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Abstract—Mars network relay operations involve the 
coordination of lander and orbiter teams through long-term 
and short-term planning, tactical changes and post-pass 
analysis. 1 2 Much of this coordination is managed through 
email traffic and point-to-point file data exchanges.  It is 
often difficult to construct a complete and accurate picture 
of the relay situation at any given moment, as there is no 
centralized store of correlated relay data.  
 
The Mars Relay Operations Service (MaROS) is being 
implemented to address the problem of relay coordination 
for current and next-generation relay missions.  The service 
is provided for the purpose of coordinating communications 
sessions between landed spacecraft assets and orbiting 
spacecraft assets at Mars. The service centralizes a set of 
functions previously distributed across multiple spacecraft 
operations teams, and as such greatly improves visibility 
into the end-to-end strategic coordination process. Most of 
the process revolves around the scheduling of 
communications sessions between the spacecraft during 
periods of time when a landed asset on Mars is 
geometrically visible by an orbiting spacecraft.  These 
“relay” sessions are used to transfer data both to and from 
the landed asset via the orbiting asset on behalf of Earth-
based spacecraft operators. 
 
This paper will discuss the relay coordination problem 
space, overview the architecture and design selected to meet 
system requirements, and describe the first phase of system 
implementation.  
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1. INTRODUCTION 
 
Modern Mars surface missions rely primarily upon relay 
orbiters to provide delivery of uplink commands and 

1978-1-4244-3888-4/10/$25.00 ©2010 IEEE. 
2 IEEEAC paper #1510, Version 1, Updated November 1, 2010 

sequences as well as downlink of science and engineering 
data products. Martian relay first saw use by the Mars 
Exploration Rover (MER) missions, utilizing the Odyssey 
and Mars Global Surveyor (MGS) spacecraft as relay 
“providers” [10].  A primary driver for the use of relay is the 
scarce power availability of lander spacecraft and the high 
power cost of direct-to-earth (DTE) transmissions, verses 
the lower power cost of lander-to-orbiter relay and higher 
power capabilities of the orbiters.  To date over %98 percent 
of MER data has been delivered to Earth by relay, and 
Phoenix was completely reliant upon relay over the life of 
the mission.  Odyssey has so far carried the brunt of relay 
operations, however the Mars Reconnaissance Orbiter 
(MRO has joined the relay picture in support of Phoenix 
operations and more recently MER.  
 
Use of relay by the Phoenix mission exposed a number of 
deficiencies in the legacy process.  In particular it was 
challenging to make sense of the overall state of relay at any 
given moment in time.  The Relay Data Engineering (RDE) 
effort [1] was implemented to provide automated tracking of 
planning and pass performance data over the Phoenix 
mission era, however without additional significant 
upgrades to the planning system architecture it was difficult 
to complete the true “picture” of the relay state.   
 
Following the end of Phoenix it was decided that a new 
system would be implemented to provide core multi-
mission coordination capabilities for relay utilization 
planning and post-pass assessment.  This system would be 
architected around a central database of relay information in 
such a way as to provide a high level of “situational 
awareness” of relay process state.  
 
This paper will describe the architecture and implementation 
of MaROS including overview of the information problem 
space and implementation approach.   

2. PROBLEM SPACE 
The first phase of MaROS development supports the 
strategic relay coordination process as well as post-pass 
assessment.  The primary day-to-day operational users of 
the system are the lander and orbiter teams; however, multi-
mission planning and management are also expected to 
derive value from the system.   
 
Primary driving requirements include the following: 
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- The system must provide users with the 

mechanisms to identify relay opportunities based 
on geometric view periods between spacecraft in 
the relay network.  Lander and orbiter teams need 
to be able to negotiate pass utilization in a dynamic 
fashion over the course of a monthly relay process.   
 

- The system must calculate predictions of uplink 
and downlink data “latencies.”  Uplink latencies 
represent points of time before which the lander 
team needs to provide an uplink product to the 
orbiter team for delivery to the orbiter on the 
desired overflight pass.  Downlink latencies are 
predictions of the times that the first and last bits of 
data from a pass will be made available to the 
lander ground data system for processing. 

 
- The system must identify conflicts between pass 

utilization requests by lander teams for and the 
corresponding acknowledgements by orbiter teams.   

 
- The system must report as-flown results of 

overflights (relay passes) and compare these to any 
predicts (data volumes, gains, latencies, etc.).  

 
- The system must provide a visualization of the 

relay data picture so that the relay “situation” is 
clearly understood by everyone involved in the 
relay coordination process.  Note that nearly all 
data are time-based and thus a timeline is a useful 
way to visualize this data.  

 
- The system must track and report all modifications 

of the data set.  
 
This process involves several stages: 
 

- Submission of system constant parameters such as 
Ground Data System (GDS) uplink and downlink 
processing times, 

- Submission of light time data, 
- Submission of orbital geometries, 
- Submission of formal requests from the lander 

team to the orbiter team, 
- Submission of acknowledgements by the orbiter 

team, 
- Submission of post-pass analysis data including 

pass volumes and performance profiles.  
 
These data types will be described in greater detail in the 
following section.   
 
Relay Coordination Information Space 
 
MaROS must ingest, persist and calculate a range of data 
types to provide an accurate correlated picture of relay state. 
This information is a primary driver for the resulting 

information architecture, particularly relational object and 
database structures.   
  
In this first phase of development, all data interactions with 
MaROS are completely executable using only file-based 
transactions. MaROS must integrate with several legacy 
ground data systems, and building around a file-based 
interface minimizes the impact of integration with these 
legacy systems.  Input and output formats include 
Extensible Markup Language (XML) [11], Comma 
Separated Value (CSV) and some legacy text formats.  
Future phases of the service will likely include update of 
data by graphical user interface and direct service calls.   
 
The following describes the types of information managed 
by the system: 
 
Light Time Data 
 
Light time data are a series of calculations of the time it 
takes light to travel to Mars and back at any given moment. 
These times change as the Earth and Mars move closer to 
and farther from each other over the course of their orbits.  
It is provided via a legacy text-based file format and is 
utilized in the calculation of data transfer latencies between 
Mars and Earth.   
 
Lander View Period Geometries 
 
Lander view period geometries represent potential relay 
opportunities as such are fundamental to downstream 
calculations and processes. The geometry includes 
important  data such as the start and end times of a view 
period, the maximum elevation of the pass, and lander 
orientation data.  Based upon the available view period 
geometries, lander teams identify the set of requests to make 
on the orbiters. 
 
Overflight Identifier 
 
Overflight passes are identified with a descriptive, unique 
identifier that helps users and system software correlate and 
report information about the pass.  The pass identifier is 
built from concatenating with underscores the hailing craft 
ID (e.g. ODY), the responding craft ID (e.g. MRA), year, 
day of year and the pass number of that day. The current 
operations style is such that the orbiter is always the hailing 
craft, and so a pass ID might look like this: 
 
ODY_MRA_2008_266_03 
 
This ID would mean, “Odyssey hailing, MER-A 
responding, year 2008, day of year 266, third pass of the 
day.”   
 
The overflight ID could be generated at the first point that 
view periods are provided to the system.  However, long-
range calculations of view period geometries are not 
necessarily accurate, especially for low-orbit spacecraft such 
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as the Mars Reconnaissance Orbiter that is affected by 
atmospheric drag.  The total number of passes per day and 
the time ranges of those passes can vary greatly from the 
initial calculations to the final set of passes.  Therefore the 
IDs are not generated until a later point in the process when 
the lander team is prepared to begin requesting passes for 
utilization.    
 
Orbiter Events 
 
Orbiter events are a set of time-based information relating to 
a specific orbiter.  These include time windows of Deep 
Space Network (DSN) uplink and downlink antenna tracks, 
“non-relay” periods when an orbiter is not capable of 
performing relay, and changes in orbit number and 
transmission data rates.  This data is used in the calculation 
of uplink and downlink latencies, the identification of 
conflicts arising from requests during non-view periods, and 
for display with other time-based data.   
 
Ace Schedule 
 
The Ace Schedule is a tabular set of data describing the 
staffing profile of the relay Ace position.  During nominal 
operations, a relay Ace is required to ensure the delivery of 
lander forward link data products to the orbiter. The 
schedule data is used primarily by MaROS in the calculation 
of the nominal uplink latency described below.   
 
Overflight Summary 
 
A primary output of the MaROS is the Overflight Summary 
File (OSF).  This summary describes the “state” of the relay 
space, and the contents vary according to the phase of the 
process and any filters applied to its’ download.   Data in 
this file includes geometric orbit times, latency calculations, 
conflicts, requests, and acknowledgements.  Lander and 
orbiter teams typically use this data in the generation of 
overflight requests and acknowledgements.  The OSF is 
provided in XML and CSV formats.   
 
Orbiter Requests 
 
The lander team’s desire to utilize a specific pass for relay is 
expressed in the form of a “request” to the orbiter team.  
Requests are typically generated from geometric data such 
as that extracted from an OSF.  Pass times are often adjusted 
from geometric times to “mask” off the ends of the view 
period when the orbiter is nearest the horizon.  Lander teams 
provide a number of additional parameters as part of a 
request including lander-specific relay session configuration 
parameters and surface craft orientation.   
 
Once orbiter requests are submitted to the system they can 
be extracted as part of an OSF and are also viewable via a 
Graphical User Interface (GUI) timeline.   
 
Overflight Acknowledgements 
 

Once lander teams identify a set of passes for requests, 
orbiter teams review the list and respond with a set of 
“acknowledgements.”  Nominally, acknowledgements 
closely or exactly match requests, however there are times 
when all or some part of a request cannot be implemented.  
For example, an orbiter may not be able to transmit at the 
requested data rate.  Acknowledgements can be exported as 
part of the OSF and are also viewable upon the timeline 
GUI.    
 
Uplink and Downlink Latencies 
 
Important considerations for the use of a pass are the 
forward and return (uplink and downlink) pass latencies.  
One function of the MaROS is to calculate latencies in 
response to data being provided to the system.   
 
Uplink Latencies 
 
Uplink latencies represent the time before which the lander 
team needs to provide the forward link product for delivery 
to the lander via and orbital relay pass.  Multiple uplink 
times are calculated for each pass to in support of “nominal” 
operations as well as for off-nominal and emergency 
situations.  All uplink latency calculations incorporate the 
availability of uplink DSN passes.  The following uplink 
latencies are calculated by MaROS: 
 

- The “Nominal Uplink Time” represents the time by 
which a lander team must provide the forward link 
product with enough margin to not unduly impact 
the orbiter team operations schedule.  This time 
takes into consideration staffing of the Ace role, 
that person responsible for ensuring the delivery of 
the uplink product to the relay spacecraft. 
 

- The “Drop Dead Uplink” time includes the margin 
for uplink processing but does not take into 
account available ace staffing.  This is typically 
only referenced in off-nominal situations.   

 
- The “Last Bit Uplink” time represents the last 

possible time that the uplink product can be 
delivered and have any chance of being completely 
received by the relay spacecraft.  This is typically 
only referenced in emergency situations. 

 
Downlink Latencies 
 
Science teams are always eager to receive their science 
products as quickly as possible.  This drives the need for 
ground data systems to process and deliver data products to 
science as quickly as they can be made available.  However, 
with orbiters such as Odyssey, there is no trigger in the 
ground data system to indicate that data delivery has begun 
or has finished, and so lander teams rely upon a set of 
predicted downlink latencies to drive data processing.  The 
following downlink latencies are calculated by MaROS: 
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- The “First Bit Downlink Time” is the moment 
when the first bit of a downlink pass is available in 
the lander team’s telemetry database.  At this point, 
mission teams can being viewing streaming 
telemetry values and get a first idea of the state of 
the pass. 

- The “Last Bit Downlink Time” is the point at 
which all data has been received by the lander 
team.  This is typically the point at which science 
products can be manufactured out of raw telemetry 
data.   

In the legacy system, the Odyssey mission team provides 
latency calculations including the time that an uplink needs 
to be provided to the orbiter team and the predicted first and 
last bit times that telemetry data will be received on the 
ground.  With MaROS, latencies are calculated for all 
orbiters using common algorithms.     
 
One major challenge of MaROS implementation is the 
maintenance of accurate latencies in spite of a highly 
dynamic data set while at the same time minimizing time 
spent in latency computation.       

Planning Warnings 

A planning warning describes a situation where use of a 
given pass at a certain time could result in an eventual 
conflict.  Many planning warnings involve periods of time 
where multiple spacecraft are in view of each other.  For 
example, if an orbiter is in view of two landers over the 
same time period, both of those landers might request the 
same overflight at the same time, a situation that the current 
generation of relay orbiters cannot support.  Planning 
warnings can be identified as soon as a set of view periods 
is provided to the system.   

Conflicts 

A “conflict”, unlike a warning, is identified to be a situation 
that could result in the lander request not being capable of 
completely executing.  Some example conflicts include: 

- The acknowledgement having data different from 
the request, including hailing start and end times, 
data rates and relay session configuration 
parameters, 

- Request times spanning a period where the lander 
does not actually have visibility with the orbiter 
(“non view periods”), 

- Requests spanning times when the relay orbiter is 
not available for relay, regardless of visibility 
(“non-relay periods”), possibly driven by orbital 
mission science activities or problems. 

Conflicts represent situations that must be addressed by 
lander and orbiter teams for the successful implementation 
of relay.  For this reason, end-users are notified of conflict 
identification at the moment they are detected.   
 
Scorecards 
 
The scorecard is a “snapshot” of the state of the pass once it 
is complete.  The scorecard includes information such as the 
total number of bits, frames and packets uplinked and 
downlinked, the average transmitter power levels and the 
windows of time when the DSN antenna was in lock with 
the orbiter antenna.  Both the lander team and the orbiter 
team provide scorecards.     
 
Overflight Performance Assessment 
 
Performance assessments take the form of time-ordered sets 
of data, or “profiles”, either of predictions or measurements 
of any of a variety of overflight performance parameters.  
These include information such as elevation angle, 
transmission power, and frames received.  These profiles are 
typically plotted together on the same timeline to identify 
issues with the pass.   
 
Off-Nominal Relay 
 
“Expect the unexpected” in the world of relay.   
 

- An orbiter may suffer a failure that restricts or 
prevents the use of relay for a period of time at any 
point in the cycle.   This may be represented by 
data in the form of a “non-relay period” orbiter 
event provided by the Orbiter team, which may 
further submit an updated acknowledgement set to 
“deny” previously requested passes over that time. 
 

- Miscalculations or changes in orbiter trajectory 
may invalidate previously published geometric 
view periods.  Lander view periods, requests and 
acknowledgements will become misaligned and 
data updates to “repair” the problem may be 
submitted in any order.  

 
Changes in relay may occur at any time during the process.  
These drive the need for the system to handle publication of 
data in nearly any order.   
 
The Relay Coordination Process 
 
In the first phase of MaROS deployment, relay coordination 
involves the upload and download of a set of data files 
containing the different types of information described 
above.  The following table lists the input and output files 
managed by the service: 
 
 
File Type Acronym Content 
Light Time File LTF Light times to and from 
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Earth and Mars 
Orbiter Sequence 
of Events File 

OSOE DSN Antenna tracks, 
transmission data rates, 
system configuration 
parameters 

Lander Orbital 
Propagation 
Timing Geometry 

LOPTG Geometric pass data 

Overflight 
Summary File 

OSF Correlated report 
summarizing information 
published to MaROS 
(Output) 

Ace Schedule None Staffing schedule for 
flight mission controllers 
(“aces”) 

Orbiter Request 
File 

ORF Lander desirements for 
relay utilization 

Overflight 
Acknowledgement 
File 

OAF Orbiter team agreements. 

Scorecard None Post-pass statistics 
Overflight 
Performance 
Assessment File 

OPAF Pass predict and actual 
data 

 
Table 1: Relay Coordination Files 

 
These files are uploaded and/or downloaded over the course 
of a monthly relay cycle.  The following diagram loosely 
depicts the coordination process through the execution of 
the overflight: 
 

 
 

Figure 1: Overflight Lifecycle 
 

Configuration data and light time information can be 
provided to the system long in advance of the overflight. 
Light time data in particular can be calculated years in 
advance of a pass.   
 
The LOPTG, OSOE and Ace Schedules are provided to the 
system in advance of pass utilization, allowing for early 
identification of planning warnings and calculation of 
latencies.   
 
With key baseline data in place, lander teams may now start 
the “short term” process by deciding upon a selection of 
passes to request for utilization.  Teams can request OSF 
files containing geometric and timing information (such as 
latencies) and in turn provide ORFs with the desired set of 
relay passes identified.   
 
Orbiter teams are notified as each ORF is submitted and 
respond in turn with an OAF indicating whether the 
specified requests are accepted, modified or denied.  Major 
differences between the requests and acknowledgements are 
flagged as conflicts and conflict notifications are delivered 
to subscribed orbiter and lander team members.  At this 
point, lander teams may continue “negotiating” pass 
requests by submitting follow-up ORFs to the system and 
the orbiter teams may respond with any number of OAFs.  
Eventually lander and orbiter teams settle on a pass 
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utilization schedule and the orbiter teams implement the 
relay passes with the orbiter.   
 
Once the pass is complete, lander and orbiter teams provide 
Scorecards and other assessments (i.e. OPAF) of pass 
performance.   
 
The overall process latency is kept to a minimum by 
automated notification of system updates to end-users.  For 
example, orbiter teams typically subscribe to notification of 
lander pass requests.   
 
Note that this diagram shows only one “nominal” process.  
Different orbiter and lander teams could potentially provide 
data in nearly any order to the system and at different rates.   
 

2. ARCHITECTURE 
Architecture Style 

MaROS is architected in the style of a centralized database, 
and presented as a “service” to end users and external 
systems.  This is in contrast with the legacy system 
approach, which was essentially a set of point-to-point file 
transfers supported by email-based notifications.  

The centralized database style matches well to the 
asynchronous interactions of lander and orbiter teams and 
enables the desired accountability of information, as all the 
information that needs to be accounted for is stored in the 
same place [2].   

Deployment 

MaROS server components are deployed to institutionally 
maintained hardware visible to the Jet Propulsion 
Laboratory (JPL) flight operations network.  This hardware 
includes a set of standard software packages and support for 
MySQL databases.  The system provides and load balancing 
and backup functions enabling MaROS to meet key 
operational performance requirements such as a high level 
of accessibility and minimal down times.   

Database 

The chosen approach to the persistent store is to use a 
relational database, specifically MySQL.  Relational 
databases are used widely in industry and there is a general 
level of familiarity and acceptance of them by JPL ground 
data system teams. MySQL in particular has been used for 
operational tasks for years and has shown a high degree of 
reliability over that time.   

Client Access to Data 

Client systems require access to a broad set of data using 
command line and web UI clients.  Certain architectural 

considerations must be addressed before data interfaces are 
implemented.   

First there is the question of whether or not to allow clients 
direct access to the data as it is represented in tables.   The 
primary benefit of this approach is that users can take 
advantage of the full expressiveness of the SQL syntax for 
queries.  However, once client applications are implemented 
using data queried directly from tables, any changes to those 
tables may impact clients in unexpected ways.  This greatly 
affects the ability of the database schema to evolve over 
time, essentially exposing the schema as an external 
interface.    

Rather than expose the schema directly, the MaROS system 
provides access to service requests that report data 
according to pre-defined structures, with a limited set of 
filters available to apply.  Shared information is provided to 
clients as structured “objects” often composed of data from 
multiple relational tables (and at the same time hiding the 
manner of that composition). 

The next consideration is how to provide the service 
interface to clients.  One approach would be to implement a 
client library and provide that library to clients.  This is not 
a desired approach as user software will always be 
dependant upon including the library and this limits the 
technologies that can utilize it (e.g. a Java library will 
require a Java application to use it).  Instead an 
“implementation agnostic” approach is desired, preferably 
one that has seen use elsewhere in the software industry. 

Two broadly used “implementation agnostic” industry 
approaches to external transactions are the use of SOAP 
(Simple Object Access Protocol) and REST 
(Representational State Transfer).  SOAP is an XML based 
W3C standard protocol used to transfer “objects” of 
information from one point to another [3].  REST is a 
pattern of use of http, where “resources” are published and 
retrieved using basic http GET and POST [4].  

SOAP is a relatively complex protocol and typically clients 
require additional libraries to deal with it, and in some 
prototyping performed demonstrated poor performance as 
compared with the equivalent data transactions using REST.  
On the other hand, using REST is largely a matter of 
constructing URLs that map to the specific resources of 
interest.  Furthermore, REST is seeing growing use by JPL 
systems.   

For these reasons, REST is chosen as the method of 
performing remote service transactions.   

Layered View 

With these basic considerations out of the way we construct 
a layered view of the architecture and discuss the 
components of the system. 
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Figure 2: Application Architecture 

At the highest level is the client layer.  There are two types 
of clients, web based and command-line.  The goal is to 
implement these clients as thin-layer as possible and defer 
all data processing issues to the lower layer service.  For the 
command line client, this is relatively easy to achieve, as the 
command line client is used for simple transactions such as 
“publish 1 to n files” or “fetch the overflight summary from 
time A to B”. On the other hand, the web GUI cannot be 
implemented as independently of the information space as 
the command line client, as a primary use of the GUI is to 
provide visualization of the relay data space.  For example, 
field names on tables are hard-coded and mapped to fetched 
parameter values.   

The transaction layer handles the ReST service calls from 
external clients.  This relatively thin layer is exposed in the 
architecture to minimize impact of the external interface 
approach on future versions of the software.  For example, if 
at some later point the SOAP protocol was embraced, only 
this layer would be impacted by the change.   

Below the transaction layer is the “information service” 
layer.  This layer performs all of the business logic of the 
service, including upload logic, latency and conflict 
calculations, email notifications and output data 
correlations.  The remainder of the discussion will focus on 
the functions of this layer.   

At the very base of the architecture is a relational DBMS.  
Data is stored in tables.  The database provides short and 
long term persistence for the system.  As mentioned before, 
no direct access to this layer is provided to external clients.  

Security 

Authentication and authorization is handled at the 
transaction layer.  User identity is validated using an 

institutional Lightweight Directory Access Protocol (LDAP) 
service [5].  User authorization to perform specific 
transactions and access groups of data is handled by 
maintaining a mapping of users and user groups to specific 
mission sets and types of transactions.  For example, one 
user may be authorized to publish Phoenix orbiter event 
files, and another may only be allowed “read only” view 
access to specific mission data.    

The original implementation of the security component was 
written in PHP with the rest of the transaction interface, 
however this implementation when integrated with the Java 
added some unnecessary complexity to the application 
structure.    

2. IMPLEMENTATION 
2.0  Overview 

This section will review the components of the system 
“bottom-up” to discuss primary functions, design and 
implementation decisions.   

2.1 Database Structures 

A MySQL database provides persistent store of all data in 
the first phase of implementation. The information space is 
broken down into tables, with a table or set of tables 
representing system objects.   

All relay data is related to the source file it was provided 
with.  Derived data is related to the sources from which it 
was derived.  For example, when the ORF is generated it is 
required to contain all of the source files that went into its 
making.  This includes “raw” data such as view period 
geometries, requests and acknowledgements.  But it also 
includes derived data such as latencies and conflicts, and 
those can be calculated from data that is not actually 
included in the OSF.  Therefore the sources of the 
calculation generation need to be maintained in parallel with 
the actual computations.   

The following diagram generalizes data relations in the 
schema: 
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Figure 3: Generalized Relations 

For most information types a single table is enough to 
represent the object, including view periods, ace schedules 
and requests.  Each insert or update of an object record is 
tracked with an entry in a corresponding source file or 
manual update table to meet the requirement of tracking all 
data modifications.   

An additional relation is between calculated objects and 
their sources.  On the web GUI and in the OSF, calculated 
latencies and conflicts need to be matched with the passes 
they were calculated from.   The overflight ID would appear 
to be an easy way to relate the sources and the calculations.  
However, in several cases the overflight ID is insufficient.  
For example, latencies are calculated upon the submission 
of view period data, however those view periods don’t have 
the overflight ID generated yet.  Another reason is that there 
are multiple types of requests (tentative, proposed and 
formal) sharing the same overflight ID but each with its own 
associated set of latencies and conflicts. 

The following diagram shows the relationships of planning 
warnings and overflight conflicts to source object tables, 
with some key parameters included: 

 

Figure 4: Warnings and Conflicts Relations 

Note that each conflict or warning has a pair of identifier 
references, a “primary ID” and a “secondary ID”.   This is 
because each warning or conflict is calculated “pair-wise”.  
Even if, say, three view period geometries overlap, it would 
result in two warnings (one for each pair).  Note also the 
inclusion of an additional source file table.  This allows the 
service to map the warning or conflict back to the file of the 
source without having to query the source object to look up 
its source file.    

2.2  Information Service 

The information service layer handles all of the business 
logic.  It is responsible for managing the upload and 
download of data to and from the service and for 
calculations and notifications.  Much of the job of the 
service layer is to execute specific upload and download 
logic upon request for publication and download of data.  
This logic interacts with the database persistent store, 
managing and encapsulating data as intermediary Java 
objects.  

This service layer is written in Java version 1.5.  

Information Upload 

The MaROS accepts the publication of a number of data file 
types.   When files are published to the system, upload logic 
is executed specific to the input data type.  Generally there 
are two forms of data upload: “delete and replace” and 
“insert and update”.  For data types such as the light time 
file and orbiter events file, data received via a new upload 
file replaces data in the database over the same time range 
and for the same set of orbiter and landers.  For data types 
such as requests and acknowledgements, existing records 
with the same pass identification (i.e. same overflight ID) as 
the input data are updated rather than replaced, as the new 
data may not contain all of the parameters already present in 
the database and it is desired that the existing parameters be 
maintained unless explicitly cleared.  For example, a request 
in the database may contain a full set of data parameters, 
while the new published data may only contain changes to 
specific fields such as the orientation or hail times.  The new 
data upload will only affect the fields included in the input 
file.   

One important early consideration was to decide whether to 
perform derived data calculations for latencies and conflicts 
upon data publication or retrieval.  Triggering calculations 
upon retrieval would simplify the database architecture by 
removing the need to track and store such values.  However 
it would introduce additional latency on the data retrieval 
and with multiple users requesting data it increases the total 
number of calculations.  With calculations triggered upon 
publish the results need to be stored in the database for later 
retrieval.  This minimizes the total amount of computations 
performed and helps to minimize the latency of data 
retrieval.  For these reasons the MaROS system performs 
calculations as data is published rather than retrieved.   

Once data upload is complete, a set of triggers is executed to 
perform calculations and deliver notifications.  The 
following diagram shows the process flow of the upload: 
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Figure 5: Upload Process Flow 

Information Download 
 
The service layer performs extraction and correlation 
functions in the download of the Overflight Summary File 
(OSF) and in the delivery of relay information to the web 
user interface in JSON format.   
 
The download of the OSF is a special case as far as triggers 
are concerned.  A “formal” download, specified as an input 
parameter to the service, triggers the generation of 
overflight IDs over the time range of the requested file. 
 
One important download function supporting download for 
OSF and data for the web GUI is correlation of data to data 
sources.  This includes not only the mapping of data to the 
providing source files, but also the mapping of derived 
conflict and latency data to the related view periods and 
requests.    
 
Notifications 
 
At the end of upload data processing, notifications are 
published to alert end-users and systems that some form of 
data transaction has been completed.  Users subscribe to 
notifications via the web UI.   
 
In the first phase notifications consist of emails sent 
subscribed users.  They consist of any requests or 
acknowledgements published to the system as well as any 
conflicts detected.   
 
Later versions of the service will provide notification via 
Java Messaging Service (JMS).  Within JPL, JMS servers 
are widely available on the flight operations network to 
drive ground systems automation functions.   
 
2.3  REST Transaction Layer 

The REST transaction layer handles http service requests, 
performs user authentication and interfaces with the 
information service layer for upload and download of data.  
The transaction layer was originally written in Hypertext 
Preprocessor (PHP) [7].  PHP is a lightweight web scripting 
language that can be embedded into html, and there is use 

and familiarity with the language by local ground data 
systems.   

The REST interfaces were built rapidly with PHP over the 
course of the development cycle and were easy to update.  
However, using PHP for the transaction layer and Java for 
the service layer introduced some complexity and latencies 
into the picture.  The initial design had the PHP executing a 
Java application with each REST call.   This introduced the 
latency of the Java virtual machine startup and shutdown 
times.  This latency was readily apparent from the web GUI, 
where each fetch call to the service took an unreasonable 
amount of seconds to execute.  This end-to-end throughput 
would turn out to be the primary quality concern of the first 
phase.   

One approach to mitigate this would be to keep a Java 
process running full-time and create a socket interface 
between the PHP and the Java.  However this adds 
additional, unnecessary complexity to the overall 
application infrastructure.  After review of some 
alternatives, it was decided to instead migrate the 
transaction layer to a Java Servlet [8] implementation, 
simplifying and streamlining the overall infrastructure.  
Once the Servlet was implemented and deployed, the 
service request latency from the web GUI dropped from ~10 
seconds to one second or less.   

2.4  CommandLine Clients 

Two command line clients are provided with the first phase 
of development: a general file publisher and an Overflight 
Summary File (OSF) downloader.   These clients are written 
in Python, a scripting language with very little structural 
overhead.  Python sees growing use by JPL ground data 
system elements and is available as part of common flight 
system third party software libraries.  Command line clients 
are intentionally very thin, with most script functionality 
performing the mapping of command line inputs to REST 
service transaction parameters.   

2.5 Web UI Client 

The phase 1 user interface focuses upon the visualization of 
strategic and post-pass assessment data.  Primary views 
include timelines displaying relay events and correlated 
summaries of pass state. The information service provides 
data to the web GUI as Javascript Object Notation (JSON) 
[9].   

The GUI is written using FLEX, a language for the 
development of web Flash applications.  FLEX and Flash 
bring a great deal of rich client functionality including 
charts and dynamic sort-able tables.  The choice enabled 
rapid development of complex UI features, especially the 
timeline charts.  

The web UI in turn greatly aided in the rapid development 
of the lower level system components.  File updates and 
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calculation results could be immediately verified by viewing 

the data on a timeline or on a chart.  Data alignment issues 
are especially easy to identify using the timeline, verses, say 
analysis of the contents of output summary files and 
database records.  

 

2. IMPLEMENTATION APPROACH 
This section discusses the process of development in terms 
of the order of components implemented and drivers for 
these choices.  As multiple developers were involved some 
of this work was going on in parallel, however the nature of 
the information domain and business logic created a number 
of implementation dependencies.   

One particular challenge in this first phase has been the 
volatility of interface specifications (SISs), especially for 
OSOE, OSF, ORF and OAF file types.   All of these 
specifications changed more than once, driven largely by 
lessons learned from early integration and continued 
evaluation with service end-users.     

Core infrastructure components were implemented first.  
These included the PHP server infrastructure and basic data 
upload and download functions.  Data functions were 

integrated with the database according to an early, 

incomplete version of the schema.  Once the basic download 
“fetch” functionality was complete and data made available 
as a set of resources, work began upon the web user 
interface, specifically the timeline pane.  Having the 
timeline available would greatly simplify “gross” data 
validity checking especially to identify correct and incorrect 
data overlaps.  As each new data type was made available in 
the database the timeline was updated to include the new 
information.   

The first data types implemented were the view period data 
from the LOPTG and light time values from the LTF.  
These were chosen in part because they are fundamental 
constructs to the information architecture and for the 
visualization of the domain, and also because the formats 
would not be changing during the first phase, as there was 
no plan to update the legacy information specification (SIS) 
files for these data types.   To provide this data to the 
system, a prototype version of the upload script was 
implemented, along with a simple download “fetch” script 
to validate database content.     

With lander view period data now available for upload and 
download, work began on Planning Warnings and the 
overall conflict infrastructure.  The warning and conflict 
identification code was implemented as a standalone set of 

Figure 6: Timeline View 
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classes, intentionally not tightly integrated with other upload 
and download logic.   

The next phase of data ingestion work included 
implementation of Orbiter Events and Ace Schedules.  
These provided immediate benefits for visualization and are 
also used in the computation of pass latencies.    

Next implementation began on orbiter requests (ORF), 
acknowledgements (OAF) and the downloaded summary 
file (OSF).  One of the more challenging aspects of the 
request implementation turned out to be the handling of 
multiple types of requests (tentative, proposed, requested) 
and acknowledgements (planned and implemented), as 
desired by the end-user teams.  The additional types added 
complexity to the database architecture, upload and 
download logic and the web visualization.   

With a first cut of requests and acknowledgements now 
available the conflict infrastructure was updated to include 
the identification of Overflight Conflicts.  These were 
included on the timeline display in alignment with the 
corresponding view periods and requests.   

Also, at this point all of the data was now in place to begin 
work on latency calculations.  An initial set of “fake” 
latencies was first provided to support timeline visualization 
while the actual latency calculations were implemented.   

Figure 6 shows the timeline with most data types present.  
Figure 7 shows a close-up of the view period with an 
associated request, and acknowledgement and latencies. 

 

 

Figure 7: View Period Display 

The Scorecard and OPAF were the last input data types to 
be implemented.  Once these were available to the web 
GUI, charts were developed to visualize the pass 
performance data.   

The last major piece of functionality implemented was to 
support notifications, including a web UI interface for the 

selection of desired notification and an event reaction 
mechanism in the service.   

As more and more data was provided to the timeline, the 
inherent latency of the PHP/Java structure became more and 
more apparent.  At this point it was decided to update to a 
Java Restlet, and with the update saw an order of magnitude 
performance increase.   

2. CONCLUSIONS 
Products Developed 

The first phase of development involved the production of 
web components, command line scripts and core service 
applications.  For this phase, command line scripts provide 
the interfaces for strategic planning, while the web GUI is 
provided to meet system visualization and analysis 
requirements.   The core services perform all transaction 
management, business logic and data management 
functions.  

Rapid development of the MaROS is a challenge that has 
driven some technical decisions that we look to address in 
the ensuing development phases.  

Development Lessons Learned 

Some lessons learned from our development include: 

• Besides meeting operational analysis retirements, 
the visualization client has been critical for rapid 
development.  For example, the confirmation that 
view periods, requests and acknowledgements 
align is accomplished with a click of a button and a 
scan at a screen verses laborious comparisons of 
data file output.  The timeline UI has been 
especially valuable during integration in the 
resolution of issues, particularly for problems with 
calculated data such as conflicts and latencies.   

• The PHP service did remain easy to maintain 
through many modifications over the course of 
development.  However, the additional interfaces 
to work with the Java add complexity and latency 
and so the transaction layer was re-implemented as 
a Java Servlet, seeing and order of magnitude 
improvement in throughput performance.   

• Inadequate fetch throughput supporting web GUI 
queries is the primary outstanding quality concern. 
Ongoing efforts will address this with database 
table indexing and an overall simplification of the 
service application architecture with the migration 
from the PHP and the removal of the Java 
application startup and shutdown latencies.   

Final Words 
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The first phase of the implementation of the MaROS has 
been a challenging rapid development endeavor.  However 
the architectural choices made and the decision to develop 
visualization interfaces from the start enabled the team to 
implement priority phase 1 requirements with the time and 
staffing provided the task.   
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