
MPS Editor – An Integrated Sequencing Environment

Barbara A. Streiffert1 and Taifun O’Reilly2
Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA. 91109

Mitchell Schrock3
Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA. 91109

and

Jaime Catchen4
Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA. 91109

In today’s operations environment, the teams are smaller and need to be more efficient
while still ensuring the safety and success of the mission. In addition, teams often begin
working on a mission in its early development phases and continue on the team through
actual operations. For these reasons the operations teams want to be presented with a
software environment that integrates multiple needed software applications as well as
providing them with context sensitive editing support for entering commands and sequences
of commands. At Jet Propulsion Laboratory, the Multi-Mission Planning and Sequencing
(MPS) Editor provided by the Multi-Mission Ground Systems and Services (MGSS)
supports those operational needs.

I. Introduction
OMMERCIAL software applications have moved in the direction of presenting users with a unified
environment to make it easier for them to perform their work. Even though spacecraft have become more

complex and operations teams have become smaller, the software applications that the teams use are often not
unified. In the past, users have built connecting “glue-ware” scripts to unify the applications. At Jet Propulsion
Laboratory the Mission Planning and Sequencing (MPS) element of the Multi-Mission Ground Systems and
Services (MGSS) Program has built a software editor that provides the operations teams with a unified environment.
In this environment the operations teams can define spacecraft activities, adapt/create the software models for the
spacecraft, create/modify sequences of spacecraft activities and commands and check the sequences for constraint
violations using an event simulator named Seqgen. MPS Editor allows the operations teams to be more productive
by providing them with a tool that supports both development and operations.

II. Overview
MPS Editor is written in Java using the Eclipse Rich Client Platform. Eclipse is an open source software

framework for building stand-alone applications or creating plug-ins that can be used by other applications. MPS
Editor has four perspectives. A perspective is a grouping of task functions along with their graphical user interface
elements. The four perspectives are the Activity Dictionary Perspective, the Spacecraft Model Adaptation
Perspective, the Sequence Development Perspective and the Spacecraft Modeling Perspective. The Activity
Dictionary Perspective defines the reusable activities that are available to be used for a given mission. The
Spacecraft Model Perspective supports the development of models of spacecraft hardware that are to be used by the

1 Senior Software Systems Engineer, Section 317, 4800 Oak Grove Dr. 301/250D, Pasadena, CA. 91109.
2 Senior Software Engineer, Section 317, 4800 Oak Grove Dr. 301/250D, Pasadena, CA. 91109.
3 Software Engineer, Section 317, 4800 Oak Grove Dr. 301/250D, Pasadena, CA. 91109.
4 Systems Engineer, Section 317, 4800 Oak Grove Dr. 301/250D, Pasadena, CA. 91109.

C

American Institute of Aeronautics and Astronautics

1

 One major advantage of MPS Editor is that information is presented in a uniform way. The view area is in the
same place in all perspectives. The navigator is also in the same place and so is the log information. Users can
customize the various areas making them by smaller or larger or repositioning them. The mission or users can
perform additional customization based on the configuration or the preference files. The configuration file provides
information to Seqgen, the command simulator, such as identifying whether a user is accessing a local or remote
version of the software. The preference file provides user preferences, such as whether to log information in a
verbose mode or not. MPS Editor has the standard menu bar with entries such as File, Edit and Run as well as other
entries that are specific for the certain perspectives. Users also have access to an application tool bar that allows
them to perform a user search and view the last edit location along with other useful tasks. In addition, to being able
to run MPS Editor as a standalone application, each perspective can be run as an Eclipse Plug-in. In fact, Mars
Science Laboratory has incorporated the Sequence Development Perspective plug-in into their planning software.
This mission has also used the Activity Dictionary Perspective to develop their activity dictionary.

III. Activity Dictionary Perspective
 The Activity Dictionary Perspective is typically used during the development phase of a mission. However, it

can be used to update or create new activity definitions as the mission matures and changes in the knowledge of the
spacecraft that require the existing activities be updated. The activity dictionary contains observations, calibrations
and other groups of spacecraft commands that perform tasks on the spacecraft that are repeated during the mission.
Usually the activity definitions have parameters so that the activity definition becomes a generalization similar to
software methods or functions. The activity dictionary defines the general case and operations teams use the general
case with specific data for a particular sequence.

The activity dictionary is an eXtended Markup Language (XML) file that uses an XML schema when it is
created. The XML schema is project specific. The project can design its own schema or use one of the two existing
schemas. One of the schemas works with another MPS software element called APGEN (planning software). The
other schema is more general and has been used by Mars Science Laboratory (MSL).

There are specific types of elements that are common to all activity dictionary entries. Each entry in the activity
dictionary contains Attributes, Functions, Subsystems, Constants, Type Definitions, Resources, and Activity
Definitions. Attributes are the parameterized elements for an activity, for example, the number of pictures to be
taken for an observation. Functions are repeatable operations within the activity that are usable by several activity
definitions, such as a series of turn commands for taking a picture. Subsystems represent the various hardware
subsystems on a spacecraft such as the instrument subsystem or the attitude control subsystem. The subsystems can
be used to determine operations team access control. Constants are numerical values that do not change. If the
camera on the spacecraft frequently takes pictures in a specific way, the camera operations team may want to have
an activity that uses constants instead of using a more general activity that requires parameters and uses additional
sequencing space on the on-board computer. Type Definitions are a way of specifying specific types that are not part
of the few general types that are available. Lists and structures are two list types that are typically defined.
Resources are the consumables that are used. These consumables can be numeric values such as the amount of space
on the recording device or they can be one-at-time use resources such as being able to point the spacecraft. They can
also be restorable resources as the two previous examples or they can be the type of resource that has a measured
lifetime such as the number of sample trays. Finally, there is the activity definition itself. The activity definition
contains commands and control elements such as loops and conditional statements.

In addition to these fields the activity dictionary can contain global variables. The global variables are variables
that can be used by any of the activity definitions within the activity dictionary. The global variables as well as the
fields within an activity can be defined as mathematical expressions. Another feature of the Activity Dictionary
Perspective is to allow users to define entrance and exit criteria for the activity definition. For example, if an
instrument needs to be heated prior to using it for an observation, the activity definition can specify that the heated
state is required. The same is true for exit criteria. If the activity changes the attitude of the spacecraft, but is
required to return the spacecraft to its original attitude, it can be specified in the activity definition.
 The Activity Dictionary Perspective allows the operations teams to build a dictionary from scratch or to read in
the current Activity Dictionary and make changes to it. As with most editors if users make a syntax mistake, they are
advised of the error. In many cases based on the XML schema, users are presented with pull-down menus to reduce
the number of possible errors. Finally, if users want to look at the XML version of the activity dictionary instance, it
is available to them within the editor as a menu selection. Figure 3 shows the areas of the Activity Dictionary

American Institute of Aeronautics and Astronautics

3

This perspective is still in work at this time. It is part of the forward work on MPS Editor. As this perspective is
used by the operations teams, additional features will be added based on their comments and suggestions.

Figure 9. The Sequence Modeling Perspective shown with the display areas marked.

VII. Conclusion
MPS Editor provides an environment for sequencing from the start of a mission through operations. At the start

of the mission, the Activity Dictionary Perspective can be used to define repeatable spacecraft activities that are
comprised of spacecraft commands for performing calibrations, instrument observations or others. These activities
can be parameterized so that they become a template for tasks to be performed on the spacecraft. Next, in the
mission lifecycle after spacecraft models are known, MPS Editor’s Spacecraft Model Adaptation Perspective can be
used to create software models of the hardware to simulate the effects of commands on the state of the spacecraft.
Finally, once the operations teams have formed, the Sequence Development Perspective can be used to create
sequences containing activities or other spacecraft sequence constructs. At each of these stages the ops team
members can go to a different perspective and make modifications and updates. The last perspective, Sequence
Modeling Perspective, gives users the ability to immediately run the command simulator (Seqgen) with their
activities, model adaptations, or sequences. MPS Editor is a single sequencing environment for the operations teams.
Users only need to learn one application and one user interface. Information is presented in a cohesive, integrated set
of displays. MPS Editor aids in productivity and reduces frustration for operations teams by presenting a complete
sequencing environment. MPS Editor is currently being used by Mars Science Laboratory, and Cassini, Juno and
Grail plan to use MPS Editor in the near future. It has turned into one of the more popular applications on the JPL
block.

American Institute of Aeronautics and Astronautics

9

Acknowledgments
The work described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of

Technology, under a contract with the National Aeronautics and Space Administration. This work is funded by
Multi-Mission Ground Systems and Services (MGSS).

References

1Streiffert, Barbara A., and O’Reilly, Taifun, “The Evolution of Seqgen,” AIAA Meeting Papers on Disc [CD-ROM], Vol. 1,
AIAA 2008-3523, SpaceOps 2008, Heidelberg, Germany, 2008.

American Institute of Aeronautics and Astronautics

10

	MPS Editor – An Integrated Sequencing Environment
	I. Introduction
	II. Overview
	III. Activity Dictionary Perspective
	IV. Spacecraft Model Adaptation Perspective
	V. Sequence Development Perspective
	VI. Sequence Modeling Perspective
	VII. Conclusion
	Acknowledgments
	References

