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Abstract—Complex technology investment decisions within 
NASA are increasingly difficult to make such that the end 
results are satisfying the technical objectives and all the 
organizational constraints. Due to a restricted science 
budget environment and numerous required technology 
developments, the investment decisions need to take into 
account not only the functional impact on the program 
goals, but also development uncertainties and cost variations 
along with maintaining a healthy workforce. This paper1,2 
describes an approach for optimizing and qualifying 
technology investment portfolios from the perspective of an 
integrated system model. The methodology encompasses 
multi-attribute decision theory elements and sensitivity 
analysis. The evaluation of the degree of robustness of the 
recommended portfolio provides the decision-maker with an 
array of viable selection alternatives, which take into 
account input uncertainties and possibly satisfy non-
technical constraints. The methodology is presented in the 
context of assessing capability development portfolios for 
NASA technology programs.  
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1. OVERVIEW 
In response to the need for consistent, transparent and 
auditable decision-making processes and tools [1], we 
employ a systematized approach to assessing optimal 
portfolios of capabilities and technologies. Project 
investments are selected through optimization of net 
mission value as a function of capability level achieved, 
subject to cost and time constraints. The investment 
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selection is generated using the optimization module 
included in our own decision-support system START 
(STrategic Assessment of Risk and Technology) [2, 3, 4]. 

The underlying data set, which quantitatively characterizes 
requirements (performance, cost, schedule, risk) and 
proposed technological solutions (achievable capabilities, 
resource requirements, degree of maturity, schedule), is 
replete with uncertainty. This inherent uncertainty of the 
input data must be combined into a global confidence range, 
which provides the decision maker with an overall sense of 
quality and likelihood of success of the investment strategy.  

We use two complementary methods to take a first step in 
evaluating the degree of confidence about the standard 
optimal investment portfolio and determining how the 
choice of capabilities is affected by variations in the 
information provided by the capability developers: 
parametric sensitivity analysis and k-best sets analysis. 

The parametric sensitivity analysis reveals whether a given 
uncertainty in a cost or expected utility might lead to a 
portfolio recommendation differing from the initial 
portfolio, and ultimately allows to categorize capabilities as 
“robustly chosen”, “robustly rejected”, or “trade candidates” 
(i.e., capabilities that were chosen or rejected with 
significant uncertainty). In addition to the parametric 
screening, a k-best analysis is performed to identify 
competitive portfolios and their common set of capabilities. 
This common set is in turn compared to the set of robustly 
chosen capabilities, while the k-best portfolios are presented 
as options to the optimal recommendation. 

The application of the sensitivity analysis presented here 
originates from a study conducted for NASA’s Aeronautics 
Research Mission Directorate (ARMD). The United States 
has set a goal of enabling a Next Generation Air 
Transportation System [5] by the year 2025 to provide for 
substantially increased capacity while improving or keeping 
constant any harmful effects on the environment (emissions, 
noise), safety, and security. The Joint Program Development 
Office facilitates the multi-agency support of this effort. 
NASA contributes primarily as an R&D provider of 
enhanced capabilities, and its Aeronautics Research Mission 
Directorate (ARMD) has initiated an activity to formulate 
and assess the return on investment (ROI) for candidate 
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different scenarios and assumptions. The results of the 
analyses are presented to the decision-maker in tabular and 
graphical forms, allowing large amounts of information to 
be conveyed rapidly and accurately. START is composed of 
both an operational sequence of steps, and an analytical 
decision framework.  

The operational sequence of steps in the application of the 
START methodology is listed below:  

1. Develop a clear, complete statement of the decision 
problem to be studied. This includes eliciting the pertinent 
policy, schedule, and budget constraints, as well as all 
relevant assumptions. 

2. Identify the goals and priorities of the decision-
maker, and the associated metrics. This includes relative 
priorities or range of relative priorities among multiple 
goals. 

3. Identify the scenarios, programs or mission 
architectures that are to be fulfilled.  

4. Identify the capabilities and/or technologies 
required by the scenarios, programs or missions.  

5. Characterize the capabilities and/or technologies 
using a variety of metrics, including the state of the art 
(SOA), desired performance levels, development cost and 
risk, influence on goal(s), etc., and validate the data 
collected. 

6. Capture the perceived importance and risk of the 
required performance domain through a corresponding 
utility range. This step benefits greatly from functional 
models of the systems/architectures to which the proposed 
technologies will contribute. The functional models should 
be used to evaluate the sensitivity of the system/architecture 
overall value to performance variations in the underlying 
technologies. The sensitivity coefficients can then be 
translated/mapped to importance levels.  

7. Compute optimal portfolios in the limits of 
investment budgets and timelines that are of interest to the 
decision-maker.  

8. Validate the results, both through consistency 
checks of the data and through automated sensitivity 
analysis of the results. This allows the decision-maker to 
have confidence metrics associated with the results.  

The analytical framework used for START is based 
primarily on decision-theoretical methods [16, 17]. The data 
used to characterize the requirements is used to assess the 
expected utility of different capabilities or technologies, 
again based on their quantitative and qualitative description. 
Capabilities or technologies are “matched” against the 
requirements using concepts from multi-objective decision 
theory [18] to compute this expected utility. This 

information, together with the associated development costs, 
is used as input to an integer optimization algorithm to 
compute the best portfolio possible under the given 
available investment budget, and taking into account the 
various constraints associated with the problem [2].  

START’s analysis capabilities (Figure 1) are the result of 
the available functional features which include improved 
modeling of uncertainties, dependencies and utilities, 
analytical modules for temporal analysis, modeling of 
enabling vs. enhancing technologies, partial funding of 
tasks, dealing with non-technical constraints, etc.  

3. APPLICATIONS  
The starting point in this analysis is the optimal portfolio for 
a given investment budget level. For each capability, the 
capability utility, probability of development success, and 
the probability of acceptance are combined to compute an 
overall expected utility of the capability [4]. The expected 
utility, together with the development cost of the capability, 
are the key quantities used in computing an optimal 
portfolio. The optimal portfolio selection problem is to 
determine the set of capabilities that provide the maximum 
composite value while fitting within the available budget. In 
the START decision support system the solution is obtained 
by employing a knapsack algorithm [19]. 

Given the preponderance of input uncertainties and political 
constraints the optimal solution in itself is not very useful 
without other qualifying information. Generally, the 
decision maker needs to know about the robustness of the 
optimal solution and if there are alternative selections close 
to the optimal point (perhaps satisfying a non-technical 
preference). 

Parametric Screening Method. Having obtained an 
optimal portfolio, we employed two approaches to examine 
the robustness of our results.  First, we changed 
incrementally the cost and utility, one at a time, for each 
capability until a change in the resulting portfolio was 
observed with respect to the nominal solution.  This 
approach yielded the range within which the portfolio 
selections would be indifferent to a change in the specific 
value of a particular cost or utility. In other words, it 
revealed whether a given uncertainty in a cost or utility 
might lead to a portfolio different from the one computed as 
optimal.  

If the expected utility for a selected capability were reduced 
below the lowest value in the range, the capability would be 
rejected, possibly making room in the budget for the 
selection of one of the currently unselected capabilities 
represented by a red bar.  Similarly, if the expected utility of 
an unselected capability is increased beyond the limits of its 
indifference range it would become selected, possibly 
knocking one or more of the previously selected capabilities 
out of the portfolio. Changes in cost can be even more 
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information can be used to increase the level of confidence 
in the decision-making process and to provide valuable 
insights and choices to the results of the optimality analysis. 

4. CONCLUSIONS 
We describe an approach for optimizing and qualifying 
technology investment portfolios from the perspective of an 
integrated system model. The methodology includes multi-
attribute decision theory elements and sensitivity analysis. 
The evaluation of the degree of robustness of the 
recommended portfolio provides the decision-maker with an 
array of viable selection alternatives, which take into 
account input uncertainties and possibly satisfy non-
technical constraints. Two complementary methods - 
parametric sensitivity analysis and k-best sets analysis, for 
qualifying optimal technology portfolios were employed. 
The parametric sensitivity analysis relies on two types of 
evaluation procedures: deterministic and statistical (Monte 
Carlo simulation). 

The deterministic sampling yields the range within which 
the portfolio selections are invariant to changing cost or for 
the given budget. The statistical sampling expands the 
search domain with consideration of joint variation in 
capability input parameters. The change events are recorded 
and accumulated over the two parametric samplings. By 
performing a mutual calibration between the accumulated 
activities, the sets of projects “robustly selected”, “robustly 
rejected”, and “trade candidates” are identified. 

The k-best sets analysis offers the “k” suboptimal portfolios 
closest to the optimal recommendation for a given budget 
level. The intersection of the k-best portfolios with the 
optimal portfolio produces a set of project selections 
deemed as “persistent.” Although the two above approaches 
are complementary, their results are consistent, in that the 
“persistent” set is similar in composition to the “robust” set. 

The goal of the sensitivity study is to enhance and improve 
the decision-making process by providing additional 
qualifications and substitutes to the optimal solution. The 
methodology is illustrated in the context of NASA 
technology project selections. The results highlight the 
importance and the usefulness of the sensitivity analysis in 
providing a higher level of confidence to the technology 
portfolio recommendations under uncertainty. 
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