
 Implementation of a Relay Coordination System for the
Mars Network

Daniel A. Allard
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Drive, Pasadena, CA 91109

818-354-4344
Daniel.allard@jpl.nasa.gov

Abstract—Mars network relay operations involve the
coordination of lander and orbiter teams through long-term
and short-term planning, tactical changes and post-pass
analysis. 1 2 Much of this coordination is managed through
email traffic and point-to-point file data exchanges. It is
often difficult to construct a complete and accurate picture
of the relay situation at any given moment, as there is no
centralized store of correlated relay data.

The Mars Relay Operations Service (MaROS) is being
implemented to address the problem of relay coordination
for current and next-generation relay missions. The service
is provided for the purpose of coordinating communications
sessions between landed spacecraft assets and orbiting
spacecraft assets at Mars. The service centralizes a set of
functions previously distributed across multiple spacecraft
operations teams, and as such greatly improves visibility
into the end-to-end strategic coordination process. Most of
the process revolves around the scheduling of
communications sessions between the spacecraft during
periods of time when a landed asset on Mars is
geometrically visible by an orbiting spacecraft. These
“relay” sessions are used to transfer data both to and from
the landed asset via the orbiting asset on behalf of Earth-
based spacecraft operators.

This paper will discuss the relay coordination problem
space, overview the architecture and design selected to meet
system requirements, and describe the first phase of system
implementation.

TABLE OF CONTENTS

1. INTRODUCTION ...1
2. PROBLEM SPACE ..1
2. ARCHITECTURE ..6
2. IMPLEMENTATION ..7
2. CONCLUSIONS .. 11
REFERENCES .. 12
BIOGRAPHY .. 12

1. INTRODUCTION

Modern Mars surface missions rely primarily upon relay
orbiters to provide delivery of uplink commands and

1978-1-4244-3888-4/10/$25.00 ©2010 IEEE.
2 IEEEAC paper #1510, Version 1, Updated November 1, 2010

sequences as well as downlink of science and engineering
data products. Martian relay first saw use by the Mars
Exploration Rover (MER) missions, utilizing the Odyssey
and Mars Global Surveyor (MGS) spacecraft as relay
“providers” [10]. A primary driver for the use of relay is the
scarce power availability of lander spacecraft and the high
power cost of direct-to-earth (DTE) transmissions, verses
the lower power cost of lander-to-orbiter relay and higher
power capabilities of the orbiters. To date over %98 percent
of MER data has been delivered to Earth by relay, and
Phoenix was completely reliant upon relay over the life of
the mission. Odyssey has so far carried the brunt of relay
operations, however the Mars Reconnaissance Orbiter
(MRO has joined the relay picture in support of Phoenix
operations and more recently MER.

Use of relay by the Phoenix mission exposed a number of
deficiencies in the legacy process. In particular it was
challenging to make sense of the overall state of relay at any
given moment in time. The Relay Data Engineering (RDE)
effort [1] was implemented to provide automated tracking of
planning and pass performance data over the Phoenix
mission era, however without additional significant
upgrades to the planning system architecture it was difficult
to complete the true “picture” of the relay state.

Following the end of Phoenix it was decided that a new
system would be implemented to provide core multi-
mission coordination capabilities for relay utilization
planning and post-pass assessment. This system would be
architected around a central database of relay information in
such a way as to provide a high level of “situational
awareness” of relay process state.

This paper will describe the architecture and implementation
of MaROS including overview of the information problem
space and implementation approach.

2. PROBLEM SPACE
The first phase of MaROS development supports the
strategic relay coordination process as well as post-pass
assessment. The primary day-to-day operational users of
the system are the lander and orbiter teams; however, multi-
mission planning and management are also expected to
derive value from the system.

Primary driving requirements include the following:

 1

- The system must provide users with the

mechanisms to identify relay opportunities based
on geometric view periods between spacecraft in
the relay network. Lander and orbiter teams need
to be able to negotiate pass utilization in a dynamic
fashion over the course of a monthly relay process.

- The system must calculate predictions of uplink
and downlink data “latencies.” Uplink latencies
represent points of time before which the lander
team needs to provide an uplink product to the
orbiter team for delivery to the orbiter on the
desired overflight pass. Downlink latencies are
predictions of the times that the first and last bits of
data from a pass will be made available to the
lander ground data system for processing.

- The system must identify conflicts between pass

utilization requests by lander teams for and the
corresponding acknowledgements by orbiter teams.

- The system must report as-flown results of

overflights (relay passes) and compare these to any
predicts (data volumes, gains, latencies, etc.).

- The system must provide a visualization of the

relay data picture so that the relay “situation” is
clearly understood by everyone involved in the
relay coordination process. Note that nearly all
data are time-based and thus a timeline is a useful
way to visualize this data.

- The system must track and report all modifications

of the data set.

This process involves several stages:

- Submission of system constant parameters such as
Ground Data System (GDS) uplink and downlink
processing times,

- Submission of light time data,
- Submission of orbital geometries,
- Submission of formal requests from the lander

team to the orbiter team,
- Submission of acknowledgements by the orbiter

team,
- Submission of post-pass analysis data including

pass volumes and performance profiles.

These data types will be described in greater detail in the
following section.

Relay Coordination Information Space

MaROS must ingest, persist and calculate a range of data
types to provide an accurate correlated picture of relay state.
This information is a primary driver for the resulting

information architecture, particularly relational object and
database structures.

In this first phase of development, all data interactions with
MaROS are completely executable using only file-based
transactions. MaROS must integrate with several legacy
ground data systems, and building around a file-based
interface minimizes the impact of integration with these
legacy systems. Input and output formats include
Extensible Markup Language (XML) [11], Comma
Separated Value (CSV) and some legacy text formats.
Future phases of the service will likely include update of
data by graphical user interface and direct service calls.

The following describes the types of information managed
by the system:

Light Time Data

Light time data are a series of calculations of the time it
takes light to travel to Mars and back at any given moment.
These times change as the Earth and Mars move closer to
and farther from each other over the course of their orbits.
It is provided via a legacy text-based file format and is
utilized in the calculation of data transfer latencies between
Mars and Earth.

Lander View Period Geometries

Lander view period geometries represent potential relay
opportunities as such are fundamental to downstream
calculations and processes. The geometry includes
important data such as the start and end times of a view
period, the maximum elevation of the pass, and lander
orientation data. Based upon the available view period
geometries, lander teams identify the set of requests to make
on the orbiters.

Overflight Identifier

Overflight passes are identified with a descriptive, unique
identifier that helps users and system software correlate and
report information about the pass. The pass identifier is
built from concatenating with underscores the hailing craft
ID (e.g. ODY), the responding craft ID (e.g. MRA), year,
day of year and the pass number of that day. The current
operations style is such that the orbiter is always the hailing
craft, and so a pass ID might look like this:

ODY_MRA_2008_266_03

This ID would mean, “Odyssey hailing, MER-A
responding, year 2008, day of year 266, third pass of the
day.”

The overflight ID could be generated at the first point that
view periods are provided to the system. However, long-
range calculations of view period geometries are not
necessarily accurate, especially for low-orbit spacecraft such

 2

as the Mars Reconnaissance Orbiter that is affected by
atmospheric drag. The total number of passes per day and
the time ranges of those passes can vary greatly from the
initial calculations to the final set of passes. Therefore the
IDs are not generated until a later point in the process when
the lander team is prepared to begin requesting passes for
utilization.

Orbiter Events

Orbiter events are a set of time-based information relating to
a specific orbiter. These include time windows of Deep
Space Network (DSN) uplink and downlink antenna tracks,
“non-relay” periods when an orbiter is not capable of
performing relay, and changes in orbit number and
transmission data rates. This data is used in the calculation
of uplink and downlink latencies, the identification of
conflicts arising from requests during non-view periods, and
for display with other time-based data.

Ace Schedule

The Ace Schedule is a tabular set of data describing the
staffing profile of the relay Ace position. During nominal
operations, a relay Ace is required to ensure the delivery of
lander forward link data products to the orbiter. The
schedule data is used primarily by MaROS in the calculation
of the nominal uplink latency described below.

Overflight Summary

A primary output of the MaROS is the Overflight Summary
File (OSF). This summary describes the “state” of the relay
space, and the contents vary according to the phase of the
process and any filters applied to its’ download. Data in
this file includes geometric orbit times, latency calculations,
conflicts, requests, and acknowledgements. Lander and
orbiter teams typically use this data in the generation of
overflight requests and acknowledgements. The OSF is
provided in XML and CSV formats.

Orbiter Requests

The lander team’s desire to utilize a specific pass for relay is
expressed in the form of a “request” to the orbiter team.
Requests are typically generated from geometric data such
as that extracted from an OSF. Pass times are often adjusted
from geometric times to “mask” off the ends of the view
period when the orbiter is nearest the horizon. Lander teams
provide a number of additional parameters as part of a
request including lander-specific relay session configuration
parameters and surface craft orientation.

Once orbiter requests are submitted to the system they can
be extracted as part of an OSF and are also viewable via a
Graphical User Interface (GUI) timeline.

Overflight Acknowledgements

Once lander teams identify a set of passes for requests,
orbiter teams review the list and respond with a set of
“acknowledgements.” Nominally, acknowledgements
closely or exactly match requests, however there are times
when all or some part of a request cannot be implemented.
For example, an orbiter may not be able to transmit at the
requested data rate. Acknowledgements can be exported as
part of the OSF and are also viewable upon the timeline
GUI.

Uplink and Downlink Latencies

Important considerations for the use of a pass are the
forward and return (uplink and downlink) pass latencies.
One function of the MaROS is to calculate latencies in
response to data being provided to the system.

Uplink Latencies

Uplink latencies represent the time before which the lander
team needs to provide the forward link product for delivery
to the lander via and orbital relay pass. Multiple uplink
times are calculated for each pass to in support of “nominal”
operations as well as for off-nominal and emergency
situations. All uplink latency calculations incorporate the
availability of uplink DSN passes. The following uplink
latencies are calculated by MaROS:

- The “Nominal Uplink Time” represents the time by
which a lander team must provide the forward link
product with enough margin to not unduly impact
the orbiter team operations schedule. This time
takes into consideration staffing of the Ace role,
that person responsible for ensuring the delivery of
the uplink product to the relay spacecraft.

- The “Drop Dead Uplink” time includes the margin
for uplink processing but does not take into
account available ace staffing. This is typically
only referenced in off-nominal situations.

- The “Last Bit Uplink” time represents the last

possible time that the uplink product can be
delivered and have any chance of being completely
received by the relay spacecraft. This is typically
only referenced in emergency situations.

Downlink Latencies

Science teams are always eager to receive their science
products as quickly as possible. This drives the need for
ground data systems to process and deliver data products to
science as quickly as they can be made available. However,
with orbiters such as Odyssey, there is no trigger in the
ground data system to indicate that data delivery has begun
or has finished, and so lander teams rely upon a set of
predicted downlink latencies to drive data processing. The
following downlink latencies are calculated by MaROS:

 3

- The “First Bit Downlink Time” is the moment
when the first bit of a downlink pass is available in
the lander team’s telemetry database. At this point,
mission teams can being viewing streaming
telemetry values and get a first idea of the state of
the pass.

- The “Last Bit Downlink Time” is the point at
which all data has been received by the lander
team. This is typically the point at which science
products can be manufactured out of raw telemetry
data.

In the legacy system, the Odyssey mission team provides
latency calculations including the time that an uplink needs
to be provided to the orbiter team and the predicted first and
last bit times that telemetry data will be received on the
ground. With MaROS, latencies are calculated for all
orbiters using common algorithms.

One major challenge of MaROS implementation is the
maintenance of accurate latencies in spite of a highly
dynamic data set while at the same time minimizing time
spent in latency computation.

Planning Warnings

A planning warning describes a situation where use of a
given pass at a certain time could result in an eventual
conflict. Many planning warnings involve periods of time
where multiple spacecraft are in view of each other. For
example, if an orbiter is in view of two landers over the
same time period, both of those landers might request the
same overflight at the same time, a situation that the current
generation of relay orbiters cannot support. Planning
warnings can be identified as soon as a set of view periods
is provided to the system.

Conflicts

A “conflict”, unlike a warning, is identified to be a situation
that could result in the lander request not being capable of
completely executing. Some example conflicts include:

- The acknowledgement having data different from
the request, including hailing start and end times,
data rates and relay session configuration
parameters,

- Request times spanning a period where the lander
does not actually have visibility with the orbiter
(“non view periods”),

- Requests spanning times when the relay orbiter is
not available for relay, regardless of visibility
(“non-relay periods”), possibly driven by orbital
mission science activities or problems.

Conflicts represent situations that must be addressed by
lander and orbiter teams for the successful implementation
of relay. For this reason, end-users are notified of conflict
identification at the moment they are detected.

Scorecards

The scorecard is a “snapshot” of the state of the pass once it
is complete. The scorecard includes information such as the
total number of bits, frames and packets uplinked and
downlinked, the average transmitter power levels and the
windows of time when the DSN antenna was in lock with
the orbiter antenna. Both the lander team and the orbiter
team provide scorecards.

Overflight Performance Assessment

Performance assessments take the form of time-ordered sets
of data, or “profiles”, either of predictions or measurements
of any of a variety of overflight performance parameters.
These include information such as elevation angle,
transmission power, and frames received. These profiles are
typically plotted together on the same timeline to identify
issues with the pass.

Off-Nominal Relay

“Expect the unexpected” in the world of relay.

- An orbiter may suffer a failure that restricts or
prevents the use of relay for a period of time at any
point in the cycle. This may be represented by
data in the form of a “non-relay period” orbiter
event provided by the Orbiter team, which may
further submit an updated acknowledgement set to
“deny” previously requested passes over that time.

- Miscalculations or changes in orbiter trajectory
may invalidate previously published geometric
view periods. Lander view periods, requests and
acknowledgements will become misaligned and
data updates to “repair” the problem may be
submitted in any order.

Changes in relay may occur at any time during the process.
These drive the need for the system to handle publication of
data in nearly any order.

The Relay Coordination Process

In the first phase of MaROS deployment, relay coordination
involves the upload and download of a set of data files
containing the different types of information described
above. The following table lists the input and output files
managed by the service:

File Type Acronym Content
Light Time File LTF Light times to and from

 4

Earth and Mars
Orbiter Sequence
of Events File

OSOE DSN Antenna tracks,
transmission data rates,
system configuration
parameters

Lander Orbital
Propagation
Timing Geometry

LOPTG Geometric pass data

Overflight
Summary File

OSF Correlated report
summarizing information
published to MaROS
(Output)

Ace Schedule None Staffing schedule for
flight mission controllers
(“aces”)

Orbiter Request
File

ORF Lander desirements for
relay utilization

Overflight
Acknowledgement
File

OAF Orbiter team agreements.

Scorecard None Post-pass statistics
Overflight
Performance
Assessment File

OPAF Pass predict and actual
data

Table 1: Relay Coordination Files

These files are uploaded and/or downloaded over the course
of a monthly relay cycle. The following diagram loosely
depicts the coordination process through the execution of
the overflight:

Figure 1: Overflight Lifecycle

Configuration data and light time information can be
provided to the system long in advance of the overflight.
Light time data in particular can be calculated years in
advance of a pass.

The LOPTG, OSOE and Ace Schedules are provided to the
system in advance of pass utilization, allowing for early
identification of planning warnings and calculation of
latencies.

With key baseline data in place, lander teams may now start
the “short term” process by deciding upon a selection of
passes to request for utilization. Teams can request OSF
files containing geometric and timing information (such as
latencies) and in turn provide ORFs with the desired set of
relay passes identified.

Orbiter teams are notified as each ORF is submitted and
respond in turn with an OAF indicating whether the
specified requests are accepted, modified or denied. Major
differences between the requests and acknowledgements are
flagged as conflicts and conflict notifications are delivered
to subscribed orbiter and lander team members. At this
point, lander teams may continue “negotiating” pass
requests by submitting follow-up ORFs to the system and
the orbiter teams may respond with any number of OAFs.
Eventually lander and orbiter teams settle on a pass

 5

utilization schedule and the orbiter teams implement the
relay passes with the orbiter.

Once the pass is complete, lander and orbiter teams provide
Scorecards and other assessments (i.e. OPAF) of pass
performance.

The overall process latency is kept to a minimum by
automated notification of system updates to end-users. For
example, orbiter teams typically subscribe to notification of
lander pass requests.

Note that this diagram shows only one “nominal” process.
Different orbiter and lander teams could potentially provide
data in nearly any order to the system and at different rates.

2. ARCHITECTURE
Architecture Style

MaROS is architected in the style of a centralized database,
and presented as a “service” to end users and external
systems. This is in contrast with the legacy system
approach, which was essentially a set of point-to-point file
transfers supported by email-based notifications.

The centralized database style matches well to the
asynchronous interactions of lander and orbiter teams and
enables the desired accountability of information, as all the
information that needs to be accounted for is stored in the
same place [2].

Deployment

MaROS server components are deployed to institutionally
maintained hardware visible to the Jet Propulsion
Laboratory (JPL) flight operations network. This hardware
includes a set of standard software packages and support for
MySQL databases. The system provides and load balancing
and backup functions enabling MaROS to meet key
operational performance requirements such as a high level
of accessibility and minimal down times.

Database

The chosen approach to the persistent store is to use a
relational database, specifically MySQL. Relational
databases are used widely in industry and there is a general
level of familiarity and acceptance of them by JPL ground
data system teams. MySQL in particular has been used for
operational tasks for years and has shown a high degree of
reliability over that time.

Client Access to Data

Client systems require access to a broad set of data using
command line and web UI clients. Certain architectural

considerations must be addressed before data interfaces are
implemented.

First there is the question of whether or not to allow clients
direct access to the data as it is represented in tables. The
primary benefit of this approach is that users can take
advantage of the full expressiveness of the SQL syntax for
queries. However, once client applications are implemented
using data queried directly from tables, any changes to those
tables may impact clients in unexpected ways. This greatly
affects the ability of the database schema to evolve over
time, essentially exposing the schema as an external
interface.

Rather than expose the schema directly, the MaROS system
provides access to service requests that report data
according to pre-defined structures, with a limited set of
filters available to apply. Shared information is provided to
clients as structured “objects” often composed of data from
multiple relational tables (and at the same time hiding the
manner of that composition).

The next consideration is how to provide the service
interface to clients. One approach would be to implement a
client library and provide that library to clients. This is not
a desired approach as user software will always be
dependant upon including the library and this limits the
technologies that can utilize it (e.g. a Java library will
require a Java application to use it). Instead an
“implementation agnostic” approach is desired, preferably
one that has seen use elsewhere in the software industry.

Two broadly used “implementation agnostic” industry
approaches to external transactions are the use of SOAP
(Simple Object Access Protocol) and REST
(Representational State Transfer). SOAP is an XML based
W3C standard protocol used to transfer “objects” of
information from one point to another [3]. REST is a
pattern of use of http, where “resources” are published and
retrieved using basic http GET and POST [4].

SOAP is a relatively complex protocol and typically clients
require additional libraries to deal with it, and in some
prototyping performed demonstrated poor performance as
compared with the equivalent data transactions using REST.
On the other hand, using REST is largely a matter of
constructing URLs that map to the specific resources of
interest. Furthermore, REST is seeing growing use by JPL
systems.

For these reasons, REST is chosen as the method of
performing remote service transactions.

Layered View

With these basic considerations out of the way we construct
a layered view of the architecture and discuss the
components of the system.

 6

Figure 2: Application Architecture

At the highest level is the client layer. There are two types
of clients, web based and command-line. The goal is to
implement these clients as thin-layer as possible and defer
all data processing issues to the lower layer service. For the
command line client, this is relatively easy to achieve, as the
command line client is used for simple transactions such as
“publish 1 to n files” or “fetch the overflight summary from
time A to B”. On the other hand, the web GUI cannot be
implemented as independently of the information space as
the command line client, as a primary use of the GUI is to
provide visualization of the relay data space. For example,
field names on tables are hard-coded and mapped to fetched
parameter values.

The transaction layer handles the ReST service calls from
external clients. This relatively thin layer is exposed in the
architecture to minimize impact of the external interface
approach on future versions of the software. For example, if
at some later point the SOAP protocol was embraced, only
this layer would be impacted by the change.

Below the transaction layer is the “information service”
layer. This layer performs all of the business logic of the
service, including upload logic, latency and conflict
calculations, email notifications and output data
correlations. The remainder of the discussion will focus on
the functions of this layer.

At the very base of the architecture is a relational DBMS.
Data is stored in tables. The database provides short and
long term persistence for the system. As mentioned before,
no direct access to this layer is provided to external clients.

Security

Authentication and authorization is handled at the
transaction layer. User identity is validated using an

institutional Lightweight Directory Access Protocol (LDAP)
service [5]. User authorization to perform specific
transactions and access groups of data is handled by
maintaining a mapping of users and user groups to specific
mission sets and types of transactions. For example, one
user may be authorized to publish Phoenix orbiter event
files, and another may only be allowed “read only” view
access to specific mission data.

The original implementation of the security component was
written in PHP with the rest of the transaction interface,
however this implementation when integrated with the Java
added some unnecessary complexity to the application
structure.

2. IMPLEMENTATION
2.0 Overview

This section will review the components of the system
“bottom-up” to discuss primary functions, design and
implementation decisions.

2.1 Database Structures

A MySQL database provides persistent store of all data in
the first phase of implementation. The information space is
broken down into tables, with a table or set of tables
representing system objects.

All relay data is related to the source file it was provided
with. Derived data is related to the sources from which it
was derived. For example, when the ORF is generated it is
required to contain all of the source files that went into its
making. This includes “raw” data such as view period
geometries, requests and acknowledgements. But it also
includes derived data such as latencies and conflicts, and
those can be calculated from data that is not actually
included in the OSF. Therefore the sources of the
calculation generation need to be maintained in parallel with
the actual computations.

The following diagram generalizes data relations in the
schema:

 7

Figure 3: Generalized Relations

For most information types a single table is enough to
represent the object, including view periods, ace schedules
and requests. Each insert or update of an object record is
tracked with an entry in a corresponding source file or
manual update table to meet the requirement of tracking all
data modifications.

An additional relation is between calculated objects and
their sources. On the web GUI and in the OSF, calculated
latencies and conflicts need to be matched with the passes
they were calculated from. The overflight ID would appear
to be an easy way to relate the sources and the calculations.
However, in several cases the overflight ID is insufficient.
For example, latencies are calculated upon the submission
of view period data, however those view periods don’t have
the overflight ID generated yet. Another reason is that there
are multiple types of requests (tentative, proposed and
formal) sharing the same overflight ID but each with its own
associated set of latencies and conflicts.

The following diagram shows the relationships of planning
warnings and overflight conflicts to source object tables,
with some key parameters included:

Figure 4: Warnings and Conflicts Relations

Note that each conflict or warning has a pair of identifier
references, a “primary ID” and a “secondary ID”. This is
because each warning or conflict is calculated “pair-wise”.
Even if, say, three view period geometries overlap, it would
result in two warnings (one for each pair). Note also the
inclusion of an additional source file table. This allows the
service to map the warning or conflict back to the file of the
source without having to query the source object to look up
its source file.

2.2 Information Service

The information service layer handles all of the business
logic. It is responsible for managing the upload and
download of data to and from the service and for
calculations and notifications. Much of the job of the
service layer is to execute specific upload and download
logic upon request for publication and download of data.
This logic interacts with the database persistent store,
managing and encapsulating data as intermediary Java
objects.

This service layer is written in Java version 1.5.

Information Upload

The MaROS accepts the publication of a number of data file
types. When files are published to the system, upload logic
is executed specific to the input data type. Generally there
are two forms of data upload: “delete and replace” and
“insert and update”. For data types such as the light time
file and orbiter events file, data received via a new upload
file replaces data in the database over the same time range
and for the same set of orbiter and landers. For data types
such as requests and acknowledgements, existing records
with the same pass identification (i.e. same overflight ID) as
the input data are updated rather than replaced, as the new
data may not contain all of the parameters already present in
the database and it is desired that the existing parameters be
maintained unless explicitly cleared. For example, a request
in the database may contain a full set of data parameters,
while the new published data may only contain changes to
specific fields such as the orientation or hail times. The new
data upload will only affect the fields included in the input
file.

One important early consideration was to decide whether to
perform derived data calculations for latencies and conflicts
upon data publication or retrieval. Triggering calculations
upon retrieval would simplify the database architecture by
removing the need to track and store such values. However
it would introduce additional latency on the data retrieval
and with multiple users requesting data it increases the total
number of calculations. With calculations triggered upon
publish the results need to be stored in the database for later
retrieval. This minimizes the total amount of computations
performed and helps to minimize the latency of data
retrieval. For these reasons the MaROS system performs
calculations as data is published rather than retrieved.

Once data upload is complete, a set of triggers is executed to
perform calculations and deliver notifications. The
following diagram shows the process flow of the upload:

 8

Figure 5: Upload Process Flow

Information Download

The service layer performs extraction and correlation
functions in the download of the Overflight Summary File
(OSF) and in the delivery of relay information to the web
user interface in JSON format.

The download of the OSF is a special case as far as triggers
are concerned. A “formal” download, specified as an input
parameter to the service, triggers the generation of
overflight IDs over the time range of the requested file.

One important download function supporting download for
OSF and data for the web GUI is correlation of data to data
sources. This includes not only the mapping of data to the
providing source files, but also the mapping of derived
conflict and latency data to the related view periods and
requests.

Notifications

At the end of upload data processing, notifications are
published to alert end-users and systems that some form of
data transaction has been completed. Users subscribe to
notifications via the web UI.

In the first phase notifications consist of emails sent
subscribed users. They consist of any requests or
acknowledgements published to the system as well as any
conflicts detected.

Later versions of the service will provide notification via
Java Messaging Service (JMS). Within JPL, JMS servers
are widely available on the flight operations network to
drive ground systems automation functions.

2.3 REST Transaction Layer

The REST transaction layer handles http service requests,
performs user authentication and interfaces with the
information service layer for upload and download of data.
The transaction layer was originally written in Hypertext
Preprocessor (PHP) [7]. PHP is a lightweight web scripting
language that can be embedded into html, and there is use

and familiarity with the language by local ground data
systems.

The REST interfaces were built rapidly with PHP over the
course of the development cycle and were easy to update.
However, using PHP for the transaction layer and Java for
the service layer introduced some complexity and latencies
into the picture. The initial design had the PHP executing a
Java application with each REST call. This introduced the
latency of the Java virtual machine startup and shutdown
times. This latency was readily apparent from the web GUI,
where each fetch call to the service took an unreasonable
amount of seconds to execute. This end-to-end throughput
would turn out to be the primary quality concern of the first
phase.

One approach to mitigate this would be to keep a Java
process running full-time and create a socket interface
between the PHP and the Java. However this adds
additional, unnecessary complexity to the overall
application infrastructure. After review of some
alternatives, it was decided to instead migrate the
transaction layer to a Java Servlet [8] implementation,
simplifying and streamlining the overall infrastructure.
Once the Servlet was implemented and deployed, the
service request latency from the web GUI dropped from ~10
seconds to one second or less.

2.4 CommandLine Clients

Two command line clients are provided with the first phase
of development: a general file publisher and an Overflight
Summary File (OSF) downloader. These clients are written
in Python, a scripting language with very little structural
overhead. Python sees growing use by JPL ground data
system elements and is available as part of common flight
system third party software libraries. Command line clients
are intentionally very thin, with most script functionality
performing the mapping of command line inputs to REST
service transaction parameters.

2.5 Web UI Client

The phase 1 user interface focuses upon the visualization of
strategic and post-pass assessment data. Primary views
include timelines displaying relay events and correlated
summaries of pass state. The information service provides
data to the web GUI as Javascript Object Notation (JSON)
[9].

The GUI is written using FLEX, a language for the
development of web Flash applications. FLEX and Flash
bring a great deal of rich client functionality including
charts and dynamic sort-able tables. The choice enabled
rapid development of complex UI features, especially the
timeline charts.

The web UI in turn greatly aided in the rapid development
of the lower level system components. File updates and

 9

calculation results could be immediately verified by viewing

the data on a timeline or on a chart. Data alignment issues
are especially easy to identify using the timeline, verses, say
analysis of the contents of output summary files and
database records.

2. IMPLEMENTATION APPROACH
This section discusses the process of development in terms
of the order of components implemented and drivers for
these choices. As multiple developers were involved some
of this work was going on in parallel, however the nature of
the information domain and business logic created a number
of implementation dependencies.

One particular challenge in this first phase has been the
volatility of interface specifications (SISs), especially for
OSOE, OSF, ORF and OAF file types. All of these
specifications changed more than once, driven largely by
lessons learned from early integration and continued
evaluation with service end-users.

Core infrastructure components were implemented first.
These included the PHP server infrastructure and basic data
upload and download functions. Data functions were

integrated with the database according to an early,

incomplete version of the schema. Once the basic download
“fetch” functionality was complete and data made available
as a set of resources, work began upon the web user
interface, specifically the timeline pane. Having the
timeline available would greatly simplify “gross” data
validity checking especially to identify correct and incorrect
data overlaps. As each new data type was made available in
the database the timeline was updated to include the new
information.

The first data types implemented were the view period data
from the LOPTG and light time values from the LTF.
These were chosen in part because they are fundamental
constructs to the information architecture and for the
visualization of the domain, and also because the formats
would not be changing during the first phase, as there was
no plan to update the legacy information specification (SIS)
files for these data types. To provide this data to the
system, a prototype version of the upload script was
implemented, along with a simple download “fetch” script
to validate database content.

With lander view period data now available for upload and
download, work began on Planning Warnings and the
overall conflict infrastructure. The warning and conflict
identification code was implemented as a standalone set of

Figure 6: Timeline View

 10

classes, intentionally not tightly integrated with other upload
and download logic.

The next phase of data ingestion work included
implementation of Orbiter Events and Ace Schedules.
These provided immediate benefits for visualization and are
also used in the computation of pass latencies.

Next implementation began on orbiter requests (ORF),
acknowledgements (OAF) and the downloaded summary
file (OSF). One of the more challenging aspects of the
request implementation turned out to be the handling of
multiple types of requests (tentative, proposed, requested)
and acknowledgements (planned and implemented), as
desired by the end-user teams. The additional types added
complexity to the database architecture, upload and
download logic and the web visualization.

With a first cut of requests and acknowledgements now
available the conflict infrastructure was updated to include
the identification of Overflight Conflicts. These were
included on the timeline display in alignment with the
corresponding view periods and requests.

Also, at this point all of the data was now in place to begin
work on latency calculations. An initial set of “fake”
latencies was first provided to support timeline visualization
while the actual latency calculations were implemented.

Figure 6 shows the timeline with most data types present.
Figure 7 shows a close-up of the view period with an
associated request, and acknowledgement and latencies.

Figure 7: View Period Display

The Scorecard and OPAF were the last input data types to
be implemented. Once these were available to the web
GUI, charts were developed to visualize the pass
performance data.

The last major piece of functionality implemented was to
support notifications, including a web UI interface for the

selection of desired notification and an event reaction
mechanism in the service.

As more and more data was provided to the timeline, the
inherent latency of the PHP/Java structure became more and
more apparent. At this point it was decided to update to a
Java Restlet, and with the update saw an order of magnitude
performance increase.

2. CONCLUSIONS
Products Developed

The first phase of development involved the production of
web components, command line scripts and core service
applications. For this phase, command line scripts provide
the interfaces for strategic planning, while the web GUI is
provided to meet system visualization and analysis
requirements. The core services perform all transaction
management, business logic and data management
functions.

Rapid development of the MaROS is a challenge that has
driven some technical decisions that we look to address in
the ensuing development phases.

Development Lessons Learned

Some lessons learned from our development include:

• Besides meeting operational analysis retirements,
the visualization client has been critical for rapid
development. For example, the confirmation that
view periods, requests and acknowledgements
align is accomplished with a click of a button and a
scan at a screen verses laborious comparisons of
data file output. The timeline UI has been
especially valuable during integration in the
resolution of issues, particularly for problems with
calculated data such as conflicts and latencies.

• The PHP service did remain easy to maintain
through many modifications over the course of
development. However, the additional interfaces
to work with the Java add complexity and latency
and so the transaction layer was re-implemented as
a Java Servlet, seeing and order of magnitude
improvement in throughput performance.

• Inadequate fetch throughput supporting web GUI
queries is the primary outstanding quality concern.
Ongoing efforts will address this with database
table indexing and an overall simplification of the
service application architecture with the migration
from the PHP and the removal of the Java
application startup and shutdown latencies.

Final Words

 11

The first phase of the implementation of the MaROS has
been a challenging rapid development endeavor. However
the architectural choices made and the decision to develop
visualization interfaces from the start enabled the team to
implement priority phase 1 requirements with the time and
staffing provided the task.

REFERENCES
[1] Daniel Allard, Charles Edwards, “Development of a Relay

Performance Tool for the Mars Network,” 2009 IEEE
Aerospace Conference, March 7-14, 2009.

[2] Hohpe and Woolf, Enterprise Integration Patterns:
Designing, Building and Deploying Messaging Solutions,
2004 Addison-Wesley

[3] http://www.w3.org/TR/soap/

[4] http://www.infoq.com/articles/rest-introduction

[5]
http://www.computer.org/portal/web/csdl/doi/10.1109/MI
C.2004.44

[6] http://onflash.org/ted/2008/01/what-is-flex.php

[7] http://www.php.net/

[8] http://java.sun.com/products/servlet/

[9] http://json.org

[10] OrbitalHub, http://orbitalhub.com/?cat=113

[11] http://www.w3.org/XML/

BIOGRAPHY
Dan Allard has worked as a software engineer at the Jet
Propulsion Laboratory for the past 19 years. He is the
software architect and a lead developer of the Mars

Operations Relay Service
(MaROS) under
development in support of
ongoing and next-generation
Mars Network missions.
Prior to this he was the
technical lead on the
development of the Relay
Data Engineering (RDE)
system provided for

accountability of relay performance over the Phoenix era.
Other recent work includes the development of a message-
based ground data system for the Mars Science Laboratory
as well as research and development of ontology-based
distributed communications in the space link and battlefield
environments.

Acknowledgements

The research described in this paper was carried out at the
Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics
and Space Administration.

 12

http://www.w3.org/TR/soap/
http://www.infoq.com/articles/rest-introduction
http://onflash.org/ted/2008/01/what-is-flex.php
http://www.php.net/
http://java.sun.com/products/servlet/
http://json.org/
http://orbitalhub.com/?cat=113
http://www.w3.org/XML/

 13

