

American Institute of Aeronautics and Astronautics

1

Request-Driven Schedule Automation for the
Deep Space Network

Mark D. Johnston*, Daniel Tran†, Belinda Arroyo‡, Jared Call§, and Marisol Mercado**
Jet Propulsion Laboratory – California Institute of Technology

4800 Oak Grove Dr., Pasadena CA 91109

The DSN Scheduling Engine (DSE) has been developed to increase the level of automated
scheduling support available to users of NASA’s Deep Space Network (DSN). We have
adopted a request-driven approach to DSN scheduling, in contrast to the activity-oriented
approach used up to now. Scheduling requests allow users to declaratively specify patterns
and conditions on their DSN service allocations, including timing, resource requirements,
gaps, overlaps, time linkages among services, repetition, priorities, and a wide range of addi-
tional factors and preferences. The DSE incorporates a model of the key constraints and
preferences of the DSN scheduling domain, along with algorithms to expand scheduling re-
quests into valid resource allocations, to resolve schedule conflicts, and to repair unsatisfied
requests. We use time-bounded systematic search with constraint relaxation to return
nearby solutions if exact ones cannot be found, where the relaxation options and order are
under user control. To explore the usability aspects of our approach we have developed a
graphical user interface incorporating some crucial features to make it easier to work with
complex scheduling requests. Among these are: progressive revelation of relevant detail,
immediate propagation and visual feedback from a user’s decisions, and a “meeting calen-
dar” metaphor for repeated patterns of requests. Even as a prototype, the DSE has been de-
ployed and adopted as the initial step in building the operational DSN schedule, thus repre-
senting an important initial validation of our overall approach. The DSE is a core element of
the DSN Service Scheduling Software (S3), a web-based collaborative scheduling system now
under development for deployment to all DSN users.

I. Introduction
NASA’s Deep Space Network (DSN) provides communications and other services for planetary exploration

missions as well as other missions beyond geostationary, supporting both NASA and international users. It also con-
stitutes a scientific observatory in its own right, conducting radar investigations of the moon and planets, in addition
to radio science and radio astronomy. The DSN comprises three antenna complexes in Goldstone, California; Ma-
drid, Spain; and Canberra, Australia. Each complex contains one 70m antenna and several 34m antennas, providing
S-, X-, and K-band up and downlink services. The distribution in longitude enables full sky coverage and generally
provides some overlap in spacecraft visibility between the complexes. A more detailed discussion of the DSN and
its capabilities can be found in Ref. 1.

The process of scheduling the DSN is complex and time-consuming. There is significantly more demand for
DSN services than can be handled by the available assets. There are numerous constraints on the assets and on the
timing of communications supports, due to spacecraft and ground operations rules and preferences. Most DSN users
require a firm schedule around which to build spacecraft command sequences, weeks to months in advance. Cur-
rently there are several distributed teams who work with missions and other users of the DSN to determine their
service needs, provide these as input to an initial draft schedule, then iterate among themselves and work with the
users to resolve conflicts and come up with an integrated schedule. This effort has a goal of a conflict-free schedule
by eight weeks ahead of the present, which is frequently hard to meet in practice. In addition to asset contention,

* Principal Scientist, Artificial Intelligence Group, Planning and Execution Systems Section.
† Member of Technical Staff, Artificial Intelligence Group, Planning and Execution Systems Section.
‡ Group Supervisor, Customer Integration Services Group, System Verification, Validation and Operations Section.
§ DSN Scheduler, Planning and Sequencing Systems Group, System Verification, Validation and Operations Section.
** DSN Scheduler, Customer Integration Services Group, System Verification, Validation and Operations Section.

American Institute of Aeronautics and Astronautics

2

many other factors such as upcoming launches (and their slips) contribute to the difficulty of building up an ex-
tended conflict-free schedule.

There have been various past efforts to increase the level of scheduling automation for the DSN. Currently, the
DSN scheduling process is centered around the Service Preparation Subsystem (SPS) which provides a central data-
base for schedules and for the auxiliary data needed by the DSN to operate the antennas and communications
equipment (e.g. viewperiods, sequence-of-events files). The TIGRAS program2 is used for schedule viewing and
editing, along with a number of other tools for generating specialized reports and graphics. The current effort to im-
prove scheduling automation is designated the Service Scheduling Subsystem, or S3, which will be integrated with
SPS. There are three primary features of S3 that are expected to improve the scheduling process:

1. Adopting a request-driven approach to scheduling (as contrasted with the current activity-oriented schedul-
ing);

2. Unifying the scheduling software and databases into a single integrated suite covering realtime out through
as much as several years into the future;

3. Development of a peer-to-peer collaboration environment for DSN users to view, edit, and negotiate
schedule changes and conflict resolutions.

The second and third of these areas are described in another presentation at this conference3. This paper focuses on
the first area and its ramifications. The request-driven paradigm shifts the emphasis from individual specific re-
source allocations to a scheduling request specification or “language”, and on the scheduling algorithms that work
with this specification to generate, maintain, and improve the schedule. In the following sections, we first provide
some background on the DSN scheduling problem and the existing scheduling tool suite (Section II), and on the
rationale for the request-driven approach taken by S3. We then describe the scheduling request specification (Section
III), which is how DSN users of S3 will describe their service requests to the system. These requests are processed
by the DSN Scheduling Engine (DSE, Section IV) to expand into tracking passes, integrate them into an overall
schedule, all the while seeking to minimize conflicts and request violations. A prototype graphical user interface has
been developed for creating and editing schedule requests, and for integrating them into schedules and minimizing
conflicts (Section V). This prototype GUI has been deployed for over a year, and has been adopted as the first step
in the DSN schedule generation process well in advance of full S3 system readiness. We conclude with an overall
summary and brief description of plans for future development (Section VI).

II. Automation of DSN Scheduling – Background
The driving factors towards increased automation of the DSN come from several directions. The expected in-

crease in the number of missions from NASA and international partners will put more and more pressure on the
available DSN resources, a trend which is expected to accelerate in the future. More missions are expected to have
higher data volumes and greater link complexities. At the same time, there is a strong desire to reduce operations
costs, while increasing reliability and continuing to provide 24h service coverage.

Increased automation support for DSN scheduling has a long history. LR-26 was a customizable heuristic sched-
uling system for the 26-meter antennas using Lagrangian relaxation and constraint satisfaction search techniques4.
Operation Mission Planner (OMP-26) used heuristic search to allocate 26-meter antennas to missions, and linear
programming to adjust track durations5, 6. The Demand Access Network Scheduler (DANS) included all antennas
and used a heuristic iterative repair approach7. Other investigations into aspects of DSN scheduling are described in
References 8, 9, 10, and 11.

The current DSN scheduling software project S3 is derived from a 2004 resource allocation process working
group that analyzed the DSN scheduling process and identified a key set of goals for implementation, listed in the
Introduction. One of these goals centers on the basic entities that drive the schedule. In the past, and currently, these
are the scheduled communications passes (tracks) or other individual activities that are placed on the schedule. All
of the software to create, manage, and report the DSN schedule are built around a representation of the schedule as a
collection of activities. The shift to a request-driven (sometimes called requirements-driven) approach is a funda-
mental shift in representation, adding an abstraction layer above tracks, such that the predominant control mecha-
nism of users over the schedule is via scheduling requests, rather than the individual scheduled activities. Note that it
is not anticipated that individual activities can be bypassed; indeed, all the basic capabilities of activity-oriented
scheduling are still required: users need to be able to edit individual activities, for reasons that may not be expressi-
ble in the form of scheduling requests. However, the net benefits of a request-driven approach outweigh those of
activity-oriented scheduling in several important ways:

American Institute of Aeronautics and Astronautics

3

• leveraged effort: one scheduling request can generate and be used to manage many scheduled activities,
and one change to a request can propagate to all activities derived from it; this can significantly reduce the
ongoing effort needed to generate the schedule and manage its changes

• automated continuous schedule validation: based on the request specification, the schedule can be continu-
ously monitored against constraints and preferences; this can help minimize the effort to ensure that sched-
ule changes, as they invariably occur, will not introduce undetected inconsistencies between requests and
activities

• traceability: all activities trace to scheduling requests that describe the purpose and intent of the generated
activities

The main disadvantage of a request-driven approach is that the request specification language is complex12. There
are many options and subtleties involved in describing the constraints and preferences on DSN activities, and a suf-
ficiently rich representation of these is necessarily large and complicated. Some of the problems that ensue are:

1) What appears at a high level to be a simple request is often much more involved when practical details are
considered, yet all of these details may be needed (even if rarely) to fully describe how and when a particu-
lar activity can be scheduled. Users do not want to be bombarded with requests for detail when using the
system, but neither will they accept that they cannot make use of all available options.

2) Many interdependent options can make it difficult to tell whether a request is feasible: the interactions of
time windows with other request parameters can all too easily lead to inconsistencies, which may not show
up until late in the scheduling process.

3) Failure to accurately represent the correct applicable flexibilities forces schedulers to use workarounds that
artificially limit flexibility, thus inhibiting user acceptance of the system. For example, if it is not possible
to represent that any one of several choices is acceptable, then the human scheduler must pick one, and so
the advantages of having the flexibility are lost.

These factors pose a major challenge to a request-driven approach, in that the effort of creating and managing
requests, and their consequent benefits in continuous validation of schedule, must be shown to be overall more bene-
ficial than an activity-oriented approach in order to gain user acceptance. In the following section we describe how
we have approached the problem of representing DSN scheduling requests, and a later section, how we have ad-
dressed the way that users can specify complex options.

III. DSN Scheduling Requests
DSN scheduling requests specify the services required and their associated constraints and preferences.

A. Services
Services include use of any of the available capabilities of the DSN, including uplink and downlink services,

Doppler and ranging (for spacecraft navigation), as well as more specialized capabilities. The details of a space-
craft's service specification depend on the onboard hardware and software (frequency band, encoding, etc.). Along
with other factors such as radiated power levels and distance from the Earth, these determine a set of acceptable an-
tennas and associated equipment (transmitters, receivers, etc.) that can be scheduled to satisfy the request. However,
these assets are not all equally desirable, and so there are preferred choices for antennas and equipment that also
need to be considered.

In addition to single antenna/single spacecraft communications, there are a variety of other DSN service types.
Some missions need the added sensitivity of more than one antenna a time, and so make use of arrayed downlinks
using two or more ground antennas. For navigation data, there are special scenarios (DDOR) involving alternating
the received signal between the spacecraft and a nearby quasar, over a baseline that extends over multiple com-
plexes. For Mars missions, there is a capability for a single antenna to communicate with several spacecraft at once
(called Multiple Spacecraft Per Aperture, or MSPA): while more than one at a time may be sending data to Earth,
only one may be uplinking.

B. Constraints
Constraints on DSN scheduling requests fall into several broad categories. The most important is timing: users

need a certain amount of communications contact time in order to download data and upload new command loads,
and for obtaining navigation data. How this time is to be allocated is subject to many options, including whether it
must be all in one interval or can be spread over several, and whether and how it is related to external events and to
spacecraft visibility. Table 1 lists a number of these factors.

American Institute of Aeronautics and Astronautics

4

A second category of constraint is that of relationships among contacts. In some cases, contacts need to be suffi-
ciently separated so that onboard data collection has time to accumulate data but not overfill onboard storage. In
other cases, there are command loss timers that are triggered if the time interval between contacts is too long, plac-
ing the spacecraft into safemode. During critical periods, it may be required to have continuous communications
from more than one antenna at once, so some passes are scheduled as backups for others.

A third category of constraint can be called “distribution” requirements. These cover some extended time span
and specify constraints on certain aspects of overall set of activities during that time. Examples include: a certain
proportion of 70m contacts; ensuring that navigation passes are spread out roughly evenly between the northern and
southern hemisphere complexes; ensure that not all contacts in a week are on the same antenna.

C. Preferences
In addition to constraints, there are numerous preferences that scheduling users have as to how their activities are

to be scheduled. Many would prefer additional time if it is available, while at the same time are able to reduce some
contact durations in order to resolve a contentious period on an antenna. There are preferences on gap durations,
whether tracks are split or continuous, for tracks to occur during day shift at a particular operations center, and so
on. While some of these preferences are implicit, some must be explicit and, if they apply, need to be specified as
part of the scheduling request.

D. Priority
Priority plays a significant role in DSN scheduling, but not the dominating role that it plays in some other sys-

tems13. Critical events (launches, surface landings, planetary orbit insertions) preempt other more routine activities.
Other than critical activities, missions generally have higher priorities during their prime (initial phases) than during
their later extended missions. However, higher priority does not automatically mean that resource allocations are
assured. Depending on their degree of flexibility, missions trade off and compromise in order to meet their own re-
quirements, while attempting to accommodate the requirements of others. As noted above, one of the key goals of S3
is to facilitate this process of collaborative scheduling.

E. Patterns of Requests
One characteristic of DSN scheduling is that, for most users, it is common to have repeated patterns of requests

over extended time intervals. Frequently these intervals correspond to explicit phases of the mission (cruise, ap-
proach, fly-by, orbital operations). These patterns can be quite involved, since they interleave communication and
navigation requirements. The presence of repeated patterns can be exploited in representing scheduling requests that
vary minimally or not at all over some time frame, as will be discussed further below.

Table 1. Timing constraints and preferences that can apply to a DSN scheduling request.

Constraint Description
reducible whether and by how much the requested time can be reduced to fit in an available opportunity
extensible whether and by how much the requested time can be increased to take advantage of available re-

sources
splittable whether the requested time must be provided in one unbroken track, or can be split into two or more

separate tracks
split duration if splittable, the minimum, maximum, and preferred durations of the split segments; the maximum

number of split segments
split segment over-
lap

if the split segments must overlap each other, the minimum, maximum, and preferred duration of the
overlaps

split segment gaps if the split segments must be separated, the minimum, maximum, and preferred duration of the gaps
viewperiods periods of visibility of a spacecraft from a ground station, possibly constrained to special limits

(rise/set, other elevation limits)
events general time intervals that constrain when tracks may be allocated; examples include:

• day of week, time of day (for accommodating shift schedules, daylight, ...)
• orbit/trajectory events (occultations, maneuvers, surface object direct view to Earth, ...)
Different event intervals may be combined (with optional inversion), and applied to a request.

American Institute of Aeronautics and Astronautics

5

IV. DSN Scheduling Engine
The DSN Scheduling Engine (DSE) is the component of S3 responsible for:
• expanding scheduling requests into individual communications passes by allocating time and resources to

each
• identifying conflicts in the schedule, such as contention for resources and any violations of DSN scheduling

rules, and attempting to find conflict-free allocations
• checking scheduling requests for satisfaction, and attempting to find satisfying solutions
• identify scheduling opportunities, based on resource availability and other criteria, or meeting scheduling

request specifications
• searching for and implementing opportunities for improving schedule quality

Schedule conflicts are based only on the activity content of the schedule, not on any correspondence to schedule
requests, and indicate either a resource overload (e.g. too many activities scheduled on the available resources) or
some other violation of a schedule feasibility rule (see Table 2a). In contrast, violations (Table 2b) are associated
with scheduling requests and with their tracks, and indicate that in some way the request is not being satisfied. Con-
flicts and violations are permitted to exist in the schedule – both are identified by the scheduling engine, recorded in

Table 2a. Types of conflicts that can occur in the schedule. Conflicts depend only on the activity
content of the schedule.

Conflict Type Description
Spacecraft Multiple tracks of the same mission occur at the same time, and are not of a type where

this is expected (e.g. arrayed tracks)
Beginning of Track
(BOT)

Multiple tracks start with in 15 minutes of Goldstone and 30 minutes for Canberra and
Madrid.

Start of Activity (SOA) Multiple tracks start with in 15 minutes of Goldstone and 30 minutes for Canberra and
Madrid.

Antenna (Facility) Multiple non-MSPA tracks use the same antenna at one time
Equipment Multiple non-MSPA tracks use the same equipment at one time
Viewperiod The spacecraft/user is out of view of the track antenna
Setup The pre-track setup time does not match the expected setup time
Teardown The post-track teardown time does not match the expected teardown time
RFI Two or more tracks are scheduled in violation of radio frequency interference (RFI) rules
MSPA Two or more tracks are scheduled in violation of multiple spacecraft per aperture

(MSPA) rules
Array The track start and end times of arrayed tracks are not the same

Table 2b. Types of request violations that can occur in the schedule.

Violation Type Description
Track quantization A track start or end time violates the request quantization constraint. For example, re-

quests can specify that tracks start or end only at 5 minute intervals boundaries.
Track separation If the request is splittable, the separation time between two tracks violates the split seg-

ment overlap or split segment gap constraint.
Track duration If the request is splittable, a track duration violates the request split duration constraint.
Service specification A track violates the request service specification, i.e. the antenna or equipment allocated

does not match the requested service.
Total track duration The total track duration does not meet the requested duration
Number of tracks The number of tracks for the request violates the maximum. For a non-splittable track,

this limit is 1; for a splittable track, the limit may be explicitly specified.
Track temporal extent A track start or end time falls outside the scheduling request’s time interval.
Event reference A track time interval violates the intersection of the event time intervals referenced by the

scheduling request.
Viewperiod reference A track time interval falls outside the object’s visibility window from the scheduled an-

tenna
Request timing link A track time interval violates the scheduling request’s temporal constraint link to other

requests.

American Institute of Aeronautics and Astronautics

7

• no unexpected schedule changes: all changes to schedule must be requested, explicitly or implicitly, and the
same sequence of operations on the same data must generate the same schedule

• even for infeasible scheduling requests, attempt to return something “reasonable” in response, possibly by
relaxing aspects of the request; along with a diagnosis of the sources of infeasibility, this provides a starting
point for users to handle the problem

In contrast to this mode of operation is an auto-generation phase of the scheduling process where the goal is to
integrate scheduling requests from all users. The result is an initial schedule with minimal conflicts and violations to
serve as a starting point for collaborative conflict resolution. In this mode, maintaining schedule stability is not an
objective, and a much broader range of changes to the scheduled activities is allowable, provided that overall con-
flicts are reduced. The DSE supports both modes of operation with a portfolio of algorithms that can be invoked by
the S3 system for auto-generation, or by end users when working on specific conflicted portions of the schedule. See
Ref. 15 for additional details on the initial layout, repair, and optimize algorithms.

1. Expanding requests to tracks – initial layout
The initial layout algorithm is executed to initially generate tracks to satisfy the specifications of the request, or

to remove any existing tracks and regenerate them around whatever other activities already exist in the schedule.
The algorithm consists of a series of systematic search stages over the legal track intervals, successively relaxing
constraints each stage if no solution is found. The systematic search algorithm is a depth-first search algorithm over
the space of available antenna start times and durations for each scheduling request. The set of legal antennas for
scheduling is defined in the request service specification, while the search space of legal start times is defined by the
request quantization value. We are employing four relaxation strategies. These strategies are outlined below, with
each relaxation strategy building upon the previous.

• temporal linkage – the explicit temporal relationships between tracks in the same or different requests
• track separation – between two track segments from a splittable request
• event intervals – the time intervals (exclusive of viewperiods) that constrain the timing of the track
• spacecraft, antenna, and equipment – removing these conflicts from consideration (Table 2a) leaves only

the viewperiod temporal constraint
These relaxation stages allow for tracks to be generated even though the scheduling request may be infeasible (in
isolation or within the context of the current schedule), and provides the user a starting point to make corrective
changes. These changes may range from modifying the scheduling request to introduce more tracking flexibility, to
contacting other mission schedulers to negotiate different request time opportunities.

2. Schedule repair
Once an initial schedule has been generated, conflicts and/or violations may exist in the schedule due to the re-

laxation of constraints. The DSE provides a basic repair algorithm to reduce conflicts or violations. The algorithm
will identify the contributing tracks for each conflict or violation, and run the systematic search algorithm on the
request. If a solution is found, the new tracks are accepted. If no solution is found, the original tracks are not modi-
fied. Note that conflicts and violations are independent, so there are separate versions provided through the user in-
terface for users to invoke. This algorithm is focused on only modifying requirements that are directly contributing
to the conflict or violation in order to minimize the impact on the other parts of the schedule. However, in order to
resolve certain classes of conflicts, multiple tracks not directly associated with the conflict may need to be modified.
A strategy that addresses these types of conflicts is discussed in the auto-generation section.

3. Auto-generation – merge- and re-layout
One of the features of the initial layout algorithm is expanding requests that avoid other tracks, along with the

progressive relaxing of constraints to find a solution. However, as the schedule becomes more congested with tracks,
relaxing these constraints introduces more request violations. To address this issue, we provide another strategy that
reduces both the number of conflicts and violations: merge- and re-layout.

During the merge-layout phase, the scheduling requests are partitioned into individual mission-specific requests.
For each mission, the requests are expanded using the initial layout strategy on an empty schedule. The results for
each mission are then merged into one schedule. Because the requests are expanded in an empty schedule, there are
more opportunities to schedule the tracks so the number of violations is reduced. However, without the interaction
with other missions’ tracks, the number of conflicts increases in the merged schedule. This is reduced in the next
phase: re-layout.

The re-layout phase is an iterative step that generates a new schedule based on the existing tracks in the sched-
ule. The algorithm loops through each track in the schedule and stochastically updates any or all of the parameters
including start time, duration, antenna, etc. Each new schedule that is generated attempts to reduce the number of

American Institute of Aeronautics and Astronautics

9

V. User Interface
To investigate the capability of the request specification language outlined above, we have developed a path-

finder graphical user interface (UI) and web server application. The user interface incorporates all of the major fea-
tures of scheduling requests, including viewperiod and event management, and scheduling request creation and edit-
ing with all of the features noted in Table 1. This UI acts as a DSE client for expanding schedule requests to tracks,
identifying and resolving conflicts, and identifying and resolving request violations. Multiple users can work with
the system at once, each on their own workstation with a locally installed copy of the GUI client (via Java webstart),
which stores a local copy of all the data needed for scheduling including viewperiod files, event definitions, schedul-
ing requests, and schedules. All changes to these data items are mirrored on a REST-based web application, which
also ensures that assigned identifiers are globally unique. Users can then share data items via a command to the web
application that transfers over all data associated with a given schedule, including the scheduling requests and any
data needed to properly interpret them. This enables users to work on different missions completely independently,
yet integrate their requests into a single schedule at the appropriate time. Note that this architecture differs from that
of S3, which is based on a central database and web browser-based client.

A. UI Features
The pathfinder UI was intended to explore and assess several aspects of user interaction with the scheduler:

1. Progressive revelation of detail
Scheduling requests can potentially contain many adjustable parameters, often with interrelationships among

them. The GUI uses an animation technique to fade in or out relevant parameter choices, as soon as a dependent
choice is made. For example, if a request is for tracking time that is not splittable, then none of the parameters that
control splitting are visible on the screen (split minimum duration, maximum number of segments, whether split
segments must overlap or be separated, etc.) However, as soon as the user selects the splittable option, a subset of
these parameters will fade in. This is chained several levels deep, e.g. overlap parameters settings are not shown
unless the user specifies that the split segments must overlap.

2. Immediate display of implications
Another aspect of the potential complexity of scheduling requests is that it is not difficult to overspecify a re-

quest, thus making it impossible to satisfy. For example, the duration of scheduling request may not fit within any
schedulable time interval allowed by the intersection of viewperiods and timing event intervals. Rather than wait for
later schedule generation, the pathfinder GUI application adopts a strategy of 1) propagating all known information
as far as possible, with the goal of early diagnosis of any problems, and 2) visually displaying as much of this
propagated information as possible. For example, as the user edits a scheduling request, the system dynamically
calculates the intersections of viewperiods and all timing event windows, displays the result for all allowable anten-
nas that could potentially satisfy a request, and then checks to see whether the total requested time is available, as
well as whether the time requested for any segment is consistent with the request's timing parameters. The results
are displayed as a “preview” Gantt view along side the request parameters.

3. The “meeting calendar” metaphor for repeated patterns of requests
As noted above, many users formulate their requests as a repeated pattern, with variations. We adopted the

metaphor of a meeting calendar program, with which most users are familiar, e.g. in which a meeting or appoint-
ment is created and then designated as “recurrent”. For DSN scheduling, the repetition intervals are sometimes along
typical calendar lines (e.g. daily, weekly), but often are based on trajectory or celestial events (e.g. every visibility
interval, or opportunity for a Mars rover to reach earth with its antenna). Additional requirements include the option
to place time linkages between successive repetitions, e.g. to prevent two neighboring passes from being too close
together.

Once scheduling requests have been created, they may be combined to generate a schedule by invoking the DSE

to expand them into explicit tracks. The DSE generates and returns the scheduled activities, identifies conflicts, and
checks that all requests are satisfied. The user may invoke a conflict repair strategy, or requirement violation repair
strategy, based on the heuristics described above. The GUI allows the user to view the schedule, identify conflicts
(shown as red in the Gantt chart view), and see any unsatisfied requests (indicated by a red “” in the request list on
the left). Individual schedule items can be edited, and requests may be locked (fixed in place) and will not be subse-
quently changed by the DSE. An example of the schedule view is shown in Figure 4.

American Institute of Aeronautics and Astronautics

11

availability service to a large number of simultaneous users. Even as an early prototype, the DSE has been success-
fully adopted as the initial step of the DSN scheduling process.

Future work includes the continued development of the scheduling algorithms, integration of the DSE with the
browser-based S3 collaboration infrastructure3, and deployment of the system into DSN operations. In addition, there
remain a number of areas of further research and development that are under consideration:

• forecasting – the DSE scheduling model is based on the explicit expansion of scheduling requests to tracks,
taking into account fine-grained constraints and preferences as they affect the resulting tracks (e.g. viewpe-
riods, constraining event intervals, etc.) This is ideal for near- to mid-term scheduling, but also has applica-
tion to long-range resource planning as well, in that detailed contention scenarios can be explored and as-
sessed. The major additional capability that would be useful in this long-range planning context is a more
integrated capability to model uncertain events.

• multi-objective scheduling – like many scheduling problem domains, DSN scheduling is full of tradeoffs
among competing objectives, ranging from individual mission users, to system-level utilization and robust-
ness objectives. Multi-objective optimization has been demonstrated in other domains16, 17 to provide pow-
erful insights into optimal tradeoffs. There is every reason to believe this would be useful for DSN schedul-
ers as well.

• cross-network scheduling – NASA has recommended18 integrating access to the capabilities provided by its
three major networks: DSN, the Space Network (SN), and the Near Earth Network (NEN). For those users
who require services from two or all three of these networks, such integration would be a source of signifi-
cantly improved efficiency and cost savings. S3 has the potential to serve as a common scheduling platform
in this regard – it is interesting to note that nowhere on the scheduling request editor main UI is there any
indication that the user is working with the DSN; this is apparent only when drilling down into the detailed
viewperiods, event intervals, and service definitions.

Acknowledgments
The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of

Technology, under a contract with the National Aeronautics and Space Administration.

References
 1Imbriale, W. A. Large Antennas of the Deep Space Network: Wiley, 2003.
 2Borden, C., Yang, Y., and Fox, G. “Planning and Scheduling User Services for NASA's Deep Space Network,” 1997
International Conference on Planning and Scheduling for Space Exploration and Science. 1997.
 3Carruth, J., Johnston, M. D., Coffman, A., Wallace, M., Arroyo, B., and Malhotra, S. “A Collaborative Scheduling
Environment for NASA's Deep Space Network,” SpaceOps 2010. AIAA, Huntsville, AL, 2010.
 4Bell, C. “Scheduling Deep Space Network Data Transmissions: A Lagrangian Relaxation Approach.” Jet Propulsion
Laboratory, 1992.
 5Biefeld, E., and Cooper, L. “Bottleneck identification using process chronologies,” Proceedings IJCAI. Sydney, Australia,
1991, pp. 218–224.
 6Kan, E. J., Rosas, J., and Vu, Q. “Operations Mission Planner - 26M User Guide Modified 1.0.” Jet Propulsion Laboratory,
1996.
 7Chien, S., Lam, R., and Vu, Q. “Resource Scheduling for a Network of Communications Antennas,” IEEE Aerospace
Conference. Aspen, CO, 1997.
 8Fisher, F., Chien, S., Paal, L., Law, E., Golshan, N., and Stockett, M. “An automated deep space communications station,”
Proceedings IEEE Aerospace Conference. Snowmass at Aspen, CO 1998.
 9Clement, B. J., and Johnston, M. D. “The Deep Space Network Scheduling Problem,” Innovative Applications of Artificial
Intelligence (IAAI). AAAI Press, Pittsburgh, PA, 2005.
 10Johnston, M. D., and Clement, B. J. “Automating Deep Space Network Scheduling and Conflict Resolution,” ISAIRAS-05.
Munich, Germany, 2005.
 11Guillaume, A., Lee, S., Wang, Y., Zheng, H., Hovden, R., Chau, S., Tung, Y., and Terrile, R. “Deep Space Network
scheduling using evolutionary computational methods,” 2007 IEEE Aerospace Conference. 2007, pp. 1-6.
 12Clement, B. J., Johnston, M. D., Tran, D., and Schaffer, S. R. “Experience with a Constraint and Preference Language for
DSN Communications Scheduling,” ISAIRAS-08. Los Angeles, CA, 2008.
 13Calzolari, G. P., Beck, T., Doat, Y., Unal, M., Dreihahn, H., and Niezette, M. “From the EMS Concept to Operations: First
Usage of Automated Planning and Scheduling at ESOC,” SpaceOps 2008. 2008.

American Institute of Aeronautics and Astronautics

12

 14Chien, S., Rabideau, G., Knight, R., Sherwood, R., Engelhardt, B., Mutz, D., Estlin, T., Smith, B., Fisher, F., Barrett, T.,
Stebbins, G., and Tran, D. “ASPEN - Automating Space Mission Operations using Automated Planning and Scheduling,”
SpaceOps 2000. Toulouse, France, 2000.
 15Johnston, M. D., Tran, D., Arroyo, B., and Page, C. “Request-Driven Scheduling for NASA’s Deep Space Network,”
International Workshop on Planning and Scheduling for Space (IWPSS). Pasadena, CA, 2009.
 16Johnston, M. D. “Deep Space Network Scheduling Using Multi-Objective Optimization With Uncertainty,” SpaceOps.
Heidelberg, Germany, 2008.
 17Johnston, M. D., and Giuliano, M. “MUSE: The Multi-User Scheduling Environment for Multi-Objective Scheduling of
Space Science Missions,” IJCAI Workshop on Space Applications of AI. Pasadena, CA, 2009.
 18“NASA Space Communications and Navigation Architecture Recommendations, Final Report.” Space Communications
Architecture Working Group (SCAWG), 2006.

