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Capability for precise lunar landing is the goal for future NASA missions. A LIDAR-
based terrain relative navigation (TRN) approach lets us achieve this goal and also land 
under any illumination conditions. Results from field test data showed that the LIDAR TRN 
algorithm obtained position estimates with mean error of about 20 meters and standard 
deviations of about 10 meters. Moreover, the algorithm was capable of providing 99% 
correct estimates by assessing the local terrain relief in the data. Also, the algorithm was able 
to handle initial position uncertainty of up to 1.6 km without performance degradation. 

Nomenclature 
ALHAT = Autonomous Landing and Hazard Avoidance Technology 
LIDAR = Light Detection And Ranging 
TRN = terrain relative navigation 
DEM = digital elevation map 
NTS = Nevada Test Site 
DV = Death Valley 
USGS = United States Geological Survey 
UTM = Universal Transverse Mercator 
ECEF = Earth Centered Earth Fixed Frame 
µ = Valid Mean Error 
σ = Valid Standard Deviation of Error 
V/S = Valid Over Sure Fraction 
V/T = Valid Over Total Fraction 
P2V = Peak-to-Valley 
TRI = Terrain Relief Index 

I. Introduction 
RECISE landing on the surface of the Moon is the goal for future lunar missions of NASA. Such capability will 
enable scientists to get closer to a point of interest and to access rougher terrain. However, traditional lunar 

landing approaches, based on inertial sensing, do not have the navigational precision to meet this goal. To address 
this shortcoming, several terrain relative navigation (TRN) approaches have been proposed.1-6 These approaches 
sense the terrain during descent and augment the inertial navigation by providing, in real-time, position or bearing 
estimates relative to known surface landmarks. From these estimates, the navigational precision can be increased to 
a level that meets a requirement of landing within 90 m of a predetermined location.7 

The Autonomous Landing and Hazard Avoidance Technology (ALHAT) project of NASA is developing 
LIDAR-based terrain relative navigation algorithm.8-10 Unlike others, this is an active range sensing approach that 
can operate under any illumination conditions in order to achieve landing anywhere on the Moon at any time of day. 
The proposed TRN approach is intended for use during the braking burn phase of a lander, after it de-orbits. During 
this phase, the lander travels a significant distance downrange at a shallow path angle; thus, the cumulative LIDAR 
data forms a long contour. Additionally, the LIDAR can be placed on a single-axis gimbal that swings in the cross-
track direction to produce a wider contour. After collection, the LIDAR data is projected into a digital elevation map 
(DEM) using the most current position estimate for the lander. To obtain a position correction, this “LIDAR DEM” 
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is correlated with a “reference DEM” constructed from a-priori reconnaissance, such as the Lunar Reconnaissance 
Orbiter data. High-fidelity simulation of the LIDAR TRN has shown that both regular and wide contours can 
achieve the ALHAT 90 m precision objective.1 

This paper describes the performance of the LIDAR-based TRN approach on data collected during a recent field 
test described in section II. More detail on the algorithm is given in section III. The approach produces position 
estimates and confidence using internal metrics introduced in section IV. In most field test flights, as shown in 
section V, the confident estimates have error typically less than 50 m. Misalignments are the likely causes of the 
large position errors in other flights. After optimizing the confidence threshold in four test flights, 99% of the 
confident estimates had error less than 90 m. In addition, in Section VI, studies were conducted to assess the 
sensitivity to confidence metric, contour length, map resolution, and initial position uncertainty.  

II. Field Test Description 
To further mature LIDAR TRN, as well as other TRN approaches, ALHAT conducted a field test in June and 

July of 2009. For this test, a fixed-wing aircraft was outfitted with a suite of TRN sensors, along with sensors to 
provide ground truth position and attitude. A gimbaled platform contained the flash LIDAR sensor and different 
gimbal modes resulted in different contour widths. Details on the field test implementation, platform, and ground 
truth trajectory generation can be found in [Keim 2010]12. A total of eight data collection flights were flown. For 
most flights, the plane flew horizontally at 60 m/s. The flights were conducted at 2, 4, and 8 km altitudes over two 
test sites: Death Valley (DV) and Nevada Test Site (NTS). A variety of terrain was imaged including mountains, 
hills, washes, dry lakebeds, and craters.  Each flight had between one and two hours of valid data. 

NTS and DV were selected as test sites for the field test because of the lack of vegetation over large areas and 
the variety of terrain relief. NTS in particular was selected because it has a large crater field on a flat terrain, 
analogous to the lunar mare. DV in particular was selected because of the mountainous regions and associated 
foothills that are analogous to the lunar uplands. 

III. Position Estimation Process 
The LIDAR TRN algorithm took as inputs a reference map and a LIDAR map. The reference maps for DV and 

NTS were obtained by downloading the 1/9 arcsecond National Elevation Datasets from the USGS Seamless server. 
These maps were represented in the UTM map projection and had nominal resolution of 5 m. The LIDAR maps 
were constructed out of the field test data. To do this, 3D point clouds were generated from the raw LIDAR data. 
Then, these point clouds were projected into the UTM coordinate frame to obtain the LIDAR DEMs. In the end, the 
TRN algorithm was applied to produce the position estimates. These steps are described in more detail below. A 
result of applying the LIDAR TRN algorithm to a short contour from NTS is shown in Fig. 1. The correlation 
correctly computed the position shift to align the LIDAR DEM with the reference DEM. 

A. Generating 3D Point Clouds 
The flash LIDAR data consisted of 128 by 128 pixel images. Each pixel in a LIDAR image consisted of 20 

timed intensities of the return laser pulse. First of all, pixels that constantly yielded erroneous readings or did not 
trigger, i.e. did not register a reading, were disregarded. Next, the maximum intensity for each remaining pixel was 
determined by finding the peak of a 6th order polynomial fit to the timed return pulse intensities. The corresponding 
time-of-flight for this maximum, as measured by the LIDAR’s clock, was then multiplied by the speed of light to 

 
Figure 1. LIDAR TRN result for a short contour over NTS. 
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yield a range for that pixel. Also, the ranges were calibrated to deal with drifting clock rate and pixel-to-pixel non-
uniformities. Additionally, to remove any remaining outliers, a local median filter was applied to the ranges. Finally, 
a 3D point cloud was generated for each image by computing the rays for each pixel using a perfect perspective 
camera projection. 

B. Constructing the LIDAR DEM 
The 3D point clouds were represented in the LIDAR sensor coordinate frame. They needed to be transformed 

into the UTM frame to generate a LIDAR DEM with the same frame as that of the reference map. Beforehand, a 
flight trajectory was computed that defined the position and attitude of the LIDAR in the Earth Centered Earth Fixed 
Frame (ECEF). This trajectory was interpolated to construct rigid transformations that, at each LIDAR image 
instance, mapped the sensor frame to the ECEF. Sequentially, the 3D point cloud for each image was transformed 
into the ECEF, then into latitude/longitude/height, and finally into the UTM frame. After 3D point clouds from 
several sequential LIDAR images were transformed into the UTM frame, the new points were projected into a grid 
using bilinear interpolation to form the LIDAR DEM contour. The LIDAR DEM resolution was set to 5 m to match 
the one of the reference DEM. The width of the LIDAR contour depended on weather the gimbal was moving or not 
during flight. The length of the contour depended on the number of images used to form it and was adjusted to tune 
the performance.  

C. Apply LIDAR TRN Algorithm 
The bounds of the LIDAR DEM, increased by the position uncertainty of 200 m, were used to crop the large 

reference DEM. The LIDAR DEM and the cropped reference DEMs were matched using a floating-point correlation 
algorithm that handled missing data. The maximum value in the correlation map resulting from the algorithm 
corresponded to the horizontal shift between the contour and the reference DEM. To increase the precision of this 
shift, a bi-quadratic fit was made to a 3 by 3 neighborhood around the correlation peak to compute a sub-pixel 
maximum. This shift in pixels was converted to a shift in meters using the DEM pixel size. The process described 
above was automated and all flights were processed at nominal parameters. Additionally, studies were conducted on 
a smaller subset to determine sensitivity to driving parameters.  

IV. Analysis Metrics 

A. Performance Metrics 
The purpose of TRN was to provide accurate position estimates. The error of an estimate was determined by the 

difference between the position estimated by the algorithm and the position computed from the ground truth data. 
Recall that the ALHAT requirement was to land within 90 m horizontal distance of the intended landing point.  
Thus, for the purpose of this analysis, a “correct” position estimate was defined as one that has a position error less 
than 90 m and an incorrect estimate was one that had a position error greater than 90 m. 

In addition to estimating position, the TRN algorithm was expected to establish a level of confidence for the 
estimates. As described below, this confidence was established by applying thresholds on one of more metrics 
internal to the algorithm in such a way that the estimates above the thresholds had high precision. The algorithm 
would pass on to the navigation filter every estimate in which it was confident. In this study, such estimate was 
defined as “sure.” 

If an estimate was both correct and sure, it was deemed “valid.” The following performance metrics were 
established: 

• Valid Mean Error (µ): the mean horizontal position error of the correct and sure estimates. This metric 
established the expected accuracy of such estimates. 

• Valid Standard Deviation of Error (σ): the standard deviation of the horizontal position error of the correct 
and sure estimates. This metric described the variation in accuracy of such estimates. 

• Valid Over Sure Fraction (V/S): The ratio of the number of correct and sure estimates over the number of all 
sure estimates. This metric described how often an incorrect estimate would be passed to navigation. 

B. Confidence Metrics 
These TRN metrics assigned a measure of confidence to the TRN estimates and decided which estimates would 

be used in navigation. Mostly, the estimates in which TRN was sure were also correct, but sometimes they had an 
error as large as the original position uncertainty. The aim was to achieve the greatest number of valid estimates 
while allowing very few incorrect estimates to be passed on to navigation. 
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The correlation peak height, correlation peak width, and peak ratio were output as correlation metrics. These 
metrics were computed after the algorithm was run and described properties of the correlation DEM matching 
procedure done by TRN. Additionally, four terrain metrics were calculated from the LIDAR contour. These metrics 
were computed before the algorithm was run and describe properties of the terrain contour used in TRN matching. It 
was supposed that the terrain relief and the geometry of the contour related to the TRN error. All terrain metrics 
were computed locally, on a sliding 100 m by 100 m window, and then the overall maximum result for the contour 
was taken.  

The TRN confidence metrics were: 
• Correlation peak height – the height of the correlation peak as defined by the bi-quadratic fit  
• Correlation peak width – the maximum width of the correlation peak 
• Peak ratio – the ratio in heights of the correlation peak and the second highest peak 
• Peak-to-Valley (P2V) – the difference between the highest and the lowest elevation in the terrain contour 

after it is projected on the median plane to remove the effect of overall slope 
• Terrain Relief Index (TRI) – the expected standard deviation of elevations among neighboring pixels.11 
• Contour size – the total number of DEM pixels in the contour 
• Contour shape – a measure of length and width of the contour as described by the two eigenvalues of the 

scatter matrix of the x and y coordinates of the contour points 

V. Performance Analysis of Flights 
Based on the contour length sensitivity study describe in the next section, 75 consecutive flash LIDAR images 

were used to construct each contour in every flight. Given the 10 Hz rate of the LIDAR and the 60 m/s speed of the 
aircraft, this resulted in contour length of 450m. The processing steps, described in Section III, were applied to each 
contour and the TRN position correction was recorded along with all the confidence metrics mentioned above. Since 
the ground truth trajectory was used to transform the LIDAR samples into the map frame, the position correction 
should have been zero; thus, the computed correction was actually the error in position estimation. However, the 

ground truth had noticeable biases in some flights. 
 
The analysis included two ways of labeling estimates as “sure” by applying two different sets of thresholds on 

the confidence metrics. The first way labeled all position estimates in all flights with P2V greater than 25 m as sure. 
This threshold was picked to work well in all flights; nonetheless it is specific to the terrain relief in this field test. 
The second way consecutively applied thresholds on two metrics. First, position estimates with very large 
correlation width were dismissed as unsure. Then, the P2V threshold was adjusted for each flight such that 99% (or 
as much as possible) of the estimates above the threshold had errors less than 90 m. This meant that TRN would 
allow for only 1% incorrect estimates to be passed on to navigation. The first way, dubbed fixed threshold method, 
was useful for comparing results across flights, while the second way, dubbed optimized threshold method, showed 
the effect of minimizing the number of incorrect estimates passed on to navigation for each flight. Table 1 
summarizes the performance metrics for these methods. Results for flight 3, which had some problems with the 
trajectory, were not shown. 

 
Table 1. Comparison of position estimation performance. 

 

 
P2V Fixed at 25 m P2V Optimized 

V(#) V/S(%) µ(m) σ(m) V(#) V/S(%) µ(m) σ(m) thresh(m) 

D 
V 

1 329 74.8 40.0 26.1 319 81.2 39.4 26.4 35 
2 210 96.8 22.5 14.3 147 99.3 20.9 12.3 63 
3 - - - - - - - - - 
8 198 56.3 54.1 18.3 159 74.3 53.1 18.0 35 

N 
T 
S 

4 229 97.9 17.0 8.4 324 99.1 18.1 10.3 12 
5 246 100 12.5 6.4 307 99.0 14.2 10.0 12 
6 236 81.9 58.1 18.3 52 96.3 53.6 16.3 75 
7 106 99.1 11.0 7.5 134 99.3 12.3 10.3 14 
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A. Fixed Threshold Method 
To assess the performance of the LIDAR TRN algorithm, the horizontal position errors were plotted versus the 

P2V confidence metric. As seen in Fig. 2, the position estimates for flights 2, 4, 5, and 7 were very good. Their error 
clustered near zero and was typically less than 50 m. The P2V confidence metric set apart mostly correct estimates 
above its threshold.  

The position error of flights 1, 3, 6, and 8 had a wide variation. Notice, that in flights 3, 6, and 8 the cluster of 
position errors had moved away from zero. This fact suggests an unknown and constant misalignment, which caused 
problems with the ground truth trajectory. This misalignment might have been caused during the relocation of some 

sensors on the airplane. Additionally, during 
flight 8, the LIDAR had problems outputting its 
clock rate, making it impossible to calibrate the 
range and make accurate LIDAR maps. 
Moreover, the 5x divergence was used on the 
flash LIDAR laser in flights 1, 3, 6, and 8, which 
resulted in about 100 triggering pixels per image 
when the plane was at 2 km altitude and 50 or 
fewer at higher altitude. In flights 2, 4, 5, and 7 
the 2x divergence was used, which resulted in 
400 pixels at 2 km and 200 pixels at 4 km 
altitude. This difference meant that the LIDAR 
contours for flights 1, 3, 6, and 8 were narrower 
than those of the other flights; thus the larger 
spread in error.  

The position estimation results for flights 2 
and 7 were plotted on a contour map of the 
corresponding test site in Fig. 3. The results were 
colored according to their category. It is seen that 
most errors occurred in the flat portions of the 
terrain, whereas most correct estimates were over 
the rougher terrain. Therefore, the performance 
of LIDAR TRN is driven by the amount of 
terrain relief present in the LIDAR data. 

     
      horizontal error, m     horizontal error, m    horizontal error, m       horizontal error, m 
                   a) flight 1                                b) flight 2                  c) flight 3                                 d) flight 4 
 

          
      horizontal error, m     horizontal error, m    horizontal error, m       horizontal error, m 
                  e) flight 5                                f) flight 6                  g) flight 7                                h) flight 8 
 
Figure 2. TRN performance for all flights. These plots show the distribution of error for the TRN position estimates 
(blue dots) across flights and the confidence established by the fixed P2V threshold of 25 m (black line). For most 
flights, the estimates above this threshold are below the 90 m requirement (red line). 
 

    
 a) Flight 2 over DV    b) Flight 7 over NTS 

Figure 3. Position estimation results for the fixed threshold 
method. Legend: correct and sure in green, incorrect but sure in 
red, correct but unsure in cyan, and incorrect and unsure in blue 
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VII. Conclusion 
The TRN approach presented here, based on correlation of LIDAR data and elevation map, meets the objective 

of 90 m landing precision under any lighting conditions. TRN estimates have error typically less than 50 m. Most 
incorrect estimates are eliminated using confidence metrics based on terrain relief. Instrument misalignments are the 
main causes of large global errors. Disregarding those, 99% of the TRN estimates passed on to the navigation filter 
are accurate. Also, the algorithm can handle initial uncertainty of 1.6 km without performance degradation. 
Nevertheless, TRN performance degrades with larger map resolutions. 

Future work will include a study of the effect of contour width on TRN performance. Also, pre-filtering of the 
contours though a band-pass filter or masking out flat regions will be investigated to sharpen the correlation peak. 
Using laser altimeter data with the LIDAR TRN algorithm will also be investigated.  
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