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We describe the modeling and reasoning about operations constraints in an automated 
mission planning system for an earth observing satellite – EO-1. We first discuss the large 
number of elements that can be naturally represented in an expressive planning and 
scheduling framework. We then describe a number of constraints that challenge the current 
state of the art in automated planning systems and discuss how we modeled these constraints 
as well as discuss tradeoffs in representation versus efficiency. Finally we describe the 
challenges in efficiently generating operations plans for this mission. These discussions 
involve lessons learned from an operations model that has been in use since Fall 2004 (called 
R4) as well as a newer more accurate operations model operational since June 2009 (called 
R5). We present analysis of the R5 software documenting a significant (>50%) increase in 
the number of weekly observations scheduled by the EO-1 mission.  We also show that the 
R5 mission planning system produces schedules within 15% of an upper bound on optimal 
schedules.  This operational enhancement has created value of millions of dollars US over 
the projected remaining lifetime of the EO-1 mission. 

I. Introduction 
pacecraft operations have been a major area of application for automated planning and scheduling.  Numerous 
space missions have used automated planning & scheduling on the ground to enable significant operational 

efficiencies including the Hubble Space Telescope [Johnston et al. 1993], space shuttle refurbishment [Deale et al. 
1994], shuttle payload operations [Chien et al. 1999], The Modified Antarctic Mapping Mission [Smith et al. 2002], 
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Mars Exploration Rovers [Bresina et al. 2005], Earth Observing One (EO-1) [Chien et al. 2005a] Mars Express 
[Cesta et al. 2005], and Orbital Express [Chouinard et al. 2008].  Automated planning has even flown as a 
technology demonstration on the Deep Space One (DS1) Mission [Muscettola et al. 1998] and as the primary 
operations system on 3CS [Chien et al. 2001] and EO-1 [Chien et al. 2005b].   

Spacecraft operations have a number of interesting attributes from a planning & scheduling applications 
perspective. 

 
1. Spacecraft operations require modeling of a number of challenging operations constraints including: 

instrument and subsystem timing and synchronization, thermal, power, data volume, visibility, and spacecraft 
pointing.  

2.  Because spacecraft are so expensive  ($100M+ US is not unusual), a planning model must be highly reliable 
to not produce operations plans that might endanger a valuable asset.   

3. Because communications to spacecraft are limited in frequency and duration, from an AI planning perspective 
a spacecraft has a flight and ground version of the planning problem.  The flight version typically involves 
embedded replanning in modest context whereas ground planning may tackle large problems involving hundreds or 
thousands of activities. 

4. Because of the complex nature of science operations priority and optimization are often involved either 
implicitly or explicitly. 

 
In the remainder of this paper we first describe the EO-1 operations scheduling problem.  We then describe the 

wide range of operations constraints that are naturally modeled in typical planning & scheduling modeling 
languages.  We then describe a number of more difficult to model constraints including thermal, pointing, and 
prioritization.  We then describe a heuristic approach to generating schedules for the EO-1 mission.  We then present 
an analysis of impact on operations.  Finally we present related work and conclusions.  

II. The Earth Observing One Mission 
The Earth Observing-1 (EO-1) satellite is the first mission in NASA's New Millennium Program Earth 

Observing series [EO-1].  Designed as a testbed for the next-generation of advanced land imaging instruments, EO-1 
was launched November 21, 2000 into a 705 km circular sun-synchronous orbit at a 98.7 degree inclination. This 
orbit follows a 16-day repeat track, with at least 5 day and 5 night over-flights per 16-day cycle separated by less 
than a 10-degree change in viewing angle. 

 EO-1 carries three instruments: the Advanced Land Imager (ALI), the hyper-spectral Hyperion Imager, and 
the Atmospheric Corrector (AC). Together the three instruments collect over 20-Gbits of science data to the onboard 
solid-state data recorder for each observation (although the AC is no longer used in nominal observations). 

 The EO-1 spacecraft has two Mongoose M5 processors. One of these M5’s is available for partial use by 
onboard autonomy software.  Each M5 runs at 12 MHz (for ~8 MIPS) and has 256 MB RAM. Both M5’s run the 
VxWorks operating system.  The Autonomous Sciencecraft (ASE) [Chien et al. 2005b] software operates on the 
secondary WARP M5 processor.  

 Following a one-year primary mission, EO-1 entered extended mission in January of 2002 having surpassed 
all original technology validation goals.   By 2004 continuous improvements in EO-1 conventional operations 
enabled acquisition of approximately 100 scenes per week, a remarkable improvement the pre-launch success 
criteria of 7 scenes per week.   

 In 2004, onboard and ground-based automated mission planning software was deployed operationally to 
automate mission planning and sequencing elements of the EO-1 mission [Chien et al. 2005a, 2005b].  This 
software, called R4, was directed at automating existing operations policies rather than improving the number of 
science observations acquired by the mission.  This approach was taken because it offered the lowest risk, least 
costly path to automation.  This automation was tremendously successful - enabling an over $1M per year 
operations costs reduction and allowing more rapid response to science events and anomalies such as ground station 
failures.  This automation was able to continue this pace of ~ 100 observations per week.  The 2004 automation has 
operated flawlessly and has acquired over 20,000 scenes in the almost 5 years of operations. 

 More recently (2008-2009), the ground and flight mission planning software for EO-1 is being upgraded 
again.  In this upgrade, called R5, the focus is: 1. increasing operational flexibility to change scenes immediately 
before acquisition and 2. acquiring more science scenes.   

 EO-1 has a 90-minute orbital period, meaning that in any given week it has approximately 112 orbits.  On 
most orbits, EO-1 would take a single scene.  On some orbits, EO-1 might take two scenes.  For some periods, EO-1 
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 Discrete states – there are numerous discrete state constraints.  These both represent transition constraints and 
state constraints.  For example, the solid state recorder has several states (record, playback, idle, standby,…).  
Furthermore, there may only be a specific subset of legal transitions with activities to change the state.  The only 
means for the WARP state to change from one state to another is via execution of an action with a state changer, As 
another example, the ALI instrument has a cover which has specific activities to change its state, and imaging 
activities require specific states (dark calibrations require closed state, science images require open state).   Figure 2 
shows some aspects of constraints on the ALI cover state. 

 Decomposition – often a high level activity consists of several lower level activities.  These are called 
decompositions in the ASPEN language and are similar to Hierarchical Task Network planning decompositions.   
For example, and imaging sequence high level activity consists of a large number of lower level activities including 
ALI and Hyperion (HSI) prep activities and post activities.   Figure 3 shows the first level of decomposition for a 
Hyperion Lamp Calibration activity set.   

 Temporal constraint – these are constraints on the relative timing or ordering of two related activities.  For 
example, in an image sequence, the instrument parameters must be set 4.5 seconds before the image start time and 
the Hyperion instrument covers must be opened 28.5 seconds before the image start time.  Most of these temporal 
constraints are enforced in the decompositions outlined above.   

 Some of these temporal relationships utilize dependencies upon timeline values or activity parameters.  For 
example, the Hyperion and ALI warm-up times are dependent on the expected temperatures entering into the 
imaging activity.  If the instruments are already warm from prior image sequences the warmup time can be 
shortened allowing images to be acquired closer together and preventing the instrument from overheating (this is 
discussed in the section on thermal modeling below).   

B. More challenging operations constraints 
In this section we describe modeling and non-modeling of several operations constraints – thermal, pointing and 

wheel biasing, power, prioritization, and others. 
 
Modeling Instrument Thermal Constraints 
One of the most challenging constraints in the R5 model upgrade was thermal modeling.  Specifically the 

Hyperion instrument was known to have a number of thermal constraints. 
 The Hyperion instrument has two imaging subsystems: a visible and near infrared module (VNIR) and a 

short wave infrared module (SWIR).  These distinct subsystems are physically separated and therefore have 
somewhat decoupled behavior.  Both of these modules are used during imaging, and both gradually increase in 
temperature while they are powered.  When unpowered, the instrument (and subsystems) gradually shed heat to the 
rest of the spacecraft and to space, thusly cooling. 

 Each of these subsystems has a minimum and maximum operating temperature requirement for both precise 
imaging and instrument protection.  The Hyperion instrument also has a setup time so that the instrument must be 
powered on by this amount prior to imaging to allow the instrument to enter the correct mode to accept imaging 
control parameters prior to imaging.  To summarize, the instrument operations challenge is to control the power state 
of the instrument such that both the SWIR and VNIR are operating within acceptable temperature ranges and the 
instrument is able to accept imaging parameters for all desired images. 

 The VNIR module is tightly temperature controlled such that it always remains above 311 to prevent the 
instrument from damage in the cold of space.  The VNIR is thusly readily available to image at its minimum 
operating temperature of 313.  A brief warm-up period in advance of an image is modeled to allow the instrument to 
reach this temperature, if needed. During sparse operations, the instrument then cools back to its set point over a 
period of approximately an hour. However, extended instrument duty cycles (e.g. during a rapid sequence of 
adjacent observations) can cause this temperature to build up without a chance to cool down.  Because the EO-1 
mission flight rules include an instrument maximum rated operating temperature of 415 as well as a maximum 
design temperature of 515, the planner must space its observations so the duty cycle does not lead to unacceptable 
temperature build up. 

 Similarly, the SWIR module has a maximum operating temperature of 415 and a maximum design 
temperature of 515, but it does not have any defined optimal operating temperature minimum. The SWIR module is 
allowed to cool arbitrarily, eventually reaching an oscillating equilibrium with the rest of the spacecraft, the sun (if 
visible), and space at between -19 and -16. Notably, at these lower temperatures, the SWIR module is much less 
effective at dissipating heat (and more suceptible to absorbing heat), as expected from classical Newtonian cooling 
models. This means that temperature builds more rapidly in the SWIR once the instrument is cycled on, and that it 
takes much longer for it to return to ambient -- on the order of 12 hours. 
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 We began by implementing a simple block model in which the planner modeled the SWIR and VNIR 
temperature as instantaneously increasing when turned on and cooling after turned off with the time duration of the 
increase based on the on-time.  This model had the advantage of only requiring local timeline propagation (e.g. the 
duration of the effect on the temperature timeline is local based on a calculated on-time duration).   

 We took this indirect approach of modeling a depletable resource as a non-depletable resource due to a 
number of efficiency concerns.  First modeling run time is a concern because we only have a 5 MIPS onboard 
computing budget for all of the autonomy software.  Non-depletable activities only change the resource timeline 
twice, once at the start of the activity and once at the end of the activity.  The natural heating and cooling activity 
driven model is periodic and requires a number of activities (and potential resource changes) proportional to the 
length of the modeled schedule.  This increase in resource modeling increases the CPU time to model the 
temperature and the RAM used by the model. 

 Unfortunately, the non-depletable model is very inaccurate when consecutive imaging events occur before 
the instrument is allowed to completely cool to ambient temperature, as often occurs for the SWIR subsystem in EO-
1 operations. 

 Our next iteration model used the starting temperature of the instrument to calculate its duration and 
therefore again caused a localized effect to the temperature timeline but had a longer duration the higher the input 
temperature.  This model still retains the non-depletable efficiency in runtime and RAM.  However, this model also 
produces inaccurate estimates in cases where a large number of observations occur consecutively. 
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 We finally directly modeled the timeline temperature with a periodic heating and cooling timestep affecting 
the timeline temperature based on a sampling of if the instrument is on or off.  This model directly accounts for the 
heating and cooling effects most accurately but has the downside of being the most costly computationally to update 
and propagate during planning.  Even this model does not have the most accurate parameters (such as a variable 
heating and cooling rate based on the current temperature) - the instrument points heat more slowly and cool more 
quickly when at higher temperatures.) 

 Figure 5 shows the SWIR temperature as observed in flight, modeled in simulation, and modeled by the 
planning system.  Figure 6, shows the corresponding information for the VNIR subsystem.  The graphs show that 
the SWIR and VNIR temperatures appear to increase and decrease in approximately linear segments, with 
continuous curves between the areas of linear heating and cooling.  The planning model only roughly approximates 
the actual and simulated temperatures but for planning purposes it only need answer the question “will this set of 
observations exceed the temperature limit” and “how long must the instrument warmup so that this observation will 
be at least at the minimum of the operating range.” 

 
 The above model development was performed using historical operations data.  While we had virtually 

unlimited examples of imaging (thousands of scenes) this data only included single and dual observations per orbit.  
In order to further refine the model we performed a flight experiment in which we controlled the power state of the 
instrument simulating three sequences of four observations each.   

 
Pointing and wheel Biasing 
Another challenging operations constraint for EO-1 is pointing.  The EO-1 spacecraft has three reaction wheels 

for pointing plus a magnetic torquer bar for momentum dumping [Wikipedia].  Reaction wheels change the 
orientation of a spacecraft by Newton’s Third Law (equal and opposite reaction).  Intuitively, spinning a wheel at 
one end of the spacecraft will cause a rotation in the spacecraft in the opposite direction.  Because the spacecraft is 
in orbit around the Earth, if it continually points directly downward towards the Earth, it will make one 360 degree 
rotation per orbit.  From a spacecraft stability standpoint, for ideal imaging each reaction wheel should be at a target 
speed of 100 rpm in either direction.  Faster or slower speeds are less desirable for imaging quality and reaction 
wheel wear. The worst case for image quality occurs when the wheels change direction from spinning in one 
direction to the opposite (e.g. rate going from positive to negative called a “zero crossing”) as the spacecraft will 
shudder and cannot acquire a high quality image for a period of time.  In order to prevent momentum buildup EO-1 
has a torquer bar, which applies torque to the spacecraft based on interaction between the magnetic field from 
running an electrical current through the bar and the Earth’s magnetic field.   

 Operationally, if the mission planner wishes to acquire scene A then scene B, maneuver planning software 
takes the requests and computes parameters that the spacecraft attitude control system ingests at execution time to 
achieve the desired pointings.  One challenge is that computing these maneuvers is a challenging flight dynamics 
problem – the maneuver planning software in fact uses a heuristic method to attempt to design such maneuvers that 
respect rate constraints, timing constraints, and instrument pointing constraints.  From a mission planning 
perspective these constraints are treated as black box solutions that possess challenging non-monotonic properties.  
For example, the maneuver planning software may return that starting from nadir pointing, taking observation O2 
followed by observation O3 is not possible.  But the same software might return that starting from nadir, taking O1 
followed by O2 followed by O3 is possible.  Clearly this means that moving from nadir to O2 to O3 is not possible 
but that the solution through O1 was found by the maneuver planning software.  The lack of structure of these 
returned constraints make the EO-1 mission planning problem computationally harder. 

     Originally in operations, the spacecraft was “nadir pointed” (i.e. pointed directly at the ground) and “zero 
biased” (i.e. reaction wheels not spinning) in between every scene.  While this is the most straightforward 
operationally it is not very efficient because considerable spacecraft time is wasted slewing the spaceraft to nadir 
and slowing the spin of the reaction wheels.  One of our upgrades enables EO-1 to go directly from one image to the 
next without zero biasing or nadir pointing for up to four consecutive images. 

 Because the planning system cannot directly represent the pointing and momentum state of the spacecraft, we 
implemented these constraints in the goal generation process (see below).  Basically, when all of the individual 
scene requests are received, we construct sets of combinations of the scenes (called “tuples”) that represent scenes 
without intervening nadir pointing and zero biasing.  The mission planner then operates on these tuples, considering 
combinations of tuples for a weekly schedule. 

 The mission planner only indirectly models spacecraft location and therefore image overflights.  The mission 
planner accepts as inputs goals to image targets but it does not directly consider alternate opportunities to image the 
same target.  Because the EO-1 general planning horizon is only at the one week granularity, it does not offer a 
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direct method of considering among alternate overflights for specific targets.  The mission team does often consider 
alternate overflights but does so outside of the automated mission planning process.  

 The EO-1 spacecraft has gimbaled solar arrays that track the sun when visible to generate power.  
Operationally, the EO-1 spacecraft may generate less power when it is imaging more because its pointing actions 
make it more difficult for the solar panels to track the sun and generate energy.  Also, imaging more implies that 
more subsystems are powered so they are using more power.  Preliminary analyses indicate that even with 
significantly increased imaging (150 images per week) power will not limit imaging but as the upgrade becomes 
operational and is checked out the EO-1 power situation will be tracked and analyzed if necessary. 

EO-1 operations also have a number of trending and tracking calibration and instrument maintenance activities.  
These include ALI calibrations (data collected with covers closed and internal lamp on or off) as well as outgassing 
of the instruments.  Other engineering activities include orbit determination calculations, burns to maintain orbit, 
and fuel calculation.  An ideal planning system would track these events and schedule them when needed based on 
periodicity, schedule conflict, and imaging parameters.   

IV. Creating Schedules ground and flight: integrating modeled & implied constraints 
One of the challenges of EO-1 operations is to tractably generate schedules given the large numbers of 

combinations of observations and heavily interacting constraints.  On EO-1 there are two very different version of 
the scheduling problem – weekly schedule generation and onboard replacement scheduling.   

On the ground a weekly schedule of EO-1 operations is maintained.  This schedule is generated in several 
versions 3-5 days prior to its start (e.g. the schedule is generated Wednesday for the week starting the following 
Sunday and then refined several times).  This schedule must consider hundreds of individual scenes that can 
comprise thousands of potential tuples that must be heuristically pruned in order to produce a manageable problem.    

 The onboard version of the scheduling problem is more constrained.  Due to limited computational resources 
onboard the spacecraft the onboard scheduler cannot consider the weekly scheduling problem and instead considers 
a small number of new tuples within a schedule horizon of 8 hours potentially inserting or replacing existing tuples 
while respecting priorities and operations constraints. 

 One challenge relating to schedule generation is science priority.  The EO-1 mission has a simple model of 
priority that does not fully capture the science and operations constraints of the mission.  Within this model priority 
ranges from 0-999 with 999 being the highest priority.  Users have the authorization to submit scenes at a range of 
priorities.  The semantics of the priorities are that a higher priority scene will be selected over any number of lower 
priority scenes that may conflict.  The priorities are incorporated in the core of the scene selection and scheduling 
algorithm as indicated below. 

 A better system for representing priority would allow for the scheduling system to be aware of contention 
(which other scenes are also competing for the overflight), periodicity of the contention (i.e. is this going to happen 
for every overflight or is it only for some known subset of overflights), urgency (is there a temporal urgency to 
acquire this scene now – e.g. is it a short lived event such as a ground-truthing, flood, or volcanic event), and age 
(many targets are designed to be periodically observed and this target may have just been observed). 

 
Weekly Scheduling (Ground) 
Weekly scheduling consists of: submission of requests from a set of customer groups, scheduling engineering 

activities, and scheduling science activities.  The weekly scheduling algorithm is shown below as Algorithm 1.   
 The weekly scheduling algorithm can be understood as follows.  First the tuples (combinations of adjacent 

scenes) are generated from the individual requests.  Next the downlink contacts are processed.  All of the approved 
downlink contacts will be S-band engineering downlinks since S-band activities do not interfere with the other 
spacecraft operations.  X-band high rate science downlink however does preclude cotemporaneous science image 
acquisition.  By default we take all downlink opportunities and schedule them as X-band activities but later in the 
scheduling algorithm we consider removing them for high priority scenes. 

 Next we sort the generated tuples by the lowest priority scene in the tuple (so that we consider all tuples that 
have only high priority scenes first, then all that have only high and slightly lower, and so on…). 

 As we consider a new candidate tuple, we try to insert it into the schedule (as indicated by the 
“ScheduleTuple” call below).  ScheduleTuple considers whether the new tuple should be added in three conditions: 
a) the new tuple can be added without needing to remove anything from the schedule (e.g. does not create any 
conflicts); or b) it can be added and can be conflict free after deleting all subsumed observation tuples currently in 
the schedule (e.g. if adding a tuple with observations A B and C, if deleting the tuple A B enables A B C to be added 
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without conflict accept ABC); or c) if the new tuple conflicts with an X-band, only add the tuple if after deleting the 
X-band a) or b) above holds. 

 The net effect of this scheduling algorithm is that it starts out with tuples (note that single observations are 
degenerate tuples) with only high priority observations.  It then adds lower priority observations where they fit in 
between high priority observations (not too common) or by growing the tuples with high priority scenes by adding 
lower priority scenes to the tuples.  In each case a single higher priority scene is preferred over lower priority scenes.  
X-bands can be bumped but only if they are not needed for storage of higher priority scene (which would have been 
already scheduled).  Because the scenes are secondarily sorted by number of lowest priority scene the algorithm 
generally prefers more scenes of a given priority.  However it cannot guarantee optimality at this level due to the 
possibility of a tie-break at a higher level priority precluding a larger number of lower priority scenes. 

 
scheduleWeekly() 
  generate tuples from individual request 
  schedule sbands (given) 
  schedule xbands (one for every sband) 
  sort unsatisfied tuples (max-min priority) 
  for each unsatisfied tuple 
    success = scheduleTuple(tuple, satisfied tuples) 
    if success 
      add tuple to satisfied tuples 
      remove tuple from unsatisfied tuples 
    end if 
  end for 
  repair 
end 
 
scheduleTuple(tuple, satisfied tuples) 
  find satisfied subset tuples of tuple in satisfied tuples* 
  find new scenes of tuple in satisfied subset tuples** 
  if tuple has new scenes 
    remove satisfied subset tuples from satisfied tuples 
    unschedule satisfied subset tuples 
    unschedule xbands that overlap with a new scene 
    scheduleGoal tuple 
    if no conflicts 
   add tuple to satisfied tuples 
      return true 
    else 
      unscheduleGoal tuple 
      add satisfied subset tuples to satisfied tuples 
      schedule subset tuples 
      schedule overlapping xbands 
      return false 
    end if 
  else 
    return false 
  end if 
end 
 
scheduleGoal(goal) 
  expand goal activity and model states/resources  
 
unscheduleGoal(goal) 
  unexpand  goal activity and unmodel states/resources 
 
* a "subset" tuple is a tuple that contains a subset of the scenes from another tuple 
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** "new" scenes are scenes that do not appear in any of the subset tuples 
Algorithm 1 
 
Onboard Scheduling (Flight) 
The onboard scheduling problem is much simpler than the ground (weekly) scheduling problem.   In flight the 

scheduler must accept incremental changes to the baseline (weekly) schedule derived on the ground.  These changes 
are generally due to the addition of new higher priority goals but in theory could also be due to anomalies onboard.  
The onboard scheduling algorithm is the iterative repair, local search algorithm outlined in Rabideau et al. 
[Rabideau et al. 1999] but heuristically informed to delete the tuple with the lower priorities.  This algorithm is 
shown below as Algorithm 2. 

 
flight: repair heuristic deletes tuple with min priority 
  - ties are broken by looking at priorities of scenes 
    in the tuple (in decreasing order) 
  - if all top priority scenes are equal priority, 
    fewer scenes is lower priority 
Algorithm 2 
 
Evaluating EO-1 scheduling effectiveness  
Originally the motivation for the R5 software upgrade was to increase flexibility to change the schedule.  In R4 

once X-bands were selected they could not be later pre-empted by high priority scenes.  Additionally, scenes 
priorities resulted in several unnatural constraints in their implementations: (1) dual collects had to consist of two 
scenes of the same priority (so that the priority of the dual scene was semantically unambiguous) and (2) 
replacements of a single or dual scene had to be with the same number of scenes (e.g. a single replacing a single or a 
dual replacing a dual).   

 When we decided to upgrade the model, we decided to investigate if the total number of scenes could also be 
significantly increased as part of the upgrade.  In order to assess this potential gain we ran a number of simulations 
with rough constraints – these indicated the potential to increase the number of scenes acquired through better 
thermal management of the instruments and reducing nadir pointing and zero biasing. 

 To assess scheduling improvement we ran the R4 and R5 on four weekly schedules from Spring 2009.  To 
simplify analysis we scheduled these weeks without any engineering activities (which require human input).  Ideally 
we would compare R5 schedules against optimal weekly schedules.  Unfortunately non-monotonic constraints 
(slewing and maneuver in creating tuples) and computationally expensive modeling (thermal) and weekly problem 
size prohibit generating the optimal solution.  The problem cannot even be localized to small NP-hard problems 
between X-bands because X-band selection is part of the search space and tuples can span X-bands.  Therefore we 
developed a series of optimal schedulers that ignore certain hard (e.g. maneuver, slew, temperature) constraints and 
produce optimal schedules for these relaxed problems – thereby providing upper bounds on optimal schedules for 
the real problem.  The results of these schedule runs are shown below in Table 1.  O1A & O1B below used the fixed 
X-band selections from the R5 algorithm.  O3 uses an alternative approach for X-bands.  Table 1 shows the number 
of X-bands and scenes scheduled as well as a priority score of the schedule indicating a weighted score where a 
scene of each priority level is worth 10x the value of a scene of the next lower priority. 

  
Algorithm X-bands Scenes scheduled Priority Score 

R4 32 130 N/A 
R5 51 214 1226 
O1: Optimal no thermal, no 

maneuver, R5 X-bands 
51 243 1286 

O1A: O1 removing onboard storage  51 419 1286 

O1B: O1 ignoring scene overlap 51 252 1422 

O2: O1 but choose all X-bands not in 
conflict with high priority 

48 229 1246 

 
The data shows several interesting points. 
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1. The most significant constraint limiting scenes is onboard storage (seen by the jump in scenes removing this 
constraint from O1 to O1A).  However, the gained scenes are not important ones as the priority score is unchanged 
(e.g. there are no gained scenes in the top several priority levels).  It is also worth noting that O1, O1A, and O1B all 
ignore instrument thermal constraints, which would certainly prevent taking of 400 scenes in a week. 

2. The biggest constraint preventing acquiring higher priority scenes is scene overlap as indicated by the jump in 
schedule score from O1 to O1B.  Note that maneuver (also unmodeled by O1, O1A, and O1B) would certainly 
preclude taking many of these high priority combinations even if scene overlap could be relaxed. 

3. The R5 scheduler significantly outperforms R4 in scene count increasing average scene count from 130 to 214 
(+64%) – primarily by enabling two or three scenes to be taken many orbits.  Weekly averages for R4 are 70 singles 
and 30 duals whereas R5 averages 21 singles 43 duals and 36 triples.  Note that the R4 algorithm was also 
constrained to take duals of only the same priority and also have a designated primary scene as the first scene.   

4. R5 also performs well compared to the tightest upper bound on optimal schedules (O1).  R5 is within 13.6% 
of the optimal upper bound by scene count and within 4.9% by priority score.  Given that O1 is an upper bound and 
maneuver and thermal are significant additional constraints it is likely that R5 is closer to a true optimal schedule. 

  What is the value of the additional scenes?  A conservative estimate based on the 2004 mission cost 
valued the EO-1 mission at ~$3.6M/year so one measure (scene count) would estimate the value of the additional 
50% scenes at $1.8M/year. (One might argue that the worth of additional scenes is lower per scene because the 
highest priority scenes would be taken first.  However one might also argue that more scenes enables studies at a 
finer temporal resolution thereby enabling studies not allowed with fewer scenes).  

V. Discussion, Related Work, Conclusions 
One of the recurring themes in space operations is validation and reliability.  Because of the high costs of space 

missions, reliable operations are very important.  AI planning specializes in generating novel sequences to achieve 
combinations of goals.   Because of the importance of safety in space operations, novelty in sequencing is 
discouraged.  Consequently, most planning in space operations is performed by hierarchical task network methods, 
which have the advantage of repeatability to facilitate testing.  It is an unusual event to find a novel way of doing 
something in space operations - the more common case is large scale scheduling of combinations of repeated 
sequences (such as observations). 

 As listed in the introduction, space mission operations have been a fertile area of applications and research 
for automated planning and scheduling.  This paper has tried to focus on details of constraint representation for a 
specific mission model, EO-1 as well as our specific heuristic scheduling algorithm. 

 This paper has described a number of challenges in representing operations constraints and automatically 
scheduling operations for an earth observing satellite, the EO-1 spacecraft.  We described a large number of 
operations constraints that were naturally modeled in an expressive planning and scheduling system including states, 
resources, temporal constraints, and decompositions.  We then described a number of constraints that were more 
challenging to model including thermal, location/pointing, and science/image quality.  We then described our 
heuristic approach to EO-1 schedule generation: (1) documenting its significant increase in science observations; 
and (2) showing its performance approaches that of an upper bound on optimal scheduling 
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