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Abstract—Complex technology investment decisions within
NASA are increasingly difficult to make such that the end
results are satisfying the technical objectives and all the
organizational constraints. Due to a restricted science
budget environment and numerous required technology
developments, the investment decisions need to take into
account not only the functional impact on the program
goals, but also development uncertainties and cost variations
along with maintaining a healthy workforce. This paper'”
describes an approach for optimizing and qualifying
technology investment portfolios from the perspective of an
integrated system model. The methodology encompasses
multi-attribute decision theory elements and sensitivity
analysis. The evaluation of the degree of robustness of the
recommended portfolio provides the decision-maker with an
array of viable selection alternatives, which take into
account input uncertainties and possibly satisfy non-
technical constraints. The methodology is presented in the
context of assessing capability development portfolios for
NASA technology programs.
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1. OVERVIEW

In response to the need for consistent, transparent and
auditable decision-making processes and tools [1], we
employ a systematized approach to assessing optimal
portfolios of capabilities and technologies. Project
investments are selected through optimization of net
mission value as a function of capability level achieved,
subject to cost and time constraints. The investment
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selection is generated using the optimization module
included in our own decision-support system START
(STrategic Assessment of Risk and Technology) [2, 3, 4].

The underlying data set, which quantitatively characterizes
requirements (performance, cost, schedule, risk) and
proposed technological solutions (achievable capabilities,
resource requirements, degree of maturity, schedule), is
replete with uncertainty. This inherent uncertainty of the
input data must be combined into a global confidence range,
which provides the decision maker with an overall sense of
quality and likelihood of success of the investment strategy.

We use two complementary methods to take a first step in
evaluating the degree of confidence about the standard
optimal investment portfolio and determining how the
choice of capabilities is affected by variations in the
information provided by the capability developers:
parametric sensitivity analysis and k-best sets analysis.

The parametric sensitivity analysis reveals whether a given
uncertainty in a cost or expected utility might lead to a
portfolio recommendation differing from the initial
portfolio, and ultimately allows to categorize capabilities as
“robustly chosen”, “robustly rejected”, or “trade candidates”
(i.e., capabilities that were chosen or rejected with
significant uncertainty). In addition to the parametric
screening, a k-best analysis is performed to identify
competitive portfolios and their common set of capabilities.
This common set is in turn compared to the set of robustly
chosen capabilities, while the k-best portfolios are presented
as options to the optimal recommendation.

The application of the sensitivity analysis presented here
originates from a study conducted for NASA’s Aeronautics
Research Mission Directorate (ARMD). The United States
has set a goal of enabling a Next Generation Air
Transportation System [5] by the year 2025 to provide for
substantially increased capacity while improving or keeping
constant any harmful effects on the environment (emissions,
noise), safety, and security. The Joint Program Development
Office facilitates the multi-agency support of this effort.
NASA contributes primarily as an R&D provider of
enhanced capabilities, and its Aeronautics Research Mission
Directorate (ARMD) has initiated an activity to formulate
and assess the return on investment (ROI) for candidate



capability-development tasks deemed necessary for the
realization of the new system.

Three scenarios were identified as potential elements of an
overall architecture to address the country’s air
transportation needs during the next several decades: (1)
Linear extrapolation of today’s capabilities; (2) More large
regional airports with more large airplanes using them; (3)
A highly decentralized system in which considerable traffic
is handled by small planes travelling directly point-to-point.

Comparing the relative merits of these three approaches was
not among the study’s objectives; our analysis included
recommendations for capability investments (consistent
with the data made available) for each of the three scenarios.
Candidate capability areas were derived from programs in
vehicle systems development, airspace control, safety, and
security. A total of 38 capabilities were specified and
quantified in terms of state-of-the-art vs. required
performance and maturity; system-level importance;
estimated cost; time required for development; and
uncertainties in meeting the technical performance objective
(assuming full funding) and associated acceptance. The
portfolio analysis targeted identifying the best set of
capabilities that would support the implementation of
desirable future scenarios that contribute to the high-level
Joint Planning and Development Office (JPDO) goals,
subject to performance requirements, and budget and
development time constraints. Further details of this study
are found in [3, 6].

During the past 5 years, the START methodology and its
expression as a decision support system has been applied
extensively in the assessment and prioritization of
investment portfolios for technologies and capabilities
across several NASA programs and directorates. START is
currently being employed to prioritize investments for
NASA’s Exploration Systems Mission Directorate (ESMD)
[7], and has been an approach under consideration for
PA&E. It has been used in technology portfolio analysis for
Mars missions under the Science Mission Directorate
(SMD) [8, 9], capability portfolio planning for the
Aecronautics Research Mission Directorate (ARMD) [6, 10,
11], the Space Operations Directorate (SLEP Program), and
technology planning for JPL’s Office of the Chief
Technologist (CTO) [12, 13].

2. APPROACH

Ideally, a R&D investment selection process should be
based on a fine-grained characterization of the contending
solutions to the extent that all major discriminators are taken
into account. For large programs, this often leads to
substantial inflows of data, which are difficult to process
without specialized decision support systems. To this effect,
START is a comprehensive methodology for capability and
technology portfolio assessment and planning, which can
support large programs [14, 15]. It allows decision-makers
to see explicitly the information and the assumptions that go
into the analysis process, to guide the decision process
through the establishment of institutional constraints and
priorities, and to conduct “what-if” experiments with
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different scenarios and assumptions. The results of the
analyses are presented to the decision-maker in tabular and
graphical forms, allowing large amounts of information to
be conveyed rapidly and accurately. START is composed of
both an operational sequence of steps, and an analytical
decision framework.

The operational sequence of steps in the application of the
START methodology is listed below:

1. Develop a clear, complete statement of the decision
problem to be studied. This includes eliciting the pertinent
policy, schedule, and budget constraints, as well as all
relevant assumptions.

2. Identify the goals and priorities of the decision-
maker, and the associated metrics. This includes relative
priorities or range of relative priorities among multiple
goals.

3. Identify the scenarios, or mission
architectures that are to be fulfilled.

programs

4. Identify the capabilities and/or technologies
required by the scenarios, programs or missions.

5. Characterize the capabilities and/or technologies
using a variety of metrics, including the state of the art
(SOA), desired performance levels, development cost and
risk, influence on goal(s), etc., and validate the data
collected.

6. Capture the perceived importance and risk of the
required performance domain through a corresponding
utility range. This step benefits greatly from functional
models of the systems/architectures to which the proposed
technologies will contribute. The functional models should
be used to evaluate the sensitivity of the system/architecture
overall value to performance variations in the underlying
technologies. The sensitivity coefficients can then be
translated/mapped to importance levels.

7. Compute optimal portfolios in the limits of
investment budgets and timelines that are of interest to the
decision-maker.

8. Validate the results, both through consistency
checks of the data and through automated sensitivity
analysis of the results. This allows the decision-maker to
have confidence metrics associated with the results.

The analytical framework used for START is based
primarily on decision-theoretical methods [16, 17]. The data
used to characterize the requirements is used to assess the
expected utility of different capabilities or technologies,
again based on their quantitative and qualitative description.
Capabilities or technologies are “matched” against the
requirements using concepts from multi-objective decision
theory [18] to compute this expected utility. This

information, together with the associated development costs,
is used as input to an integer optimization algorithm to
compute the best portfolio possible under the given
available investment budget, and taking into account the
various constraints associated with the problem [2].

START’s analysis capabilities (Figure 1) are the result of
the available functional features which include improved
modeling of uncertainties, dependencies and utilities,
analytical modules for temporal analysis, modeling of
enabling vs. enhancing technologies, partial funding of
tasks, dealing with non-technical constraints, etc.

3. APPLICATIONS

The starting point in this analysis is the optimal portfolio for
a given investment budget level. For each capability, the
capability utility, probability of development success, and
the probability of acceptance are combined to compute an
overall expected utility of the capability [4]. The expected
utility, together with the development cost of the capability,
are the key quantities used in computing an optimal
portfolio. The optimal portfolio selection problem is to
determine the set of capabilities that provide the maximum
composite value while fitting within the available budget. In
the START decision support system the solution is obtained
by employing a knapsack algorithm [19].

Given the preponderance of input uncertainties and political
constraints the optimal solution in itself is not very useful
without other qualifying information. Generally, the
decision maker needs to know about the robustness of the
optimal solution and if there are alternative selections close
to the optimal point (perhaps satisfying a non-technical
preference).

Parametric Screening Method. Having obtained an
optimal portfolio, we employed two approaches to examine
the robustness of our results. First, we changed
incrementally the cost and utility, one at a time, for each
capability until a change in the resulting portfolio was
observed with respect to the nominal solution.  This
approach yielded the range within which the portfolio
selections would be indifferent to a change in the specific
value of a particular cost or utility. In other words, it
revealed whether a given uncertainty in a cost or utility
might lead to a portfolio different from the one computed as
optimal.

If the expected utility for a selected capability were reduced
below the lowest value in the range, the capability would be
rejected, possibly making room in the budget for the
selection of one of the currently unselected capabilities
represented by a red bar. Similarly, if the expected utility of
an unselected capability is increased beyond the limits of its
indifference range it would become selected, possibly
knocking one or more of the previously selected capabilities
out of the portfolio. Changes in cost can be even more
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Figure 2. Portfolio movement tallies during the parametric sweep. The red/yellow bars denote the cumulated
moves while decreasing/increasing the expected utility, respectively.

unpredictable. For example, raising the cost of a selected
capability beyond the limits of its range could cause it to
become unselected—or it could be retained at the sacrifice
of a different, less-valuable capability.

The above-mentioned procedure not only produces the
indifference ranges for each capability, but also their
individual tendencies to remain, enter or exit the portfolio.
This information is the result of tracking and cumulating the
observed changes in the portfolio at the edge of the
indifference range. Figure 2 depicts the cumulated
tendencies for each capability during the parametric
screening on the expected utility. The negative numbers
represent exits from the original portfolio composition,
while the positive numbers reflect entries.

Note that the wider bars represent capabilities that entered
or exited the portfolio more frequently in this study. Such
behavior characterizes the marginal groups, whose
performance-cost ratios made them expendable or
marginally acceptable, subject to the vagaries of their own
cost and performance expectations and those of the other
capability groups. Although a univariate analysis such as
this represents an “ideal case” in which only one parameter
is uncertain, it does provide the decision maker with
essential information regarding their technology portfolio.
For example, some capabilities would require at least a
doubling of their expected utility to get selected and
consequently are definitely not a contender.

Monte Carlo Analysis. In addition to this procedure, which
dealt with the effect on a portfolio of only one variation in
only one capability group at a time, we also performed a
Monte Carlo simulation in which variations were applied to
all capability groups simultaneously. In this study, the
portfolio optimizations were run 1000 times with the cost
and expected utility of each capability group varied
randomly each time up to a 10% increase or decrease
relative to its initially assigned value. Then an additional
1000 runs were performed with variations up to 25%.

The status (in or out) of each capability is accumulated from
each run such that a selection frequency is computed from
this stage of the parametric screening. Figure 3 shows the
selection frequency chart for the Monte Carlo runs with +/-
25% variations (with capabilities sorted alphabetically).

The results from the two parametric approaches are
mutually calibrated in order to issue a common
categorization of the projects sets as “robustly selected”,
“robustly rejected”, and “trade candidates”. For example,
we found that in this study that “robust selection” translates
into “less than 10 exits for a selected capability” in the
deterministic analysis and “greater than 85% selection
record” in the Monte Carlo analysis. Illustrative results of
this procedure applied to the NGATS 2004 system are
shown in Table 1.
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Robust Selection Not Recommended

deterministic analysis.

capability in the Monte Carlo.

Less than 10 exits for a selected capability in the Less than 10 entries for a non-selected capability in the

deterministic analysis.

Greater than 85% selection record for a selected Less than 15% selection record for a non-selected

capability in the Monte Carlo

Intentional Attack

Agents

2.1.1.A Protect/Prevent Abnormal Operations 2.2.1.B Low emission supersonic vehicles

& System Failures 2.2.1.F Low emission UAVs
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211.c Il:‘l;t:\;fear::teBreakdown of Human/Machine 2.3.1.C Public Service Aircraft During Peak Demand
- . . 2.3.1.E Globally Harmonized Equipage & Operations

2.1.1.D Integrity & Efficiency of Accepting 2.3.2.A Efficient subsonic vehicles

Advanced Software Systems 2.3.2.F Complete Decision Information to All in NAS
2.1.2.A Detect & Inform Potential System 2.3.2.G Low Cost Vehicles for Bulk Cargo

Vulnerabilities 2.3.21 Minimum Impediments of Mode Change
2.1.2.B Mitigate Consequences from 10.5.2.A Extended Autonomous Flight in Mars

Atmosphere

2.1.2.C Detect & Contain Diseases & Bio/Chem 10.5.3.A Incorporating Hypersonic Air-Breathing

Propulsion

2.21.A Low emission subsonic vehicles
2.21.D Low emission personal air vehicles

2.2.2.A Low noise subsonic vehicles

2.2.2.C Low noise ESTOL vehicles

2.2.2.D Low noise personal air vehicles

2.3.1.F Increase Arrival/Landing Rates at
Commercial Airports

2.3.1.G Commercial Operations from
Small/Underused Airport

2.3.2.E Efficient all-weather rotorcraft

10.5.1.B Conduct Routine UAV in NAS

Table 1: Recommended Portfolio Composition for the Next Generation Air Transportation System at a budget

level of $15B.
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K-best Analysis. The k-best sets analysis [20] offers the “k”
suboptimal  portfolios  closest to the  optimal
recommendation for a given budget level. Based on the k-

Table 2: Identification of the common set of capabilities
in the “S-best” portfolios and their percent overall
presence

best sets the decision-maker can take into account aspects of
the problem that are not easily modeled quantitatively, as
well as additional constraints important to the decision.

Overall
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100.00%
100.00%
100.00%
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100.00%
100.00%
100.00%
100.00%

When finding the k-best sets with the base case input
parameters and then comparing the values of these sets over
the entire range of possible values for the input parameters,
competitor portfolios can be proposed. The intersection of
the k-best portfolios with the optimal portfolio produces a
set of project selections deemed as “persistent.”
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Figure 4 shows the relative positioning of the five closest
competitive portfolios with respect to the optimal
recommendation in an aggregated expected utility/total cost
mapping. From the placement and composition of the
suboptimal portfolios the decision-maker can fulfill
supplementary requirements. For example, if the extra
constraint is to spend most of the available budget, KB3 is
the close to the optimal portfolio, but in addition it
minimizes the budget slack.
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Table 2 identifies the actual 5-best portfolios and the
categorization of the capabilities by their overall percent
presence in the suboptimal portfolios (including the
“persistent” set displayed in green color). The coloring
convention is similar to the one utilized in the parametric
screening analysis. The color green denotes the stable set,
while the orange cells represent the trade candidates. One
final observation can be made at this point: the parametric
sensitivity analysis and the k-best analysis generate
consistent choices of “robust” and “persistent”
recommendations. With two exceptions the robust
recommendations from the sensitivity analysis are the same
as the ones suggested by the k-best analysis. This




information can be used to increase the level of confidence
in the decision-making process and to provide valuable
insights and choices to the results of the optimality analysis.

4. CONCLUSIONS

We describe an approach for optimizing and qualifying
technology investment portfolios from the perspective of an
integrated system model. The methodology includes multi-
attribute decision theory elements and sensitivity analysis.
The evaluation of the degree of robustness of the
recommended portfolio provides the decision-maker with an
array of viable selection alternatives, which take into
account input uncertainties and possibly satisfy non-
technical constraints. Two complementary methods -
parametric sensitivity analysis and k-best sets analysis, for
qualifying optimal technology portfolios were employed.
The parametric sensitivity analysis relies on two types of
evaluation procedures: deterministic and statistical (Monte
Carlo simulation).

The deterministic sampling yields the range within which
the portfolio selections are invariant to changing cost or for
the given budget. The statistical sampling expands the
search domain with consideration of joint variation in
capability input parameters. The change events are recorded
and accumulated over the two parametric samplings. By
performing a mutual calibration between the accumulated
activities, the sets of projects “robustly selected”, “robustly
rejected”, and “trade candidates” are identified.

The k-best sets analysis offers the “k” suboptimal portfolios
closest to the optimal recommendation for a given budget
level. The intersection of the k-best portfolios with the
optimal portfolio produces a set of project selections
deemed as “persistent.” Although the two above approaches
are complementary, their results are consistent, in that the
“persistent” set is similar in composition to the “robust” set.

The goal of the sensitivity study is to enhance and improve
the decision-making process by providing additional
qualifications and substitutes to the optimal solution. The
methodology is illustrated in the context of NASA
technology project selections. The results highlight the
importance and the usefulness of the sensitivity analysis in
providing a higher level of confidence to the technology
portfolio recommendations under uncertainty.
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