

American Institute of Aeronautics and Astronautics

1

Reactive Sequencing for Autonomous Navigation Evolving
from Phoenix Entry, Descent, and Landing

Dr. Christopher A. Grasso*
Jet Propulsion Laboratory / California Institute of Technology / Blue Sun Enterprises, Boulder, Colorado, 80302

and

Joseph E. Riedel†
Andrew T. Vaughan‡

Jet Propulsion Laboratory / California Institute of Technology, Pasadena, California, 91109

I. Introduction
irtual Machine Language (VML) is an award-winning advanced procedural sequencing language in use on
NASA deep-space missions since 1997, and was used for the successful entry, descent, and landing (EDL) of

the Phoenix spacecraft onto the surface of Mars. Phoenix EDL utilized a state-oriented operations architecture which
executed within the constraints of the existing VML 2.0 flight capability, compatible with the linear "land or die"
nature of the mission. The intricacies of Phoenix EDL included the planned discarding of portions of the vehicle, the
complex communications management for relay through on-orbit assets, the presence of temporally indeterminate
physical events, and the need to rapidly catch up four days of sequencing should a reboot of the spacecraft flight
computer occur shortly before atmospheric entry. These formidable operational challenges led to new techniques for
packaging and coordinating reusable sequences called blocks using one-way synchronization via VML sequencing
global variable events. The coordinated blocks acted as an ensemble to land the spacecraft, while individually
managing various elements in as simple a fashion as possible.

This paper outlines prototype VML 2.1 flight capabilities that have evolved from the one-way synchronization

techniques in order to implement even more ambitious autonomous mission capabilities. Target missions for these
new capabilities include autonomous touch-and-go sampling of cometary and asteroidal bodies, lunar landing of
robotic missions, and ultimately landing of crewed lunar vehicles. Close proximity guidance, navigation, and control
operations, on-orbit rendezvous, and descent and landing events featured in these missions require elaborate abort
capability, manifesting highly non-linear scenarios that are so complex as to overtax traditional sequencing, or even
the sort of one-way coordinated sequencing used during EDL. Foreseeing advanced command and control needs for
small body and lunar landing guidance, navigation and control scenarios, work began three years ago on substantial
upgrades to VML that are now being exercised in scenarios for lunar landing and comet/asteroid rendezvous. The
advanced state-based approach includes coordinated state transition machines with distributed decision-making
logic. These state machines are not merely sequences - they are reactive logic constructs capable of autonomous
decision making within a well-defined domain. Combined with the JPL's AutoNav software used on Deep Space 1
and Deep Impact, the system allows spacecraft to autonomously navigate to an unmapped surface, soft-contact, and
either land or ascend. The state machine architecture enabled by VML 2.1 has successfully performed sampling
missions and lunar descent missions in a simulated environment, and is progressing toward flight capability.

The authors are also investigating using the VML 2.1 flight director architecture to perform autonomous

activities like rendezvous with a passive hypothetical Mars sample return capsule. The approach being pursued is
similar to the touch-and-go sampling state machines, with the added complications associated with the search for,
physical capture of, and securing of a separate spacecraft. Complications include optically finding and tracking the
Orbiting Sample Capsule (OSC), keeping the OSC illuminated, making orbital adjustments, and physically
capturing the OSC. Other applications could include autonomous science collection and fault compensation.

* Principal VML Engineer, Blue Sun Enterprises, 1942 Broadway Suite 314, Boulder, CO, 80302, Prof. Member.
† Principal Engineer, Optical Navigation, Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA, 91109.
‡ Senior Engineer, Optical Navigation, Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA, 91109.

V

American Institute of Aeronautics and Astronautics

2

II. Spacecraft commanding using Virtual Machine Language

A. Sequencing and commanding
Commands are directives to the spacecraft, typically represented in a human-readable form and translated to a

binary format. Commands cause the spacecraft to behave in some desirable way for the purposes of science
collection, power management, thermal stabilization, propulsive maneuvers, pyrotechnic firing, and the like.
Commands may originate from a variety of sources, including from ground-based human operators and from flight
software elements.

Sequencing is the issuance of spacecraft commands from an on-board store which allows the spacecraft to

perform in an automated fashion when no uplink is available, or when light speed delays obviate direct commanding
from the ground. Virtual Machine Language (VML) [1][5] is an award-winning [6] standardized multi-mission
language supplied by JPL royalty-free to U.S. government space missions which provides a structure from which
spacecraft commands are issued. Commands in VML may be timed according to absolute (wall-clock) time and
relative time, as well as in response to conditions on board the spacecraft using a technique known as event-driven
sequencing.

B. VML features and components
The VML flight execution environment provides multiple threads of execution within one task context using a

data-driven construct known as a sequencing engine. VML allows an extensive set of variable types, including
integers, unsigned integers, doubles, logicals, and strings. Arithmetic, trigonometric calculations, and logical
manipulations are available for use. Conditionals may be used to make decisions based on local values at runtime.
Iteration is available using WHILE and FOR loop constructs. Sequences are implemented as named functions which
can accept parameters and have locally scoped variables. These functions may be packaged together into a single
file loaded onto an engine in order to associate runtime behavior or to provide libraries of commonly needed
services.

The VML tool suite consists of an embedded VML Flight Component (VMLFC), a ground-based VML

Compiler, and the Offline Virtual Machine (OLVM) program. This suite allows for the generation of files
containing functions, the loading and execution of sequences, and the testing of sets of sequences. The relationship
of each of these VML tools is shown in Figure 1. A source file containing human-readable VML script is generated
using a standard editor or a ground data system tool. The VML Compiler translates a text file, or set of merged text
files, into a loadable binary file, translating commands
and absolute times using external mission-specific
tools. The VML Compiler also has access to lists of
valid global variables and symbolic constants for the
mission. The module file produced can then be loaded
by the VMLFC.

A typical development process involves running

the compiled module under OLVM in order to test and
validate the behavior of the code. OLVM is used to
perform user-defined tests automatically by first
capturing a user-guided session, then extracting user
keystrokes from the human-readable session output
and rerunning the test. This automates the testing
process with very little investment of effort. OLVM
can be widely deployed on relatively modest
workstations, including Sun Ultra, Intel Linux, PPC
Macintosh, and Intel Macintosh platforms. Developers
typically thoroughly test products before taking them
to the slower, less available, and much more expensive real-time Software Test Lab (STL). VML products have
historically worked the first time in the lab without further modification when their development features OLVM
testing. In some cases, sequencing products span so much mission time (weeks to months) that a full STL run is
neither practical nor possible, and OLVM testing is the final test the product receives.

Figure 1. VML tool chain. Files of functions are
created by using an editor or ground data system (GDS)
tool to create human-readable VML script. The compiler
translates this into a binary format usable within OLVM
or some variant of flight computer either in a software
test lab or on the spacecraft.

American Institute of Aeronautics and Astronautics

3

C. VML heritage
Virtual Machine Language was developed starting in 1997. Five versions have been implemented so far. VML

has been used or is in use on twelve NASA flight missions to date, starting with VML 0 on Stardust, Mars Climate
Orbiter, and Mars Polar Lander [2]. VML 1 is currently in use on Mars Odyssey and the Spitzer Space Telescope
[3][4][8], and was used on Genesis. VML 2.0 is in use on MRO and Dawn, was used for Phoenix, and is slated for
use on JUNO, GRAIL, and MAVEN.

III. Phoenix entry, descent, and landing

A. Description of EDL activities
The entry, descent, and landing phase of the Phoenix mission began four days before atmospheric interface and

ended upon touchdown of the vehicle and power off of the descent engines. The intervening series of activities
nominally required 601 spacecraft commands to safely place the spacecraft on the surface. A summary is listed here.

Figure 2: EDL highlights. Images from NASA / Caltech 2006 Solar System Visualization Project CL#06-3827.

Pre-start: ground loads estimated atmospheric interface time E [X-band 700 bps]

Start: E - 4 days, load EDL mainline landing module, autoexecute
disable safe mode entry conditions associated with descent engine use
disable power fault responses
provide periodic EDL aliveness heartbeat

Configure: E - 19 hr .. E - 3 hr
zero out signaling sequence global variables to enable followers to change states with mainline
mission phase to EDL, allows autostart of EDL mainline if processor resets, disable sequence engine aborts
configure sensors and set points for separation, warm up separation connections
turn off heating elements on cruise stage, preheat descent engine valves, turn on catbed heaters

Propellant pressurization: E - 30 min
fire pyrotechnic actuators with specific timing to open helium pressurization tanks
reassert latch valves governing propellant distribution in case pyro firing dislodged settings

Navigation activities: E - 1200 sec .. E - 510 sec
enable inertial navigation, turn off star tracker (on cruise stage)
perform acceleration bias calculation

Cruise Stage Separation: E -424.1 sec [UHF wraparound, 8 Kbps]
turn off charge control, disable X-band telecom components, disable fault detection on batteries
fire backshell separation pyros with specific timing, reassert latch valves
load ACS controller parameters for new spacecraft configuration

Slew to entry attitude: E - 390.7 sec

Pre-entry: E - 60.4 sec .. E + 0.0 sec
engage attitude control mode for first hypersonic mode
high rate IMU collection
enable hypersonic mode transitions: flight software handles mode transitions through hypersonic phase
collect critical data during plasma blackout for retransmission, retransmit after blackout over

Parachute deployment: P (event driven) [UHF wraparound, 32 Kbps]

fire parachute deployment pyrotechnics, reassert latch valves
TCM catalyst bed heaters off to save battery power, radar power on

Heat shield separation: P + 10.0 sec
engage thermal battery for voltage stabilization during pyro firing, signal pending separation
fire pyros to separate heat shield, reassert latch valves

Leg deployment, direct fill of engine manifold: P + 24.8 sec .. P + 44.8 sec
fire pyros to deploy legs in order, reassert latch valves
switch attitude control system to parachute ACS mode

Radar transmit mode: P + 70 sec

Lander separation: L (event driven) [UHF helix, 32 Kbps]
fire pyros to drop lander out of backshell, reassert latch valves
RCS catbeds off to save battery power, component deck thermal heaters on

Touchdown detection: L + 5 sec
activate touchdown detection flight software after all major pyro events (lesson from Mars Polar Lander)

Touchdown: TD (event driven) May 25th, 2008 at 23:38 UTC
attitude control mode idle, radar off, redundantly cut thruster valve power
load landed initialization sequence

reboot would cause mission loss

American Institute of Aeronautics and Astronautics

4

B. Requirements and constraints, and the timing techniques to address them
Sequencing the entry, descent, and landing of Phoenix involved satisfying 37 critical requirements from the EDL

baseline reference mission. These included requirements for:
• timing relative to an estimated atmospheric interface time E
• restartable execution in case of a flight processor reset before entry
• timing relative to unpredictable events
• managing high level fault protection responses
• performing uplink verification
• satisfaction of flight rules regarding pyrotechnic initiation timing
• managing a variety of behaviors in the attitude control mode, star tracker, IMU, and radar
• initiating the slew of the spacecraft to the entry attitude
• pressurizing and configuring the propellant tanks and descent engine manifold, managing catbeds
• enabling and disabling thermal operations
• separating from the cruise stage
• deploying the parachute, heat shield, and landing legs, dropping out of the backshell
• running the Mars Descent Imager (MARDI) instrument (later deactivated)
• collecting critical telemetry during plasma blackout, and retransmitting this data afterwards
• managing a wide variety of different communications paths, transmission speeds, and telemetry
• redundantly shutting down engines to prevent flipping the lander upon touchdown
• starting the landed initialization sequence

Timing flexibility played a key role in the design of EDL, due to the challenging timing regime. The EDL

sequence was started four days before E. In order to handle unexpected atmospheric blooming which could
dramatically raise the altitude at which the spacecraft would first encounter significant atmosphere, the landing
sequences were required to accommodate updates to the value of E that could occur up to a few hours out. The
sequences also had to be restartable and able to catch up as quickly as possible while maintaining important relative
timing for hardware actuation. The EDL sequences also had to operate based on physical events whose timing could
not be known a-priori - a capability known as event driven sequencing. All of these requirements led to the adoption
of a technique with roots in Mars Odyssey aerobraking [8] based around programmable delays, but with further
refinements - the slinky effect.

The slinky effect, illustrated in Figure 3 below, allows critical relative timing to be maintained, while

compressing out unnecessary periods of time delay in the event that a spacecraft reboot or a large shift in the value
of E requires catching up. The boxes represent sequence activities packaged as named VML blocks. These blocks
begin with a delay until a time calculated relative to E. If that time has not yet come to pass, the delay occurs as
normal. If the time has already passed due to a reboot/catchup scenario, the delay drops through and processing
immediately continues. A sample, notional code block expressed in VML 2.1 nomenclature [1] which demonstrates
the fundamental implementation features appears in the figure.

block config
 declare double t := 0.0
body
 t := gv_est_atm_interface_time - 1800.0
 delay_until t
 ...
end_body

Figure 3: Slinky effect. Sequencing technique allows sections of sequencing to maintain fixed relative timing, while

compressing out unnecessary delays between the sections when necessary to catch up a late sequence.

American Institute of Aeronautics and Astronautics

5

IV. State-based EDL sequencing solution

A. State machines implemented as blocks
The modular nature of the EDL sequencing driven by the need to catch up with "slinky mode" led directly to a

state-driven architecture. Six state machines running in parallel on separate virtual machine threads of execution
implemented the activities Mainline, Sideline, Uplink verification, Communications, CPU, and Retransmission. The
science state machine functionality was deleted in flight. Synchronization techniques described in section B below
allowed Mainline to lead the other state machines through the required state transitions at the appropriate times.
States were implemented as separate blocks with optional leading time delays and leading wait conditions to allow
easy correspondence with programmed time E, and times P, L, and TD determined by environmental events.

The first and most important state machine was designated Mainline, with 27 substates, which are blocks or

sections of blocks having a distinct purpose. Mainline performed all actions necessary to place the lander on the
ground, with no dependence on other state machines. Mission phase, fault protection, power, thermal, sensor
interface configuration, propulsion element management, pyrotechnic actuation, navigation and attitude modes,
radar, and activation of the landed block all resided within this state machine. This state machine synchronized
closely with events reported by flight software.

Sideline complemented Mainline by providing a place to implement minor alterations. This strategy allowed

Mainline to be isolated from changes whose need was discovered in flight, reducing the chances of updating and
retesting the Mainline blocks, thereby reducing mission risk. Sideline implemented activities necessary to start
uplink verification, to manage the collection of small forces data, and to select different voltage/temperature
charging curves at E - 18 hours. A redundant start for the landed configuration sequence was considered for
Sideline, but ultimately rejected.

The Communications state machine handled the complexities of maintaining telemetry [11][12] with desired

spacecraft data during the various radical reconfigurations of the vehicle during EDL. Due to the location of telecom
hardware on the cruise stage, backshell, and on the lander itself, spacecraft separation events necessitated powering
down certain elements before explosive separation, then powering up others after the event. EDL started on an X-
band transceiver mounted on the cruise stage, then switched to a UHF transceiver mounted on the lander with a
wraparound antenna at 8 Kbps after cruise stage separation. After dropping out of the backshell for powered descent,
the state machine switched to UHF using the helix antenna at 32 Kbps. The various elements featured careful
adherence to operational idiosyncrasies and timing requirements. Keeping different speeds of downlink fed with
appropriate data required switching on and off prechannelized data streams. Communications closely followed a
variety of activities reported by Mainline.

Finally, the retransmit state machine took acceleration telemetry gathered during the potential plasma blackout

high in the atmosphere, then retransmitted those packets multiple times after parachute deployment in order to
guarantee a complete picture of the entry dynamics. Retransmission crossed deceleration and parachute deployment,
and was complete before lander separation.

B. Synchronization
Separation of the EDL activities into state machines required a synchronization mechanism that allowed timing

and event detection within Mainline to guide the execution of Communications and MARDI control (later deleted).
The other elements were implicitly timed by either monitoring offsets relative to E or by using the spawn action in
one of the other state machines. To this end, the VML WAIT construct was utilized. WAIT allows execution of a
block to be suspended until a value in a global variable arrives which satisfies a condition [1]. Various global
variables were defined before launch as values initialized to 0. Mainline waited for flight software to set specific
variables upon detecting the conditions for parachute deployment, lander separation, and touchdown, allowing it to
progress through its states. See Figure 2 for the flow of synchronization signals from flight software to the state
machines. As Mainline implemented its own activities, it set variables at specific points of the execution with the
spacecraft time present at execution. Communications monitored these variables for non-zero values before
proceeding in order to properly time antenna switching, component power, data rates, prechannelized data stream
selection, and so forth. This technique had the added benefit of providing a built-in telemetry path for transmission,
as well as history of behavior in the event of a telemetry drop-out during EDL.

American Institute of Aeronautics and Astronautics

6

Figure 4: Event synchronization during EDL. Writes to sequence global variable by the Attitude Control System

and Structures and Mechanisms flight software cause continuation in Mainline. Writes by Mainline cause
continuation in Communications and Sideline.

C. Flight experience with Phoenix EDL state machines
The EDL Mainline sequence successfully landed the spacecraft in every pre-launch laboratory test in which the

external software simulating the spacecraft environment was correctly operating. In one extreme case, a flight
software file system configuration error prevented the other state machines from being present, but even in this case
Mainline successfully landed the vehicle while operators were analyzing the problem.

Due to the modular nature of the states, changes to EDL requirements were straightforward to implement and

review. Each state machine block carried a comment header which specified baseline reference mission requirement
cross-references and a list of subsystem personnel required to review the block. This approach allowed much smaller
review groups, which were much easier to coordinate. The state machines were tested using OLVM, allowing much
faster than real-time execution. Changes to the resulting OLVM command output were straightforward to identify
and review before bringing the new products to the software testing lab or the spacecraft. The modular approach also
facilitated the switch of the fundamental ordering of cruise stage separation and slew to attitude entry, allowing the
separate states to be swapped in order while isolating the changes to those two blocks and the preceding block.

An unfortunate flaw in the interface shared by the science instrument MARDI and the landing radar led to a

potential loss of radar data frames needed for landing. This flaw was discovered late in the development process.
The decision was made by program management and system engineering to eliminate MARDI data from the
interface. Instrument sequencing to gather pictures of the landing site during descent was deleted, the state machine
being replaced with a simple block to turn on and off the instrument in order to maintain power and thermal
characteristics. The modular nature of the state machine solution made this functional substitution extremely simple,
replacing the fully capable state machine which synchronized to Mainline with a file containing a power-only block.

One testament to the stability of the state-driven approach is the fact that Mainline remained unchanged during

flight. The last functional (non-comment) alteration was made in March 2007. The final EEPROM file system was
installed on the spacecraft in May 2007, shortly before launch. The EEPROM version was used to perform the
actual entry, descent, and landing on May 25, 2008.

American Institute of Aeronautics and Astronautics

8

B. Utilization of AutoGNC for hypothetical small body sample return
One of the first mission challenges for the newly minted AutoGNC system may be a sample return from a small

body, either an asteroid or a comet, or perhaps a moon of Mars. These missions would require tight coordination
between navigation and attitude guidance and control. The scenarios being most closely studied and simulated
utilize a "Touch and Go" strategy. The spacecraft flies close by the target, drops to the surface, makes glancing
contact to collect a sample, and then rapidly ascends to safety. The close interaction between Navigation and
Guidance occurs during contact, where often-severe torques and forces are applied to the spacecraft when tightly
prescribed attitude and contact force is mandated for the sampling mechanism to properly function. Shortly after
first contact (sometimes as little as one second), the spacecraft is then going to begin the ascent thrusting event,
during which time the spacecraft attitude is also tightly constrained so as to achieve the correct trajectory.

C. Typical timeline of activities for hypothetical small-body TAG mission
A graphical representation of mission timing appears in Figure 5, above, and in the explicit autonomy timeline in

Figure 6 below. For small-body mission scenarios, the spacecraft generally stays in a holding orbit before
commencing TAG activities. Depending on the mass of the body, this holding trajectory may be as low as a few km
up to several tens of km. Still under ground control and using deterministic sequencing, the spacecraft departs on a
low altitude flyby trajectory which has very low impact probability. For the first 12-18 hours of the approach to the
target (a duration that is generally constant despite target mass and size) the AutoGNC system is operational. During
this period, AutoGNC determines spacecraft position and velocity and makes course adjustments, thereby allowing
ground control sufficient time to assess AutoGNC system health. If ongoing health checks show nominal
performance, the ground grants the Executive the authority to perform the Drop Burn. After the Drop Burn, the
spacecraft is placed on an impact trajectory. On the other hand, if the descent commitment time expires without the
ground granting descent authority, the spacecraft disregards the opportunity and flies safely by.

Figure 6: Timeline of TAG. Events, decisions, actuations, reactions, and fault protection responses.

American Institute of Aeronautics and Astronautics

9

A critically important feature of the VML AutoGNC Executive is the ability to self-assess the health of
AutoGNC subsystems. In the period before the Drop Burn, the Executive itself is able to wave off the TAG attempt.
Prior to the Drop Burn, the solar arrays are feathered to protect them from contact damage and to lessen dust
deposition. There occur several targeting burns triggered by the Executive and auxiliary manager functions,
discussed in later sections.

Once the Drop Burn executes, the spacecraft is wholly dependent upon the AutoGNC Executive system for the

spacecraft's survival. Internal Executive health-checks continue. If any subsystem fails, an abort maneuver is
triggered to send the spacecraft on a safe trajectory away from the target. The period of time for this dependence on
the autonomous system is approximately one hour. A wide range of factors are monitored by the Executive,
including confirming that spacecraft position, velocity, and attitude parameters are within desired ranges relative to
the nominal plan, that the orbit determination system is receiving sufficient data, and that the trim maneuver
computations are successful. At least one, and potentially several, course correction burns occur during the descent
that may have severe restrictions on direction in order to minimize surface contamination.

Several terminal descent timers come into play during descent, providing "life-boat" triggers for critical events in

the TAG scenario. This approach compensates for a variety of different faults, ranging from a failed contact sensor
that doesn't detect the surface to highly unusual surface conditions (like a very light and powdery regolith) which
cause the sensor not to respond. Below a certain altitude, laser range finding provides an estimate of the time to
contact. If contact sensor readings determine contact has been made, the spacecraft remains in that state for a
predetermined number of seconds and the sample is collected. After that, or after the time window for attempting
contact expires, an ascent is initiated.

During the descent, contact, or ascent phases, detected errors and faults result in an abort burn. The Executive

determines two generic versions of abort burn: a nominal abort, which utilizes the conventional attitude control
computations, and a panic abort, wherein the Executive directly commands a series of thruster events that have been
pre-computed to result in an appropriate thrust direction. This latter choice is made only under the most extreme
conditions, when the Executive has determined that the AutoGNC system is failing in some way, and its results are
not trustworthy. The core assumption in this panic implementation is that AutoGNC was successfully maintaining
attitude until just a moment before the panic, and therefore a reasonable ascent burn can be achieved without active
attitude control. This extreme contingency is the last-resort attempt to salvage the mission, as no other action could
be applied within the minutes-long timeframe necessary to prevent the spacecraft from colliding with the surface.

D. Automated Guidance, Navigation, and Control (AutoGNC)
The core of the AutoGNC system is the Deep Impact-derived AutoNav system, composed of three subsystems:

Image Processing, Orbit Determination, and Trajectory Correction. The architecture appears in Figure 7.
Measurements for the OD filter come from a legacy image processing tool called OBIRON (On-Board Image
Registration for Optical Navigation) [17][18][19]. OBIRON has space mission heritage as ground software for the
Japanese Hayabusa mission to the asteroid Itokawa, as well as NASA’s NEAR mission to the asteroid Eros.
OBIRON is currently being configured as a flight element for NASA’s Autonomous Landing and Hazard Avoidance
Technology (ALHAT) development that will support manned lunar landing projects. OBIRON will also be the
means of performing ground-based optical navigation for the Dawn mission. OBIRON combines preloaded surface
elevation maps, camera configuration, estimated camera location and attitude, and the sun illumination direction in
order to predict what the camera should see in the vicinity of specified surface landmarks. Landmarks are then
registered with the image through a correlation process, resulting in sub-pixel coordinates for the landmark locations
in the camera plane. These coordinates are then passed to the filter as raw measurements for orbit determination.

The Orbit Determination element of AutoGNC uses a batch-sequential least-squares estimation strategy rather

than a current state filter. This choice was made to allow for the comparison of data in a data arc for purposes of data
rejection. The data arc is determined by a sliding window, and thus periodically the time of the estimated position
and velocity must be advanced along with the estimated covariance. The latter step is performed using a numerically
integrated state-transition-matrix. Currently, data from the IMU is not incorporated directly into the filtered
spacecraft state estimate, but is used as a "truth" acceleration when the spacecraft state is integrated, and thus IMU
readings of propulsive events and the contact event are incorporated indirectly into the spacecraft state estimate.
Altimeter measurements are not currently included in the estimated state, but are used as a "sanity check" against
AutoGNC results. The trajectory correction component of AutoGNC uses a linear estimate of required velocity

American Institute of Aeronautics and Astronautics

10

change to achieve a desired position or velocity state. The current very successful targeting strategy for the TAG
scenario is to use position targeting only, and to target such as to achieve the desired state at the time of the next
trajectory correction, which will then (under perfect conditions) correct the velocity back to the desired nominal
course. In practice there are always errors, but many scenarios including TAG, this series of corrections represents a
convergent algorithm. In the case of the TAG the approach readily achieves the required error accuracies of less than
5 m and 2 cm/sec. AutoGNC includes a set of utilities and services, chief among which is the Ephemeris Service
which provides positions and velocities of celestial bodies, their attitudes and the position and velocity of both the
nominally planned and the currently estimated spacecraft trajectory.

Figure 7: AutoGNC software system. Software consists of C program running a variety of AutoNav software
evolved from Deep Space 1 and Deep Impact missions. VML 2.1 flight software executes the flight director and
series of managers to create a reactive, autonomous rendezvous and sampling capability.

The attitude control and guidance system of AutoGNC is derived from several flight sources, including Cassini,
DS1, and MER. An important recent upgrade to AutoGNC was to create a flight-prototypical commanding method
for spacecraft attitude that was sufficiently general to put the spacecraft into any desired attitude, but also
sufficiently comprehensible to be usable by typical flight teams. Part of this attitude specification system is an
automated means to re-orient the spacecraft in a directed manner, specifying maximum rates and accelerations. The
system also includes provision for attitude constraints, for example sun-exclusion zones for cameras and other
instruments. This constitutes the Attitude Profiler.

The attitude profiler is a high-fidelity software element of Cassini heritage with a high NASA Technical

Readiness Level (TRL). The profiler has access to ephemeris files for all relevant target bodies, and uses a
trapezoidal rate profile to plan a turn from the current attitude to the desired target. Primary axis targets can be
provided as body centers, body surface coordinates, latitude/longitude coordinates, inertial coordinates to a star, or a
desired inertial thrust direction. Secondary axes are typically specified to be nearest another vector, such as the Sun
direction or the pole of the target body. When not actively commanding a turn between targets, the profiler operates
in a tracking mode using the current ephemeris files, allowing the spacecraft to perform operations such as science

American Institute of Aeronautics and Astronautics

11

imaging or communications with Earth. Constraint avoidance algorithms are available in the software but have not
yet been tested in simulation.

The attitude estimator is a Kalman filter based on fixed pre-determined gains. The estimator processes IMU and

star tracker measurements to compute an estimate of the attitude quaternions and IMU biases. Although the IMU
measurements are used to propagate the attitude quaternions at 10Hz, the Kalman filter itself runs at 2Hz. The
attitude controller computes error from the desired and estimated quaternions and rates. It then computes
commanded torques from the errors using a non-linear proportional-derivative control law.

The commanded delta-V and torque are combined and transformed into thruster commands using a pulse-width

modulation thruster allocator. The allocator assumes a fixed thrust level for each thruster. Setting the thruster on/off
time every 0.1 second control period modulates the thrust. The commanded delta-V for the duration of the maneuver
is divided into increments corresponding to a commanded impulse to be applied in a control period. At each control
period, that commanded impulse is transformed into a commanded force, and combined with the commanded torque
produced by the attitude GN&C system. The thruster allocator is provided with information like thrust magnitude,
thruster location and thrust direction for each thruster. It is also given a list of thrusters to use for each mode of
operation. The thrust allocation problem is then solved using an optimizer to find the set of thruster commands
providing the commanded force and torque while minimizing fuel consumption.

E. Differences between hypothetical TAG scenarios and EDL
TAG carries some significant differences relative to EDL. Whereas EDL's fundamental design philosophy was

"land or die", TAG's philosophy is "live to fight another day". Approaches for sampling are made cautiously,
allowing ground control to wave off if anomalies develop. TAG is reversible, able to abort due to autonomously
detected conditions. It is also repeatable, allowing multiple attempts. TAG activities involve more code paths than
EDL. An approach could result in a flyby if the ground operations does not provide clearance to descend by a certain
time. Interim checks confirm correct processing by AutoGNC. A sampler might be articulated mechanically.
Commit conditions based on ground permission, LIDAR readings, and AutoNav software lockup are honored.
Descent and ascent burns are performed. Articulations occur to protect solar panels during sampling and restore
them to power-generating orientations. The sample is collected and stowed. A set of different emergency
withdrawals are possible. These complexities drive the need for a more capable autonomous system than in EDL.

VI. Native state machines in VML 2.1

A. Intrinsic state machine representation
The version of VML used for TAG technology development includes the ability to directly specify and execute

state machines. States are similar to blocks. A state machine moves from state to state by following transitions,
which may optionally include one-way or synchronized coordination using signals. Signals are specified entirely
within the loaded VML file. Unlike the EDL global variables, signals do not have to be defined within data
structures before launch, allowing for a great deal more flexibility in making new autonomy elements during the
mission. By adding the ability to dynamically define signals, the required set of state machines can more easily be
updated in response to discoveries about spacecraft behavior during flight. State machines defined using VML 2.1
nomenclature [1] are not translated into some nominally equivalent representation by an autocoder, as occurs in
desktop analysis programs. Instead, instructions defining states and transitions are directly interpreted by the VML
Flight Component. This direct representation and execution eliminates the need to verify translation tool behavior
and removes the risk of mistranslation. The amount of software developed and verified is considerably reduced.

B. Coordination mechanisms
As described in section V above, TAG's complexity and repeatable nature requires a two-way synchronization

mechanism, whereby separate sequencing components detect necessary conditions locally, and make available to all
other interested components the fact that guard conditions on the transitions are satisfied. Once all components
featuring a synchronized transition register the satisfaction of their respective guarding conditions, the components
simultaneously switch to new destination states. This capability is illustrated in Figure 8 below with a partial set of
states from three state machines.

The left hand state machine starts out in the deciding commitment state, the middle in imaging far, and the right

hand in using computed. Once all guarding conditions on the transitions labeled descend have been met, the three

American Institute of Aeronautics and Astronautics

12

state machines all simultaneously change to descending, imaging near, and descending, respectively. The guarding
conditions could include variable values incorporating diverse elements such as ground permission, count values,
health status, maneuver availability, power conditions, and the like. The guard conditions on the various transitions
can be radically different, but due to the synchronization, the ability of any of the transitions to fire depends on all of
these conditions being satisfied in aggregate.

Figure 8: Synchronous transition. State machines featuring descend* signal all satisfy guarding conditions and

simultaneously transition from source states (outlined top) to destination states (outlined bottom).

One-way coordination like that used during EDL is also available in VML 2.1 as an intrinsic construct. It is
implemented with
transitions featuring signal
transmit and receive
designations. An example
with a set of partial state
machines is given in
Figure 9. The left-hand
state machine is able to
transition from ascending
to aborting by taking the
abort! transition between
these two states. All state
machines in a state
featuring a transition
labeled abort? are taken
simultaneously with the
transmitter, but the
transmitting state machine
may take the transition
whether or not the
receivers are ready. Doing
so is useful in responding
to an emergency situation.

Figure 9: One-way coordination. Transmitter abort! transitions flight director

from ascending to quiescent without regard to listeners, abort? transitions follow.

American Institute of Aeronautics and Astronautics

13

C. Coordination syntax
The coordination mechanism used on each transition is coded directly into the transition definition. Transitions

in VML are a specialized variety of reusable function which include a name and an optional coordination type.
Transitions without a coordination type are considered for transition only based on guarding conditions, without
searching for signals crossing virtual machine boundaries. When a synchronization mechanism is present, the name
of the transition (or an optional signal name different than the transition name) is added to a set of globally visible
signals in order to allow coordination to occur. Figure 10 shows the basic syntax and several example states and
transitions featuring these various configurations.

state deciding_commitment
body
 select_loop
 ...
 when have_permission && gv_altimetry_locked take descend
 ...
 end_select_loop
end_body

transition descend synchronize
body
 ...
 jump_to descending
end_body

state descending
body
...
 when gv_burn_status = DONE_AND_BAD take abort #panic, "Burn bad"
...
end_body

transition abort transmit
 input abort_mode
 input reason
body
 jump_to aborting abort_mode reason
 ...
end_body

Figure 10: Transition and state syntax in VML. States and transitions are named and can accept parameters like
reusable blocks do. Transitions may include a coordination type of transmit, receive, or synchronize.

The selection loop shown checks guarding conditions in parallel whenever a write to the global variables listed in
the conditions occurs, arming any associated transitions and then taking those transitions if coordination conditions
are met. Destination states are reached from the transition by jumping to that state. Taking a transition or jumping to
a state stops the currently executing function on the virtual machine and replaces it with the function representing
the transition or state, acting like a combined HALT and SPAWN statement.

VII. Autonomous comet / asteroid sampling with flight director architecture

A. Flight director
The flight director is a named state machine with a series of states corresponding to the progression of the

overall system through the small body rendezvous and sampling activities. It is an extension of the EDL mainline
concept. The flight director shown in Figure 11 below supplies high level guidance to the rest of the state machines
(called managers and monitors) by checking conditions needed to safely enable transitions. It thereby limits the
other state machines to transitioning only under the right circumstances, and vice versa.

The flight director does not generally issue commands or interact with the spacecraft subsystems, unlike EDL

mainline. These capabilities are pushed down into manager state machines. The flight director provides operations
personnel a way of readily gaining insight into the behavior of the rendezvous attempt: the current state and
condition telemetry associated with the flight director allows operators to anticipate all legal state transitions from

American Institute of Aeronautics and Astronautics

14

the current state. This in turn can lead to shorter training periods, simplifications in the specification of the baseline
reference mission, reduced numbers of flight rules, and other mission operations simplifications.

Given light speed delays on the order of 20 to 40

minutes associated with the distance between Earth and
the small body to be sampled, the spacecraft is required
to protect itself during the attempt and get away
autonomously. The ground provides or withholds
permission to make the attempt by setting a sequencing
global variable. Should the ground fail to do so within a
configured duration while the flight director is in the
deciding commitment state, the flight director
automatically transitions to flying by. Should the
ground withdraw previously-given permission to
proceed after descent has started, or should any of a
number of onboard errors be detected, the flight
director transitions to aborting.

Note that most of the transitions shown in the flight

director are synchronous, meaning that the flight
director can only transition to destination states if all
other state machines which feature the identically
named transitions are ready and able to take those
transitions. On the other hand, in an emergency
situation which requires a transition to the aborting state, the abort! transition may be taken without regard to the
enabled transitions in the other state machines. This allows the flight director to autonomously save the vehicle by
initiating an ascent burn in the event of a wide variety of faults, including hardware failures, software errors,
problems with the execution of the other state machines, and guidance errors detected by inertial monitoring. Once
the spacecraft is safely removed from close proximity to the body after an abort, operations personnel recover the
spacecraft back to keeping station for another attempt.

B. Managers
Managers handle lower level spacecraft commanding. Example managers used in the TAG architecture appear in

Figure 12. These state machines work closely together to control the attitude and the trajectory of the spacecraft. The
attitude manager starts in a boot state and transitions to quiescent on an unnamed transition once initialization is
complete. The trajectory manager behaves similarly.

The transitions named approach* in the two managers must be taken simultaneously or not at all, and can only

be taken when guarding conditions (not shown here) in both managers have been satisfied. Note that there is an
approach* transition in the flight director which must be satisfied as well. In this case, the attitude manager switches
from quiescent to tracking at the same time the trajectory manager switches from quiescent to standing by. All other
state machines featuring this transition name also simultaneously switch.

Figure 12: Interacting managers. Attitude manager completes a turn before allowing the trajectory manager to

initiate the burn.

Figure 11: Flight director. Guides operation of

overall system.

American Institute of Aeronautics and Astronautics

15

The attitude manager is used to change the orientation of the spacecraft for maneuvers and for other purposes
like science collection and imaging. The trajectory manager is only allowed to initiate a burn at the proper time once
the spacecraft has turned to the proper attitude and settled. There are several settled* transitions in the trajectory
manager in order to accommodate turns needed for maneuvers and turns needed for other reasons.

The maneuver manager shown in Figure 13 is responsible for knowing the time of each spacecraft maneuver to

be performed during TAG, starting with the Drop Burn maneuver which causes the spacecraft to approach the comet
on an intercept course. The maneuver manager drives
underlying AutoGNC flight software to determine the
size, ET2000 time, and direction of the burn. These
values are stimulated via spacecraft command and
read back using sequence global variables, then
passed along to a synchronous navigation flight
software element for planning. The resulting plan is
then executed by the trajectory manager once the turn
is complete and the maneuver time comes to pass.

The maneuver manager can also play a role in

deriving the escape maneuver should an abort occur.
The aborting state is reached if an abort? ("?" for
receive) transition is taken, initiated by the abort! ("!"
for transmit) transition in the flight director. The
manager causes flight software to perform
calculations to derive an escape burn, then makes this
result available to attitude and trajectory managers.

Should the derivation of the escape maneuver fail for some reason, or should the resulting maneuver cause too

slow an ascent, the flight director is able to autonomously force an emergency panic burn instead of using the
various managers. When performing a panic burn, the flight director disables flight software involved in applying
turns and burns, and instead directly requests the thrust allocation flight software to apply a force in the negative Z
direction (out behind the spacecraft) for a specified period of time. This fallback is simple, straightforward, and
predictable, but comes at a cost in both fuel and time to recover the spacecraft to attempt another approach.

Other managers in the system handle articulation of samplers, solar array deployment, details for contact

stabilization, and the like. As state machines managing different aspects of the rendezvous and sample process are
completed, they are hooked into the sequencing system simply by loading them into a free engine. The signaling
mechanism governing state transitions takes care of transitioning the new state machines at the appropriate time, and
allows the new state machines to make available to the rest of the system the results of evaluating guarding
conditions.

C. Monitors
Monitors check the state of the system as represented by global variables written to by flight software. They may

be implemented as state machines, but many are simple enough to be implemented as single blocks. Status monitors
combine data together to yield a single status global variable value, taking on one of the following symbol values:
#green for nominal, #yellow for marginal, or #red for critically out of envelope. This approach allows simple logic
to be placed in the flight director, checking various statuses for #red values and taking transitions in response. Other
monitors detect conditions tagged with time, as was done during EDL.

The two most complex monitors are the inertial and the velocity monitors. They appear in Figure 14. These

monitors run in a periodic fashion, and apply different envelopes for the status check depending on the stage of
approach the spacecraft is in relative to the body. They follow using synchronizing transitions in most cases, and a
listener transition abort? to transition to the ascending state should the flight director send that signal. The contact
monitor is implemented as a state machine which checks for multipoint contact and mechanical flex indications,
then captures the time of the contact in a global variable as was done in EDL. This allows other state machines to
easily tell when contact has occurred by checking for a non-zero time value, and causes this important condition to
be automatically telemetered.

Figure 13: Maneuver manager. The maneuver
manager tracks maneuver times and maneuver sizes in
order to drive the spacecraft to turn and burn.

American Institute of Aeronautics and Astronautics

16

Figure 14: Inertial, velocity, and contact monitors. The first two monitors provide #green, #yellow, and #red
conditions regarding spacecraft inertial state. The contact monitor records the touchdown time.

VIII. Next step: Mars sample return rendezvous technology development

A. Hypothetical Mars sample return mission rendezvous
A Mars sample return mission [16] would pose some of the most challenging operational activities of any NASA

deep space mission. Rendezvous of a vehicle with an Orbiting Sample Canister (OSC) in order to return the canister
to Earth requires a variety of complex mathematical processing on a changing data set, coupled with the need to
safely and effectively handle a large range of off-nominal conditions and spacecraft faults. Light speed delay isolates
the spacecraft from real-time operator intervention, while inertial and situational uncertainties demand reactivity not
required of typical spacecraft sequencing systems. These mission features call for a new class of sequencing
capability: the Reactive Rendezvous and Docking Sequencer (RRDS).

Figure 15: Progression from EDL through TAG to potential MSR. Capabilities build on predecessors as

mission complexity increases. (All images are artist's concepts.)

RRDS melds the rule-based reactivity needed for rendezvous and docking with sequence characteristics common
to more traditional missions. Rules watch for conditions in order to react to the current situation, allowing a wide
range of complex activities and safety-related responses to be concisely represented without complex procedural
programming. More traditional sequencing capabilities are present which provide multiple threads of executing
logic, allow for timed activities, and deliver exceptional insight into the operational system via traditional command
and telemetry interfaces.

B. Flight director for hypothetical Mars sample return
The perils and complexities of rendezvous, capture, and docking with the OSC necessitate a different flight

director for a potential Mars sample return mission than for comet/asteroid TAG. Since the OSC could have been
on-orbit for months or years before the arrival of the sample return spacecraft, the target vehicle must be considered
totally passive and unable to signal. Acquisition is then entirely optical, and requires locking onto and illuminating
the OSC from the sample return spacecraft. Care must be taken to approach slowly and with enough precision to

American Institute of Aeronautics and Astronautics

17

avoid knocking the OSC out of a known or findable position. Illumination and camera pointing constraints must be
considered while orienting the spacecraft for power generation and Earth communications. Timing of orbital
maneuvers must be coordinated with the relative orbital dynamics of two separate vehicles. Contact is followed by
soft and hard docking articulation, taking considerably longer than sampling.

Despite these mission differences, the overall

architecture for the flight director shown in Figure 16
appears remarkably similar to the TAG architecture.
The flight director for a potential MSR mission
spends time in the approaching state (on the order of
12 hours) to close a 10 km gap with the OSC in Mars
orbit. It then enters an elliptical orbit relative to the
OSC using phased eccentricity and/or inclination
differences, allowing the OSC to be precisely tracked
and its orbit autonomously determined by AutoGNC.

Upon receiving ground clearance, the spacecraft

autonomously reduces the size of this relative orbit
about the OSC until it reaches a position a few tens
of meters away, at which time it follows a "glide
slope" in for the docking and capture. Once secured,
the spacecraft is ready for a non-autonomous return
to Earth on an escape trajectory guided by ground
operations personnel. As for TAG, the flight director
for a hypothetical Mars sample return mission
provides concise, state-driven, high-level insight into
the behavior of the system, guiding lower level
managers which interact with the flight software to
achieve the mission objectives.

IX. Conclusions
A growing body of mission experience with challenging spacecraft sequencing problems like Phoenix entry,

descent, and landing on Mars has pointed the way toward using VML in autonomous operations. State-based
autonomy features components that are easier to manage and more stable than monolithic sequences, and provide a
top-level mechanism to use for guiding timing and responding to events. One-way and synchronous coordination
techniques used between cooperating VML components allow complex activities to be broken down into simpler
and more concise components whose behavior can be verified and validated. The flight director architecture
provides excellent operational insight using existing VML telemetry, and allows substantial design flexibility when
mission requirements change. The new signaling mechanism in VML 2.1 builds on previous experience, allowing
functionality in the form of managers and monitors to be incrementally added and extended. Directly executable
state machines and their associated state representations greatly clarify guidance, navigation, and control problems,
simplifying implementation and allowing a state-driven approach to the next generation of missions.

Acknowledgments
The work described in this paper was carried out for the Jet Propulsion Laboratory, California Institute of

Technology, under an agreement with the National Aeronautics and Space Administration. The authors would like
to thank their coworkers on the team creating AutoGNC, including Simon Nolet, Robert Werner, and David Meyers
for their tireless efforts getting the software running, and Bob Balaram and Chris Lim on the DSENDS team.

References
Reports, Theses, and Individual Papers

1Grasso, C. A., Lock, P. d., “VML Sequencing: Growing Capabilities over Multiple Missions", AIAA Space Operations
Conference Proceedings, April 2008.

Figure 16: Mars sample return developmental flight

director. Flight director guides rendezvous and
docking.

American Institute of Aeronautics and Astronautics

18

2Grasso, C. A., “The Fully Programmable Spacecraft: Procedural Sequencing for JPL Deep Space Missions Using VML
(Virtual Machine Language)", IEEE Aerospace Applications Conference Proceedings, March 2002.

3Grasso, C. A., “Techniques for Simplifying Operations Using VML (Virtual Machine Language) Sequencing on Mars

Odyssey and SIRTF”, IEEE Aerospace Applications Conference Proceedings, March 2003.

4Peer, S. and Grasso, C. A., “Spitzer Space Telescope Use of Virtual Machine Language”, IEEE Aerospace Conference

Proceedings, December 2004.

5Grasso, C. A., “Virtual Machine Language (VML)”, NPO 40365, JPL Commercial Programs Office, Innovative Technology

Asset Management Group, Docket Date: 12-May-2003.

6Grasso, C. A., “Virtual Machine Language (VML) NASA Board Award”, NASA Inventions and Contributions Board,

NASA Technical Report 40365, Award Date: September 7, 2006.

7Riedel, J. A., et. al., “AutoNav Mark 3: Engineering the Next Generation of Autonomous Onboard Navigation and

Guidance”, AIAA Guidance, Navigation, and Control Conference, August 2006.

8Chapel, J. et. al., “Aerobraking Safing Approach for 2001 Mars Odyssey”, American Astronautics Society Guidance and

Control Conference, Feb 2002.

9Riedel, J. E., et. al, “Configuring the Deep Impact AutoNav System for Lunar, Comet and Mars Landing”, AIAA-2008-

6940; AIAA/AAS Astrodynamics Specialist Conference; Honolulu, HI, 18-21 August 2008.

10Grover, M., Cichy, D., Dasai, P.N., “Overview of the Phoenix Entry, Descent and Landing System Architecture,” AIAA

Paper AIAA 2006-7218, AIAA/AAS Astrodynamics Specialist Conference; Honolulu, HI, 18-21 August 2008.

11Garcia, M., Fujii, K., “Mission Design Overview for the Phoenix Mars Scout Mission,” AAS Paper 07-247, AIAA/AAS

Space Flight Mechanics Meeting; Sedona, AZ, 28 January -01 February 2007.

12Kornfeld, R., et. al., “Entry, Descent, and Landing Communications for the 2007 Phoenix Mars Lander,” Journal of

Spacecraft and Rockets Vol. 45, No. 3, May-June 2008.

13Kubitschek, D., Mastrodemos, N., et. al., "Deep Impact Autonomous Navigation: The Trials of Targeting the Unknown,"

AAS 06-081, 29th Annual AAS Guidance and Control Conference, Breckenridge, Co., Feb. 4-8, 2006.

14Grasso, C. A., “Formal Methods for Design, Development, and Runtime: Runtime Verification of Distributed Reactive

Systems Using DR-VIA and RTV with extended TTM/RTTL Notation.” Doctoral Thesis, University of Colorado, 1996.

15Balaram, J. et. al., “DSENDS - A High-Fidelity Dynamics and Spacecraft Simulator for Entry, Descent and Surface

Landing”, IEEE Aerospace Conference, October 2001.

16D'Amario, L. A., Bollamn, W. E., et. al., “Mars Orbit Rendezvous Strategy for the Mars 2003/2005 Sample Return

Mission", Jet Propulsion Laboratory, California Institute of Technology, document 092407 May 2008.

17R. Gaskell, J. Saito, M. Ishiguro, T. Kubota, T. Hashimoto, S. Abe, O. Barnouin-Jha, D. Scheeres, N. Hirata, and H.

Demura, “Shape and Topography of Asteroid 25143 Itokawa,”38th Annual DPS Meeting Pasadena, October 2006.

18R. Gaskell, “Landmark Navigation and Target Characterization in a Simulated Itokawa Encounter,” AAS/AIAA

Astrodynamics Specialists Conference, Jet Propulsion Laboratory, Pasadena, CA, August 2005.

19R. Gaskell, “Small Body Simulations for Navigation Approach and Landing,” AIAA Space 2005, American Institute of

Aeronautics and Astronautics, Long Beach, CA, August 2005.

20Riedel, J.E., Bhaskaran, S., et. al., "Navigation for the New Millennium: Autonomous Navigation for Deep Space-1,"

Proceedings of the 12th International Symposium on Flight Dynamics, Darmstadt, Germany, June 1997.

21Riedel, J.E., Bhaskaran, et. al., "Using Autonomous Navigation for Interplanetary Missions: The Validation of Deep Space

1 AutoNav," IAA Paper L-0807, Fourth IAA International Conference on Low-Cost Planetary Missions, Laurel, Maryland, May
2000.

22Bhaskaran, S., J. E. Riedel, B. Kennedy, T. C. Wang, "Navigation of the Deep Space 1 Spacecraft at Borrelly," AIAA paper

2002-4815, AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Monterey, CA, August 5-8, 2002.

23Bhaskaran, S., Mastrodemos, N., Riedel, J., Synnott, S., "Optical Navigation for the Stardust Wild 2 Encounter," 18th

International Symposium of Space Flight Dynamics, October 11-15 2004, Munich Germany.

Related web sites
Blue Sun Enterprises VML Website http://www.bluesunenterprises.com

