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The DSN Scheduling Engine (DSE) has been developed to increase the level of automated 
scheduling support available to users of NASA’s Deep Space Network (DSN). We have 
adopted a request-driven approach to DSN scheduling, in contrast to the activity-oriented 
approach used up to now. Scheduling requests allow users to declaratively specify patterns 
and conditions on their DSN service allocations, including timing, resource requirements, 
gaps, overlaps, time linkages among services, repetition, priorities, and a wide range of addi-
tional factors and preferences. The DSE incorporates a model of the key constraints and 
preferences of the DSN scheduling domain, along with algorithms to expand scheduling re-
quests into valid resource allocations, to resolve schedule conflicts, and to repair unsatisfied 
requests. We use time-bounded systematic search with constraint relaxation to return 
nearby solutions if exact ones cannot be found, where the relaxation options and order are 
under user control. To explore the usability aspects of our approach we have developed a 
graphical user interface incorporating some crucial features to make it easier to work with 
complex scheduling requests. Among these are: progressive revelation of relevant detail, 
immediate propagation and visual feedback from a user’s decisions, and a “meeting calen-
dar” metaphor for repeated patterns of requests. Even as a prototype, the DSE has been de-
ployed and adopted as the initial step in building the operational DSN schedule, thus repre-
senting an important initial validation of our overall approach. The DSE is a core element of 
the DSN Service Scheduling Software (S3), a web-based collaborative scheduling system now 
under development for deployment to all DSN users. 

I. Introduction 
NASA’s Deep Space Network (DSN) provides communications and other services for planetary exploration 

missions as well as other missions beyond geostationary, supporting both NASA and international users. It also con-
stitutes a scientific observatory in its own right, conducting radar investigations of the moon and planets, in addition 
to radio science and radio astronomy. The DSN comprises three antenna complexes in Goldstone, California; Ma-
drid, Spain; and Canberra, Australia. Each complex contains one 70m antenna and several 34m antennas, providing 
S-, X-, and K-band up and downlink services. The distribution in longitude enables full sky coverage and generally 
provides some overlap in spacecraft visibility between the complexes. A more detailed discussion of the DSN and 
its capabilities can be found in Ref. 1. 

The process of scheduling the DSN is complex and time-consuming. There is significantly more demand for 
DSN services than can be handled by the available assets. There are numerous constraints on the assets and on the 
timing of communications supports, due to spacecraft and ground operations rules and preferences. Most DSN users 
require a firm schedule around which to build spacecraft command sequences, weeks to months in advance. Cur-
rently there are several distributed teams who work with missions and other users of the DSN to determine their 
service needs, provide these as input to an initial draft schedule, then iterate among themselves and work with the 
users to resolve conflicts and come up with an integrated schedule. This effort has a goal of a conflict-free schedule 
by eight weeks ahead of the present, which is frequently hard to meet in practice. In addition to asset contention, 
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many other factors such as upcoming launches (and their slips) contribute to the difficulty of building up an ex-
tended conflict-free schedule. 

There have been various past efforts to increase the level of scheduling automation for the DSN. Currently, the 
DSN scheduling process is centered around the Service Preparation Subsystem (SPS) which provides a central data-
base for schedules and for the auxiliary data needed by the DSN to operate the antennas and communications 
equipment (e.g. viewperiods, sequence-of-events files). The TIGRAS program2 is used for schedule viewing and 
editing, along with a number of other tools for generating specialized reports and graphics. The current effort to im-
prove scheduling automation is designated the Service Scheduling Subsystem, or S3, which will be integrated with 
SPS. There are three primary features of S3 that are expected to improve the scheduling process:  

1. Adopting a request-driven approach to scheduling (as contrasted with the current activity-oriented schedul-
ing); 

2. Unifying the scheduling software and databases into a single integrated suite covering realtime out through 
as much as several years into the future; 

3. Development of a peer-to-peer collaboration environment for DSN users to view, edit, and negotiate 
schedule changes and conflict resolutions. 

The second and third of these areas are described in another presentation at this conference3. This paper focuses on 
the first area and its ramifications. The request-driven paradigm shifts the emphasis from individual specific re-
source allocations to a scheduling request specification or “language”, and on the scheduling algorithms that work 
with this specification to generate, maintain, and improve the schedule. In the following sections, we first provide 
some background on the DSN scheduling problem and the existing scheduling tool suite (Section II), and on the 
rationale for the request-driven approach taken by S3. We then describe the scheduling request specification (Section 
III), which is how DSN users of S3 will describe their service requests to the system. These requests are processed 
by the DSN Scheduling Engine (DSE, Section IV) to expand into tracking passes, integrate them into an overall 
schedule, all the while seeking to minimize conflicts and request violations. A prototype graphical user interface has 
been developed for creating and editing schedule requests, and for integrating them into schedules and minimizing 
conflicts (Section V). This prototype GUI has been deployed for over a year, and has been adopted as the first step 
in the DSN schedule generation process well in advance of full S3 system readiness. We conclude with an overall 
summary and brief description of plans for future development (Section VI). 

II. Automation of DSN Scheduling – Background 
The driving factors towards increased automation of the DSN come from several directions. The expected in-

crease in the number of missions from NASA and international partners will put more and more pressure on the 
available DSN resources, a trend which is expected to accelerate in the future. More missions are expected to have 
higher data volumes and greater link complexities. At the same time, there is a strong desire to reduce operations 
costs, while increasing reliability and continuing to provide 24h service coverage. 

Increased automation support for DSN scheduling has a long history. LR-26 was a customizable heuristic sched-
uling system for the 26-meter antennas using Lagrangian relaxation and constraint satisfaction search techniques4. 
Operation Mission Planner (OMP-26) used heuristic search to allocate 26-meter antennas to missions, and linear 
programming to adjust track durations5, 6. The Demand Access Network Scheduler (DANS) included all antennas 
and used a heuristic iterative repair approach7. Other investigations into aspects of DSN scheduling are described in 
References 8, 9, 10, and 11. 

The current DSN scheduling software project S3 is derived from a 2004 resource allocation process working 
group that analyzed the DSN scheduling process and identified a key set of goals for implementation, listed in the 
Introduction. One of these goals centers on the basic entities that drive the schedule. In the past, and currently, these 
are the scheduled communications passes (tracks) or other individual activities that are placed on the schedule. All 
of the software to create, manage, and report the DSN schedule are built around a representation of the schedule as a 
collection of activities. The shift to a request-driven (sometimes called requirements-driven) approach is a funda-
mental shift in representation, adding an abstraction layer above tracks, such that the predominant control mecha-
nism of users over the schedule is via scheduling requests, rather than the individual scheduled activities. Note that it 
is not anticipated that individual activities can be bypassed; indeed, all the basic capabilities of activity-oriented 
scheduling are still required: users need to be able to edit individual activities, for reasons that may not be expressi-
ble in the form of scheduling requests. However, the net benefits of a request-driven approach outweigh those of 
activity-oriented scheduling in several important ways: 
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• leveraged effort: one scheduling request can generate and be used to manage many scheduled activities, 
and one change to a request can propagate to all activities derived from it; this can significantly reduce the 
ongoing effort needed to generate the schedule and manage its changes 

• automated continuous schedule validation: based on the request specification, the schedule can be continu-
ously monitored against constraints and preferences; this can help minimize the effort to ensure that sched-
ule changes, as they invariably occur, will not introduce undetected inconsistencies between requests and 
activities 

• traceability: all activities trace to scheduling requests that describe the purpose and intent of the generated 
activities   

The main disadvantage of a request-driven approach is that the request specification language is complex12. There 
are many options and subtleties involved in describing the constraints and preferences on DSN activities, and a suf-
ficiently rich representation of these is necessarily large and complicated. Some of the problems that ensue are: 

1) What appears at a high level to be a simple request is often much more involved when practical details are 
considered, yet all of these details may be needed (even if rarely) to fully describe how and when a particu-
lar activity can be scheduled. Users do not want to be bombarded with requests for detail when using the 
system, but neither will they accept that they cannot make use of all available options. 

2) Many interdependent options can make it difficult to tell whether a request is feasible: the interactions of 
time windows with other request parameters can all too easily lead to inconsistencies, which may not show 
up until late in the scheduling process. 

3) Failure to accurately represent the correct applicable flexibilities forces schedulers to use workarounds that 
artificially limit flexibility, thus inhibiting user acceptance of the system. For example, if it is not possible 
to represent that any one of several choices is acceptable, then the human scheduler must pick one, and so 
the advantages of having the flexibility are lost. 

These factors pose a major challenge to a request-driven approach, in that the effort of creating and managing 
requests, and their consequent benefits in continuous validation of schedule, must be shown to be overall more bene-
ficial than an activity-oriented approach in order to gain user acceptance. In the following section we describe how 
we have approached the problem of representing DSN scheduling requests, and a later section, how we have ad-
dressed the way that users can specify complex options. 

III. DSN Scheduling Requests 
DSN scheduling requests specify the services required and their associated constraints and preferences. 

A. Services 
Services include use of any of the available capabilities of the DSN, including uplink and downlink services, 

Doppler and ranging (for spacecraft navigation), as well as more specialized capabilities. The details of a space-
craft's service specification depend on the onboard hardware and software (frequency band, encoding, etc.). Along 
with other factors such as radiated power levels and distance from the Earth, these determine a set of acceptable an-
tennas and associated equipment (transmitters, receivers, etc.) that can be scheduled to satisfy the request. However, 
these assets are not all equally desirable, and so there are preferred choices for antennas and equipment that also 
need to be considered. 

In addition to single antenna/single spacecraft communications, there are a variety of other DSN service types. 
Some missions need the added sensitivity of more than one antenna a time, and so make use of arrayed downlinks 
using two or more ground antennas. For navigation data, there are special scenarios (DDOR) involving alternating 
the received signal between the spacecraft and a nearby quasar, over a baseline that extends over multiple com-
plexes. For Mars missions, there is a capability for a single antenna to communicate with several spacecraft at once 
(called Multiple Spacecraft Per Aperture, or MSPA): while more than one at a time may be sending data to Earth, 
only one may be uplinking. 

B. Constraints 
Constraints on DSN scheduling requests fall into several broad categories. The most important is timing: users 

need a certain amount of communications contact time in order to download data and upload new command loads, 
and for obtaining navigation data. How this time is to be allocated is subject to many options, including whether it 
must be all in one interval or can be spread over several, and whether and how it is related to external events and to 
spacecraft visibility. Table 1 lists a number of these factors. 
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A second category of constraint is that of relationships among contacts. In some cases, contacts need to be suffi-
ciently separated so that onboard data collection has time to accumulate data but not overfill onboard storage. In 
other cases, there are command loss timers that are triggered if the time interval between contacts is too long, plac-
ing the spacecraft into safemode. During critical periods, it may be required to have continuous communications 
from more than one antenna at once, so some passes are scheduled as backups for others. 

A third category of constraint can be called “distribution” requirements. These cover some extended time span 
and specify constraints on certain aspects of overall set of activities during that time. Examples include: a certain 
proportion of 70m contacts; ensuring that navigation passes are spread out roughly evenly between the northern and 
southern hemisphere complexes; ensure that not all contacts in a week are on the same antenna. 

C. Preferences 
In addition to constraints, there are numerous preferences that scheduling users have as to how their activities are 

to be scheduled. Many would prefer additional time if it is available, while at the same time are able to reduce some 
contact durations in order to resolve a contentious period on an antenna. There are preferences on gap durations, 
whether tracks are split or continuous, for tracks to occur during day shift at a particular operations center, and so 
on. While some of these preferences are implicit, some must be explicit and, if they apply, need to be specified as 
part of the scheduling request. 

D. Priority 
Priority plays a significant role in DSN scheduling, but not the dominating role that it plays in some other sys-

tems13. Critical events (launches, surface landings, planetary orbit insertions) preempt other more routine activities. 
Other than critical activities, missions generally have higher priorities during their prime (initial phases) than during 
their later extended missions. However, higher priority does not automatically mean that resource allocations are 
assured. Depending on their degree of flexibility, missions trade off and compromise in order to meet their own re-
quirements, while attempting to accommodate the requirements of others. As noted above, one of the key goals of S3 
is to facilitate this process of collaborative scheduling. 

E. Patterns of Requests 
One characteristic of DSN scheduling is that, for most users, it is common to have repeated patterns of requests 

over extended time intervals. Frequently these intervals correspond to explicit phases of the mission (cruise, ap-
proach, fly-by, orbital operations). These patterns can be quite involved, since they interleave communication and 
navigation requirements. The presence of repeated patterns can be exploited in representing scheduling requests that 
vary minimally or not at all over some time frame, as will be discussed further below. 

Table 1. Timing constraints and preferences that can apply to a DSN scheduling request. 

Constraint Description 
reducible whether and by how much the requested time can be reduced to fit in an available opportunity 
extensible whether and by how much the requested time can be increased to take advantage of available re-

sources 
splittable whether the requested time must be provided in one unbroken track, or can be split into two or more 

separate tracks 
split duration if splittable, the minimum, maximum, and preferred durations of the split segments; the maximum 

number of split segments 
split segment over-
lap 

if the split segments must overlap each other, the minimum, maximum, and preferred duration of the 
overlaps 

split segment gaps if the split segments must be separated, the minimum, maximum, and preferred duration of the gaps 
viewperiods periods of visibility of a spacecraft from a ground station, possibly constrained to special limits 

(rise/set, other elevation limits) 
events general time intervals that constrain when tracks may be allocated; examples include:   

• day of week, time of day (for accommodating shift schedules, daylight, ...)   
• orbit/trajectory events (occultations, maneuvers, surface object direct view to Earth, ...) 
Different event intervals may be combined (with optional inversion), and applied to a request. 
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IV. DSN Scheduling Engine 
The DSN Scheduling Engine (DSE) is the component of S3 responsible for: 
• expanding scheduling requests into individual communications passes by allocating time and resources to 

each 
• identifying conflicts in the schedule, such as contention for resources and any violations of DSN scheduling 

rules, and attempting to find conflict-free allocations 
• checking scheduling requests for satisfaction, and attempting to find satisfying solutions 
• identify scheduling opportunities, based on resource availability and other criteria, or meeting scheduling 

request specifications 
• searching for and implementing opportunities for improving schedule quality 

Schedule conflicts are based only on the activity content of the schedule, not on any correspondence to schedule 
requests, and indicate either a resource overload (e.g. too many activities scheduled on the available resources) or 
some other violation of a schedule feasibility rule (see Table 2a). In contrast, violations (Table 2b) are associated 
with scheduling requests and with their tracks, and indicate that in some way the request is not being satisfied. Con-
flicts and violations are permitted to exist in the schedule – both are identified by the scheduling engine, recorded in 

Table 2a. Types of conflicts that can occur in the schedule. Conflicts depend only on the activity 
content of the schedule. 

Conflict Type Description 
Spacecraft Multiple tracks of the same mission occur at the same time, and are not of a type where 

this is expected (e.g. arrayed tracks) 
Beginning of Track 
(BOT) 

Multiple tracks start with in 15 minutes of Goldstone and 30 minutes for Canberra and 
Madrid. 

Start of Activity (SOA) Multiple tracks start with in 15 minutes of Goldstone and 30 minutes for Canberra and 
Madrid. 

Antenna (Facility) Multiple non-MSPA tracks use the same antenna at one time 
Equipment Multiple non-MSPA tracks use the same equipment at one time 
Viewperiod The spacecraft/user is out of view of the track antenna 
Setup The pre-track setup time does not match the expected setup time 
Teardown The post-track teardown time does not match the expected teardown time 
RFI Two or more tracks are scheduled in violation of radio frequency interference (RFI) rules 
MSPA Two or more tracks are scheduled in violation of multiple spacecraft per aperture 

(MSPA) rules 
Array The track start and end times of arrayed tracks are not the same 
 
Table 2b. Types of request violations that can occur in the schedule. 

Violation Type Description 
Track quantization A track start or end time violates the request quantization constraint. For example, re-

quests can specify that tracks start or end only at 5 minute intervals boundaries. 
Track separation If the request is splittable, the separation time between two tracks violates the split seg-

ment overlap or split segment gap constraint. 
Track duration If the request is splittable, a track duration violates the request split duration constraint. 
Service specification A track violates the request service specification, i.e. the antenna or equipment allocated 

does not match the requested service. 
Total track duration The total track duration does not meet the requested duration 
Number of tracks The number of tracks for the request violates the maximum. For a non-splittable track, 

this limit is 1; for a splittable track, the limit may be explicitly specified. 
Track temporal extent A track start or end time falls outside the scheduling request’s time interval. 
Event reference A track time interval violates the intersection of the event time intervals referenced by the 

scheduling request. 
Viewperiod reference A track time interval falls outside the object’s visibility window from the scheduled an-

tenna 
Request timing link A track time interval violates the scheduling request’s temporal constraint link to other 

requests. 
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• no unexpected schedule changes: all changes to schedule must be requested, explicitly or implicitly, and the 
same sequence of operations on the same data must generate the same schedule 

• even for infeasible scheduling requests, attempt to return something “reasonable” in response, possibly by 
relaxing aspects of the request; along with a diagnosis of the sources of infeasibility, this provides a starting 
point for users to handle the problem 

In contrast to this mode of operation is an auto-generation phase of the scheduling process where the goal is to 
integrate scheduling requests from all users. The result is an initial schedule with minimal conflicts and violations to 
serve as a starting point for collaborative conflict resolution. In this mode, maintaining schedule stability is not an 
objective, and a much broader range of changes to the scheduled activities is allowable, provided that overall con-
flicts are reduced. The DSE supports both modes of operation with a portfolio of algorithms that can be invoked by 
the S3 system for auto-generation, or by end users when working on specific conflicted portions of the schedule. See 
Ref. 15 for additional details on the initial layout, repair, and optimize algorithms. 

1. Expanding requests to tracks – initial layout 
The initial layout algorithm is executed to initially generate tracks to satisfy the specifications of the request, or 

to remove any existing tracks and regenerate them around whatever other activities already exist in the schedule. 
The algorithm consists of a series of systematic search stages over the legal track intervals, successively relaxing 
constraints each stage if no solution is found. The systematic search algorithm is a depth-first search algorithm over 
the space of available antenna start times and durations for each scheduling request. The set of legal antennas for 
scheduling is defined in the request service specification, while the search space of legal start times is defined by the 
request quantization value. We are employing four relaxation strategies. These strategies are outlined below, with 
each relaxation strategy building upon the previous. 

• temporal linkage – the explicit temporal relationships between tracks in the same or different requests   
• track separation – between two track segments from a splittable request 
• event intervals – the time intervals (exclusive of viewperiods) that constrain the timing of the track 
• spacecraft, antenna, and equipment – removing these conflicts from consideration (Table 2a) leaves only 

the viewperiod temporal constraint 
These relaxation stages allow for tracks to be generated even though the scheduling request may be infeasible (in 
isolation or within the context of the current schedule), and provides the user a starting point to make corrective 
changes. These changes may range from modifying the scheduling request to introduce more tracking flexibility, to 
contacting other mission schedulers to negotiate different request time opportunities. 

2. Schedule repair 
Once an initial schedule has been generated, conflicts and/or violations may exist in the schedule due to the re-

laxation of constraints. The DSE provides a basic repair algorithm to reduce conflicts or violations. The algorithm 
will identify the contributing tracks for each conflict or violation, and run the systematic search algorithm on the 
request. If a solution is found, the new tracks are accepted. If no solution is found, the original tracks are not modi-
fied. Note that conflicts and violations are independent, so there are separate versions provided through the user in-
terface for users to invoke. This algorithm is focused on only modifying requirements that are directly contributing 
to the conflict or violation in order to minimize the impact on the other parts of the schedule. However, in order to 
resolve certain classes of conflicts, multiple tracks not directly associated with the conflict may need to be modified. 
A strategy that addresses these types of conflicts is discussed in the auto-generation section. 

3. Auto-generation – merge- and re-layout 
One of the features of the initial layout algorithm is expanding requests that avoid other tracks, along with the 

progressive relaxing of constraints to find a solution. However, as the schedule becomes more congested with tracks, 
relaxing these constraints introduces more request violations. To address this issue, we provide another strategy that 
reduces both the number of conflicts and violations: merge- and re-layout. 

During the merge-layout phase, the scheduling requests are partitioned into individual mission-specific requests. 
For each mission, the requests are expanded using the initial layout strategy on an empty schedule. The results for 
each mission are then merged into one schedule. Because the requests are expanded in an empty schedule, there are 
more opportunities to schedule the tracks so the number of violations is reduced. However, without the interaction 
with other missions’ tracks, the number of conflicts increases in the merged schedule. This is reduced in the next 
phase: re-layout. 

The re-layout phase is an iterative step that generates a new schedule based on the existing tracks in the sched-
ule. The algorithm loops through each track in the schedule and stochastically updates any or all of the parameters 
including start time, duration, antenna, etc. Each new schedule that is generated attempts to reduce the number of 
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V. User Interface 
To investigate the capability of the request specification language outlined above, we have developed a path-

finder graphical user interface (UI) and web server application. The user interface incorporates all of the major fea-
tures of scheduling requests, including viewperiod and event management, and scheduling request creation and edit-
ing with all of the features noted in Table 1. This UI acts as a DSE client for expanding schedule requests to tracks, 
identifying and resolving conflicts, and identifying and resolving request violations. Multiple users can work with 
the system at once, each on their own workstation with a locally installed copy of the GUI client (via Java webstart), 
which stores a local copy of all the data needed for scheduling including viewperiod files, event definitions, schedul-
ing requests, and schedules. All changes to these data items are mirrored on a REST-based web application, which 
also ensures that assigned identifiers are globally unique. Users can then share data items via a command to the web 
application that transfers over all data associated with a given schedule, including the scheduling requests and any 
data needed to properly interpret them. This enables users to work on different missions completely independently, 
yet integrate their requests into a single schedule at the appropriate time. Note that this architecture differs from that 
of S3, which is based on a central database and web browser-based client. 

A. UI Features 
The pathfinder UI was intended to explore and assess several aspects of user interaction with the scheduler: 

1. Progressive revelation of detail 
Scheduling requests can potentially contain many adjustable parameters, often with interrelationships among 

them. The GUI uses an animation technique to fade in or out relevant parameter choices, as soon as a dependent 
choice is made. For example, if a request is for tracking time that is not splittable, then none of the parameters that 
control splitting are visible on the screen (split minimum duration, maximum number of segments, whether split 
segments must overlap or be separated, etc.) However, as soon as the user selects the splittable option, a subset of 
these parameters will fade in. This is chained several levels deep, e.g. overlap parameters settings are not shown 
unless the user specifies that the split segments must overlap. 

2. Immediate display of implications 
Another aspect of the potential complexity of scheduling requests is that it is not difficult to overspecify a re-

quest, thus making it impossible to satisfy. For example, the duration of scheduling request may not fit within any 
schedulable time interval allowed by the intersection of viewperiods and timing event intervals. Rather than wait for 
later schedule generation, the pathfinder GUI application adopts a strategy of 1) propagating all known information 
as far as possible, with the goal of early diagnosis of any problems, and 2) visually displaying as much of this 
propagated information as possible. For example, as the user edits a scheduling request, the system dynamically 
calculates the intersections of viewperiods and all timing event windows, displays the result for all allowable anten-
nas that could potentially satisfy a request, and then checks to see whether the total requested time is available, as 
well as whether the time requested for any segment is consistent with the request's timing parameters. The results 
are displayed as a “preview” Gantt view along side the request parameters. 

3. The “meeting calendar” metaphor for repeated patterns of requests 
As noted above, many users formulate their requests as a repeated pattern, with variations. We adopted the 

metaphor of a meeting calendar program, with which most users are familiar, e.g. in which a meeting or appoint-
ment is created and then designated as “recurrent”. For DSN scheduling, the repetition intervals are sometimes along 
typical calendar lines (e.g. daily, weekly), but often are based on trajectory or celestial events (e.g. every visibility 
interval, or opportunity for a Mars rover to reach earth with its antenna). Additional requirements include the option 
to place time linkages between successive repetitions, e.g. to prevent two neighboring passes from being too close 
together. 

 
Once scheduling requests have been created, they may be combined to generate a schedule by invoking the DSE 

to expand them into explicit tracks. The DSE generates and returns the scheduled activities, identifies conflicts, and 
checks that all requests are satisfied. The user may invoke a conflict repair strategy, or requirement violation repair 
strategy, based on the heuristics described above. The GUI allows the user to view the schedule, identify conflicts 
(shown as red in the Gantt chart view), and see any unsatisfied requests (indicated by a red “” in the request list on 
the left). Individual schedule items can be edited, and requests may be locked (fixed in place) and will not be subse-
quently changed by the DSE. An example of the schedule view is shown in Figure 4. 
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availability service to a large number of simultaneous users. Even as an early prototype, the DSE has been success-
fully adopted as the initial step of the DSN scheduling process.  

Future work includes the continued development of the scheduling algorithms, integration of the DSE with the 
browser-based S3 collaboration infrastructure3, and deployment of the system into DSN operations. In addition, there 
remain a number of areas of further research and development that are under consideration: 

• forecasting – the DSE scheduling model is based on the explicit expansion of scheduling requests to tracks, 
taking into account fine-grained constraints and preferences as they affect the resulting tracks (e.g. viewpe-
riods, constraining event intervals, etc.) This is ideal for near- to mid-term scheduling, but also has applica-
tion to long-range resource planning as well, in that detailed contention scenarios can be explored and as-
sessed. The major additional capability that would be useful in this long-range planning context is a more 
integrated capability to model uncertain events.  

• multi-objective scheduling – like many scheduling problem domains, DSN scheduling is full of tradeoffs 
among competing objectives, ranging from individual mission users, to system-level utilization and robust-
ness objectives. Multi-objective optimization has been demonstrated in other domains16, 17 to provide pow-
erful insights into optimal tradeoffs. There is every reason to believe this would be useful for DSN schedul-
ers as well.  

• cross-network scheduling – NASA has recommended18 integrating access to the capabilities provided by its 
three major networks: DSN, the Space Network (SN), and the Near Earth Network (NEN). For those users 
who require services from two or all three of these networks, such integration would be a source of signifi-
cantly improved efficiency and cost savings. S3 has the potential to serve as a common scheduling platform 
in this regard – it is interesting to note that nowhere on the scheduling request editor main UI is there any 
indication that the user is working with the DSN; this is apparent only when drilling down into the detailed 
viewperiods, event intervals, and service definitions. 
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