 3 and 6 m–1).  This demonstrates how the gradual 
addition of snow brightens the scene, and we recall that 
this does not even account for specularly reflected light, 
neither by snow nor by ice.  Ice’s albedo is approached 
on the left-hand side, saturation on the right. 

 
Figure 3. Overall reflectance R of the layered snow/ice 
medium for increasing snow optical depth τ  =  σΗ and two 
extreme assumptions about σt, the effective (a.k.a. transport) 
extinction coefficient of ice: top, 6 m–1; bottom, 3 m–1. 

Figure 4 shows then mean delay caused by multiple 
scattering <ct>dif/2 from (14) as a function of H and 
logτ in the regions of interest; the ice optics are set by 
σt = 4.5 m–1, and have very little influence in this 
regime of very opaque snow anyway.  Since Tcol

*(s) is 
small, only the first term, Rcol

*(s), really matters in (12).  
This term was previously investigated thoroughly [7].  
The asymptotic behavior of <ct>dif/2 for large τ 
(approached algebraically from above) was shown to be 
≈(5/6)H.  So for the snow modeled in Fig. 2, with H = 
0.15 m and τ = σΗ = 245 ≈ 102.4 (τt ≈ 25), we predict 
<ct>dif/2 ≈ 13 cm.  This is somewhat more than found 
for the coarse-binned Monte Carlo simulation in Fig. 2.  
We attribute this to diffusion theory’s poor account of 
the very lowest orders of scattering, but we propose 
next a simple refinement. 

 
Figure 4. Mean snow-induced multiple-scattering path delay 
<ct>dif/2 as function of H and τ, from diffusion theory. 

3.4 Refinements, present and future 
Diffusion is the asymptotic limit of RT for small MFPs; 
the opposite limit, large MFPs (small optical depths), 
takes into account only the uncollided and once-
scattered light.  Uncollided light does not contribute to 
I(t,0,–1) but for single scattering the element from 
ranges [z,z+dz) is dI1(t,z,–1) = δ(t–z/c)e–2σzσp(–1)dz, cf. 
(1)–(2), where we can think of σ and p(–1) as 
“effective” ones.  Thus total contribution is I1(t,0,–1) = 
σcp(–1)e–2σct.  Time-integrated radiance is I1(0,–1) = 
p(–1)/2 and mean delay <ct>1sc/2 = 1/4σ, a ¼ of a MFP.   

So a reasonable hybrid asymptotic estimate would be 

<ct>/2 = ½ ( πI1<ct>1sc+R<ct>dif )/( πI1+R ).    (15) 

For the case in Fig. 2, we can use the scaled MFP, for 
both the forward peak of p(µs) near µs ≈ 1 and the 
residual anisotropic scattering: 1/(1–g’)σ’ ≈ 3 mm, 
hence <ct>1sc/2 ≈ 0.8 mm with πI1 ≈ 1/8, as compared 
to R ≈ 0.95.  So (15) yields <ct>/2 ≈ 10 cm, very close 
to the more objective estimate from the coarse-binned 
Monte Carlo simulation.  However, still no account has 
been taken for light with ct ≡ 0 in either model. 

Turning to polarization effects, the Monte Carlo model 
will need a major overhaul to incorporate them.  
However, there is an easy fix for the diffusion model: 
just to use R/2 in (15) for each linear polarization.  That 
will reduce by almost ½ the current estimate, bringing it 
into close agreement with the experimental counterpart, 
which was based on a FWHM metric, not an averaging. 

Lastly, one can design an adaptive correction scheme 
for any potential altimetry bias due to snow cover by 
enabling the estimation of the 2nd-order moment of ct as 
well as its mean.  See [5] for illustrative algorithms to 
infer both H and τ using only time-domain information. 



 

ACKNOWLEDGMENTS 
We thank David Harding for kindly supplying valuable 
information about his lab measurements.  This research 
was carried out at the Jet Propulsion Laboratory, 
California Institute of Technology, under a contract 
with the National Aeronautics and Space 
Administration. © 2010. All rights reserved. 

REFERENCES 
[1] Schutz, B. E., H. J. Zwally, C. A. Shuman, D. 
Hancock, and J. P. DiMarzio (2005), Overview of the 
ICESat mission, Geophys. Res. Lett., 32, L21S01, 
doi:10.1029/2005GL024009. 

[2] Polonsky, I. N., S. P. Love, and A. B. Davis 
(2005), Wide-Angle Imaging Lidar deployment at the 
ARM Southern Great Plains site: Intercomparison of 
cloud property retrievals, J. Atmos. Oceanic Technol., 
22, 628–648. 

[3] Cahalan, R. F., M. J. McGill, J. Kolasinski, T. 
Várnai, and K. Yetzer (2005), THOR, cloud THickness 
from Offbeam lidar Returns, J. Atmos. Oceanic 
Technol., 22, 605–627. 

[4] Várnai, T., and R. F. Cahalan (2007), Potential for 
airborne offbeam lidar measurements of snow and sea 
ice thickness, J. Geophys. Res., 112, C12S90, 
doi:10.1029/2007JC004091. 

[5] Davis, A. B., I. N. Polonski, and A. Marshak 
(2009), Space-time Green functions for diffusive 
radiation transport, in application to active and passive 
cloud probing, in Light Scattering Reviews, 4,  Single 
Light Scattering and Radiative Transfer, A.A. 
Kokhanovsky [Ed.], Springer, 169–292. 

[6] Joseph, J. H., W. J. Wiscombe, and J. A. Weinman 
(1976), The delta-Eddington approximation for 
radiative flux transfer, J. Atmos. Sci., 33, 2452–2459. 

[7] Davis, A. B. (2008), Multiple-scattering lidar from 
both sides of the clouds: Addressing internal structure, 
J. Geophys. Res., 113, D14S10, 
doi:10.1029/2007JD009666. 

[8] Macke, A., M.I. Michshenko, K. Miunonen, and 
B.E. Carlson (1995), Scattering of light by large 
nonspherical particles: Ray tracing approximation 
versus T-matrix method, Optics Letters, 20,1934–1936. 

[9] Macke, A., and M.I. Mishchenko (1996), 
Applicability of regular particle shapes in light 
scattering calculations for atmospheric ice particles, 
Appl. Opt., 35, 4291–4296. 

 

 


