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MSL Mission and Thermal Management Architecture

Launch Oct 2011, payload of 10 instruments

Landed Phase Mission Duration: 1 Martian Year R 43‘ - Backshell
Required to fully operate on Mars between 30° North L™ Parachute
and 30° South latitudes day or night s

] -—u;ﬁ‘hm Descent Stage
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New power source required — Multi-Mission RuRshxs R A Y i ——BuD
Radioisotope Thermoelectric Generator (MMRTG):
110 W electrical, 2000 W thermal dissipation

Martian surface temperatures range from -123°C to
38°C while Rover Electronics and Instruments need
to be maintained at -40°C to 50°C

Thermal Management provided by 2 Mechanically
Pumped Fluid Loops (Freon): Cruise Loop & Rover
Loop

Rover

L Ehisi gl
. BEET . 21" 4R
3 LS & »
D e L
v—Heatshield

HX Assemblies




GAIAA

Dual Role of Rover Heat Exchangers (HXs)
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MSL Mechanical Pumped Fluid Loop Architecture
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Simultaneously collect heat from MMRTG and reject waste
heat to either the Cruise Loop or directly to Martian
environment depending upon mission phase
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Rover Loop Surface Operation Description
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HX design must allow for enough heat transfer between Hot Plate to Cold Plate to
prevent the Cold Plate fluid from freezing — optimum through panel thickness
thermal conductivity

In the hot case, sufficient fluid must circulate through the Hot Plates to prevent the
MMRTG and Freon from overheating
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Historical Evolution of the Rover HXs

* Early trade studies:

- Locating the radiators on the Rover Top Deck, side panels, bottom belly pan, or next
to the Hot Plates

- The number (1 or 2), orientation (horizontal, vertical, or angled) of the Hot Plates
- Method of coupling the Cold Plate to the Hot Plate (thermal switches versus fixed
conductance)
+ (General requirements to consider:
- Available unobstructed surface area at a premium within a tight Rover envelope

- Provide a platform for easy routing of the Rover Loop tubes back and forth between
the HXs and the Rover chassis

- Incorporate the required thermal isolation between the Hot Plate and Cold Plate
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Design and Fabrication of the Rover Heat Exchangers

* Relevant Thermal Requirements:

- through panel thickness thermal conductivity to be
between 0.35 W/°C to 0.55 W/°C

- In-plane thermal conductivity greater than 0.1W/°C
- Hardware temperature limits between -111°C to 90°C

- Maximum gradient of 60°C between Hot and Cold plate
side

Aluminum Facesheet on Cold Plate Side

|Extra adhesive required to overcome

Cross Section of aerogelin this bondline)

Rover Heat
Exchanger
Sandwich Panel

Momex Honeycomb Core
Filled with Aerogel

(Honeycomb slitted forventing this side)

Aluminum Facesheet on Hot Plate Side



Q, GAIAA.

Thermal and Mechanical Design of Sandwich Panels

 Customized potted insert design

« Opaque Aerogel in powder form implemented as
radiation suppressant

 Through panel conductivity tested using ASTM C-
177 Guarded Hot Plate Test
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Thermal Model of Rover Heat Exchanger Assemblies

RSM Mass
Models

MMRTG Fi
"> MMRTG Housing

SPaH Mass
Models

HRS Tubing

HGA Mass
Models

Cold/Hot Heat
- Exchanger Y
Mobility Mass = Plates HotHeat
Models Exchanger Plate Cold Heat
Exchanger Plate

I-DEAS TMG Model
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Cruise Phase System Level Thermal Vacuum Test at JPL

Performed at JPL during February 2009
Simulated MMRTG plus electronics dissipation (2100 W)
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Thermal Model Predictions versus Test Data: Hot Case (Near Earth)

Hot Plates

TC: HP -YO
mMdl: 39°C
Test: 37°C

TC: HP +YO
Mdl: 42°C
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Thermal Model Predictions versus Test Data: Cold Case (Near Mars)

MMRTG
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Thermal Model Predictions versus Test Data: Hot Case (Near Earth)

To CS Radiators Cruise HRS From CS Avionics
Mdl: 26°C Loop
Test: 20.6°C est.1s. est. 20.
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Mixer =-10C, 3% bypass Splitter = +15C, 96% bypass
Mixer > +10C, 55% bypass Splitter = +35C, 4% bypass
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\
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From Rover Electronics To RoverElectronics

Observation: Minimal liquid to liquid heat transfer between the
Rover and Cruise Loops
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Conclusions

In general there was good correlation between the thermal model and test
data

Although Cruise to Rover Loop Heat Exchanger design (Thermal Wedge
implementation) not that critical, this was most robust option to carry forward
during early design phase.

Several challenging design constraints were overcome and various tests
confirmed that the HXs exceeded the thermal and mechanical requirements
with adequate margins
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