MACHETE: Environment for Space Networking Evaluation

Esther Jennings, John Segui, Simon Woo
Jet Propulsion Laboratory
California Institute of Technology

SpaceOps April 29th, 2010

Presenter: Loren Clare, NASA/JPL
Outline

- Space Networking Overview
- JPL's MACHETE simulation environment
 - Clearing the path for network engineering
- MACHETE Use Cases
- Conclusion
Space Exploration Networks

- Surface Networks
- Proximity Networks
- Interplanetary Networks
Surface Networks

- Examples: rover to lander, astronauts to base station, surface sensor network, habitat to ISRU, habitat LAN

- Wired networks or

- Constrained wireless networks
 - Semi-predictable topology, limited nodes
 - Controlled mobility, obstruction

- Protocol Examples:
 - 802.x, IP, DTN Bundle, FTP, RTP
Proximity Networks

- Examples: rover to orbiter, orbiter to orbiter cross-link
- Predictable dynamic topology arising from orbital kinematics
- Protocols: Proximity-1, AOS, 802.11/16, CFDP
Interplanetary Networks

- Space exploration backbone to/from Earth
- RTTs measured in minutes and hours
- Possible use of Ka-band or optical
 - Weather effects cause unpredictable outages
- Resource sharing of ground assets
 - Reschedule due to unplanned outage has cascading effect
- Protocols: TC/TM, AOS, DTN Bundle Protocol, LTP, CFDP
JPL’s MACHETE Simulation Environment

- Purpose of such tool environment
 - Space networking is different from terrestrial networks
 - To minimize risks in space flight missions, we need to design, validate and evaluate space networking protocols

- Overall MACHETE architecture
 - Orbital and Planetary Motion Kinematics Modeling
 - Link Engineering
 - Traffic and Protocol Modeling
 - External Interface for Integrated Distributed Simulations

MACHETE: Multi-mission Advanced communications Hybrid Environment for Test and Evaluation
MACHETE Architecture

MACHETE - Multi-mission
Advanced Communications
Hybrid Environment for Test and Evaluation
MACHETE Development

- Started in 2001
- It is a test & evaluation environment containing:
 - Custom tools & libraries
 - CCSDS Protocol Library (extension to QualNet)
 - DTN Protocol Library (extension to QualNet)
 - Additional protocols (extension to QualNet)
 - Link budget libraries (C, Matlab)
 - Telecomm tools (TFPC, TOAST)
 - Commercial tools
 - QualNet
 - Satellite Took Kit (STK)
 - Satellite Orbit Analysis Program (SOAP)
MACHETE: Example Uses

- Mars Relay Scenarios
- Near-Earth Scenarios
- Surface Scenarios
- Distributed testbeds
Proximity-1 Performance Evaluation

- Determined the optimal delay-tolerant data rate w.r.t. QoS requirement on expedited data

- Example: QoS requirement for expedited data is < 0.6 seconds 99% of the time, then the optimal supportable delay-tolerant data rate is found to be 320 kbps
 - Mars proximity access link
CFDP Buffer Requirement

- Determined buffer capacity necessary to achieve specified maximum overflow for CFDP file transfer protocol
- Tolerating a 5% data loss in files (files are 95% complete) will cut down buffer requirement by a factor of 3
 - Mars interplanetary backbone link

Figure 5: 90% Weather Ka-band Buffer Requirement (1Kbyte PDU)
Communications Requirements Validation

- Requirements validation of communications support of mission over different phases
- Simulated nominal ISS mission scenarios and verified supportable data volume against mission requirements for launch/ascent, LEO ops, rendezvous, entry descent return
 - Near-Earth support by Space Communication and Navigation (SCaN) TDRSS network of mission including rendezvous to ISS
Quality of Service Performance Comparison

- Simulation demonstrated that traffic shaping improves delay and jitter performance for video traffic
- H.264 VBR video delay distribution comparative performance derived for shaped and unshaped cases
 - Low Earth Orbit phase of ISS mission. Data is from CEV to MS.
Communications Network Architectural Comparisons

- Compared architectural alternatives for surface network
- Simulated surface networks using
 - 802.11 only
 - 802.16 only
 - Mix of 802.11/802.16
- Applied anticipated traffic profiles (voice, telemetry, command, caution & warning, teleoperations)
- Configured number of nodes, spatial arrangement and topology
- Derive resulting performance for comparisons
- Lunar human exploration surface scenario
Sensor Networking Architecture Evaluation

- Extended simulation to incorporate modeling of sensing and processing
- Compared sensor networking architecture data fusion methods:
 (a) Localized: sensors communicate within its own cluster
 (b) Hierarchical: sensors communicate with its cluster leader; leader communicates with other leaders
 (c) Distributed: sensors communicate with all other nodes within range
- Performance evaluation combines sensing and communications networking
 - Localized fusion \rightarrow limited detection capability
 - Hierarchical fusion \rightarrow takes time to propagate detection to other clusters
 - Distributed fusion \rightarrow fast detection; increased communication load; more false alarms
Integration with Distributed Testbed for Interoperability Validation

- Integrated testing of collaborative, distributed simulated or emulated space systems to enable interoperability validation
- HLA framework synchronizes a federation of distributed simulators/emulators across multiple entities and provides global data among the federates (pub/sub)
- A space system (spacecraft, launch control center, etc.) was simulated/emulated with distributed entities among multiple NASA centers for which MACHETE/SCaN Simulator was communications network simulator
 - MACHETE/SCaN Simulator relayed data among federates
 - MACHETE/SCaN Simulator calculated and applied propagation delays for simulated links
Conclusion

- MACHETE environment
 - Leverages the strengths of various specialized tools
 - Supports performance evaluation of network protocols and services in space missions
 - Stand-alone simulation or hybrid simulation-emulation capabilities
 - Has proven successful in NASA’s SCaN network architecture evaluation
Acknowledgement

● Software model contribution from NASA Glenn Research Center to SCaN NI&E simulator

● IMSim, DSIL distributed simulation collaboration:
 – Ames Research Center
 – Goddard Space Flight Center
 – Glenn Research Center
 – Johnson Space Center
 – Kennedy Space Center
 – Langley Research Center
 – Marshall Space Flight Center
Backup
Customized Space Protocol Models

- **CCSDS:**
 - Proximity-1
 - Advanced Orbiting System Virtual Channel (AOS-VC)
 - CCSDS File Delivery Protocol (CFDP)

- **DTN:**
 - Bundle Protocol (BP)
 - Licklider Transport Protocol (LTP)
 - Routing:
 - Contact Graph Routing (CGR)
 - Delay Tolerant Link State Routing (DTLSR)

- **SCaN NI&E Simulator (ver.2):**
 - TDRSS model
 - Physical Layer Link Budget Library
 - Traffic generation (audio, video profiles)
 - CCSDS ENCAPS
 - CCSDS AOS-MPDU

- **JPL**

- **GRC**
Distributed: Integrated Testbed for Lunar Mission

- **Problem statement**
 - Space Communications Testbed (viaSat, JPL, GRC, GSFC, LaRC)
 - Demonstrate communications networking for NASA ESMD

- **Method**
 - Tools: MACHETE’s network simulator, iperf
 - LPN: 4 astronauts, 2 landers, 1 rover, 1 base station. (Prox-1 and 802.11 were used)

- **Result**
 - Measured end-to-end effective bandwidth
 - Throughput degradation point:
 - At 10 Mbps (passing through network simulator)
 - At 70 Mbps (without network simulator)
 - Main overhead: filtering IP packets between simulator and emulator