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We describe an efficient, online goal selection algorithm for use onboard spacecraft and 
its use for selecting goals at runtime. Our focus is on the re-planning that must be performed 
in a timely manner on the embedded system where computational resources are limited. In 
particular, our algorithm generates near optimal solutions to problems with fully specified 
goal requests that oversubscribe available resources but have no temporal flexibility. By 
using a fast, incremental algorithm, goal selection can be postponed in a “just-in-time” 
fashion allowing requests to be changed or added at the last minute. This enables shorter 
response cycles and greater autonomy for the system under control. 

I. Introduction 
HE available computing resources on spacecraft flight system are often scarce. And autonomy software, like all 
flight code, must run within these limitations. In addition, many autonomous responses are time-critical. For 

these two reasons, autonomy algorithms must be designed to be efficient, preferably with provable guarantees on 
responsiveness. At first, this may sound like a difficult task, especially for complex problems such as planning and 
scheduling. But by utilizing general problem characteristics, we can narrow the scope of the problem, and increase 
our chances of finding a tractable solution. First, an autonomous system does not need to be indefinitely autonomous 
due to periodic contact with human operators. Spacecraft rarely operate for more than a few weeks without ground 
communication. Therefore, onboard plans do not need to cover a large time frame. Second, autonomy software only 
needs to address the dynamic, unpredictable behaviors of the overall system. Many spacecraft behaviors can be 
predicted in advance. For example, spacecraft orbit predictions can be pre-compiled and uploaded for use by the 
onboard planner. Limiting the scope of the problem gives us hope at finding efficient algorithms. Our work focuses 
on a restricted planning problem that can be solved with a tractable algorithm that has a guaranteed worst-case 
complexity. 

Specifically, we address the problem of providing high-level, autonomous goal management for computationally 
limited spacecraft systems. We enable on-board and remote goal triggering through the use of an embedded, 
dynamic goal set that can oversubscribe resources. From the set of conflicting goals, a subset must be selected that 
maximizes a given quality metric. 

The problem we solve has the following properties: 
• Goals have fixed start times and durations (making this a goal selection problem rather than an NP-hard 

scheduling problem). 
• Goals can have flexible sub-activities for execution but the selection of alternative branches or timings 

cannot require search (e.g. we may wait for an event, retry a fixed number of times, or branch based on 
a condition but no backtracking occurs). This can be viewed as backtrack-free hierarchical task network 
planning.  

• Goals can conflict by exceeding the limits of shared resources (e.g. oversubscription) with selection 
based on a strict priority ordering (i.e. a goal can never be pre-empted by any number of lower priority 
goals). 
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• Goals can be added, removed, or updated at any time, and the “best” goals will be selected for 
execution. 

While these algorithms are general, we have implemented them as prototype extensions to the Virtual Machine 
Language (VML) [Grasso 2008] execution system. VML is advanced, multi-mission flight and ground software 
developed for NASA flown on a number of past and current missions including: The Spitzer Space Telescope, Mars 
Odyssey, Stardust, Genesis, Mars Reconnaissance Orbiter, Phoenix, and Dawn. The prototype goal and resource 
concepts are added to the language for both planning and execution purposes. Specifically, the Goal Manager (GM) 
maintains the set of requested goals, their priorities, and their interactions (i.e. shared resource constraints). When a 
goal is submitted, the GM quickly analyses the goal to determine whether or not it should be selected for execution. 
When the current time approaches the scheduled start time of a selected goal, the goal is committed and satisfied by 
spawning the corresponding VML sequences. 

Our work is motivated by experience from space mission operations, such as autonomous operations of the Earth 
Observing One satellite [GSFC] and operations conducted by the Autonomous Sciencecraft (ASE) flight and ground 
software [Chien et al. 2005]. In ASE, events are detected on-board which trigger changes in goal requests. For 
example, images taken of the Earth can be processed on-board to detect interesting events such as volcanic 
eruptions. These detections can then trigger changes to upcoming goals such as increasing the priority of requests 
for images of the same volcano. On the ground, sensorweb processing may detect similar events and upload new 
goal requests in a short time frame.  

We demonstrate our prototype implementation on these scenarios. In the Goal Manager (GM), goal selection is 
postponed until the latest possible time, allowing goals to be added, removed or changed just prior to execution. This 
dynamic goal set enables additional autonomy capabilities such as on-board and ground-based event triggering, 
similar to ASE. The GM, however, does not require a full planner and has theoretical guarantees on worst-case 
response time. In these scenarios, start times of goals are assumed to be fixed. This is a reasonable assumption due 
to the nature of a spacecraft in orbit – opportunities for communications and science observations occur at specific 
(repeating) times. Also, we have found that many spacecraft resource constraints can be abstracted to the goal level. 
For example, the EO-1 spacecraft can point science instruments to only one target at a time. Thus, for target 
locations in close proximity, we must choose one of possibly many observation goals. We take advantage of these 
assumptions to develop efficient algorithms that provide advanced onboard autonomy capabilities. 

Finally, we build on previous work [Rabideau and Chien, 2008] by providing an empirical analysis that supports 
the theoretical results. In these experiments, the GM runs in polynomial time, generating schedules that rank near 
optimal. 

II. Resource Constraints 
The primary driver for goal selection comes from the constraints on resources shared by the goals. We define a 

resource constraint as a value and a bound on that value over a period of time. Resource constraints can exist as part 
of goals, activities, or sequences. A combination of effects of constraints on the same resource conceptually 
comprises a timeline (although we do not maintain an explicit representation of a timeline). Resource constraints 
have the following attributes: 

 
ResourceConstraint 
{ 
  IdType         id; 
  ResourceType   type; 
  TimeType       start; 
  TimeType       end; 
  ValueType      value; 
  ValueType      initial; 
  ValueType      min; 
  ValueType      max; 
}  
 
The id uniquely identifies the affected resource for the purpose of analyzing the interaction with other resource 

constraints. The type specifies the type of effect that the constraint has on the resource. The start and end times 
specify the temporal scope of the constraint. The last four values specify, respectively: the constraint value, the 
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initial value of the resource in the absence of all constraints, the minimum valid resource value, and the maximum 
valid resource value. 

There are four fundamental types of resource constraints: Producer, Consumer, Assigner, and 
Requirement. A Producer adds the constraint value to the resource at the start of the time range and subtracts 
it at the end (where the end may be infinity). A Consumer subtracts at the start and adds at the end. An Assigner 
simply assigns the constraint value at a specific time point. A Requirement specifies only a constraint on the 
value of the resource over a period of time (i.e. it has no effect on the resource value). 

A resource constraint can be defined for any type of value as long as the following set of operators is available: 
+, -, =, <, and ==. The arithmetic operators allow us to compute resource values from a set of interacting resource 
constraints, and the boolean operators are for testing the validity of computed resource values. For example, for a 
single producer, we would add the produced value to the initial value and compare the result to the maximum value. 
If the constraint check fails, the resource value is considered invalid (i.e. has conflicting constraints). 

We have demonstrated four common types of resource values: int, double, string, set<string>. The 
definitions of the operators are intuitive for simple types such as integers, doubles, and strings. For sets, we define 
them as follows: addition (+) is set union, subtraction (-) is set subtraction, assignment (=) replaces all values in one 
set with values from another, less (<) is a lexicographical ordering on two sets, and equals (==) returns true if each 
element in one set is equal to exactly one element in the other set. 

For set resources, we introduce another operator for set containment. This allows us to specify a constraint that 
requires the computed resource value (which is a set of values) to contain the constraint value. 

III. Goals 
We define a goal to represent the request for execution of an activity or set of activities. Goals have the 

following attributes: 
 
Goal 
{ 
  IdType                  id; 
  PriorityType            priority; 
  TimeType                start; 
  TimeType                end; 
  set<ResourceConstraint> constraints; 
} 
 
The id is used to uniquely identify the goal. The goal priority is used to rank goals. The start and end 

values specify the expected temporal scope of the goal. Due to system uncertainties at the time the goal is requested, 
the start and end times contain only the requested or expected values. Goals also maintain a set of resource 
constraints that must hold for the goal to execute. Similar to the start and end times, resource constraints contain the 
requested or expected values for the resources. 

The goal attributes are used for selecting and dispatching goals for execution. In addition, a goal must specify 
what is to be done when it is dispatched. Typically, this involves spawning a sequence to start execution at a given 
time. Essentially, we define goals as a summary of the intent and effects of one or more sequences. 

IV. Example: Onboard File System 
When defining goals and resources, we worked to find a balance between a representation that is general and 

powerful, but also has the details required for efficient resource analysis and goal selection. We show the power of 
the representation with an example: managing an onboard file system. This example is of particular interest to us 
because many spacecraft (including EO-1) must deal with data products stored on an onboard file system. Typically, 
science activities write data to a file while engineering procedures read and downlink files, deleting them when 
appropriate to free up space. 

We can model this file system with five goals and four resources. The goals represent file system requests: 
create, delete, read, write, and format. The resources shared by these goals are: a set of file handles (100), limited 
disk space (1024K), a current directory listing, and finally an exclusive use of the file system by certain operations. 

Each goal instance creates and adds the resource constraints for that goal type. Creating a file consumes one of 
the 100 available file handles, and produces a file with the specified unique ID. Deleting a file produces a file handle 
while consuming the file with the specified unique ID. It also produces disk space equal to the size of the file. 
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Writing to a file consumes available memory equal to the size of the data written. Both writing and reading require 
that the unique file ID is a member of the set of available file IDs, and that no other reads or writes occur at the same 
time. 

Each goal type also defines the required method for executing the goal. For example, creating a file would call 
fopen() on a Unix operating system. 

V. Goal Selection Algorithm 
We present an algorithm for selecting goals with 

oversubscribed resources. The pseudo-code for the 
core of the algorithm (updating the set of selected 
goals) is shown in Figure 1. The algorithm can be 
categorized as a repair-based approach with no 
search – the constraints and priorities define exactly 
which goals to choose. We focus on the re-selection 
that is required when the requested goal set 
changes, either by adding a new goal or removing 
an existing goal4. While making selections, goal 
parameter values (e.g. start times) are assumed to be 
fixed. The result is a set of non-conflicting “best” 
goals that have been selected for execution. After 
selections are made, conflicting goals are retained 
for additional consideration in the event of future 
changes to the goal set. In this implementation, 
conflicts are defined by shared resource 
interactions, and choices are made among 
conflicting goals using a strict priority rule. Only 
the highest priority goals are selected, with ties broken by earliest request time (i.e. first-come-first-served). 

The Goal Manager (GM) maintains data structures that enable efficient goal selection and dispatch. One set of 
goals is sorted by priority so that the algorithm can efficiently perform goal selection. The goals are also sorted by 
start time so that it can quickly find the next selected goal to dispatch for execution. For each goal, the GM 
maintains a set of interacting goals (i.e. goals that share a resource) to assist resource reasoning. According to the 
priority rule, a goal will be selected and dispatched for execution if and only if it does not conflict with a higher 
priority goal, which does not conflict with an even higher priority goal, etc. For example, in Figure 2 we assume that 
overlapping goals conflict. Goal C is highest priority and is selected. Goal B is not selected because it conflicts with 
C. Because B is not selected, goal A is selected even though it is lower-priority than B. Therefore, goals A and C are 
the “best” goals. 

Adding and removing goals involves three steps: updating the sets of interacting goals, updating the sorted goal 
sets, and updating the selected goal set. This last step is the most interesting and is shown in pseudo-code in Figure 
1. In this step, we first de-conflict the schedule by removing all goals with lower priority than the goal being added 
or removed (lines 2-4). Higher priority goals are unaffected and can remain selected. Next, we re-evaluate each of 
the lower-priority goals (lines 5-9), adding them to the selected goals when possible (line 10). Evaluating a goal g 
(shown in the simplified isBestGoal function on 
line 12) involves adding the resource effects of g to 
the effects of all selected (i.e. higher-priority) goals 
that interact with g. If the combined resource effects 
are conflicting, then g will not be selected. Finally, 
dispatching goals within a given time range simply 
involves finding selected goals that fall in that range. The dispatch function is intended to be called periodically with 
a small time range covering the near future. 

It is important to note that the low-priority conflicting goals are retained so that changes to the goal set can be 
made at any time (goals added, removed, or updated), and goals will be dispatched from the latest set of selected 
goals. Once a goal has started executing (determined by the “wasStarted” function on line 8) it will thereafter be 

4Changing parameters of a goal (e.g. start time, priority) can be implemented by removing the goal and adding it 
back with new values. 

01  void updateSelectedGoals(g) 
02    for each Goal gs in selectedGoals 
03        with priority <= priority of g 
04      remove gs from selectedGoals 
05    for each Goal gi in allGoals 
06        with priority <= priority of g 
07        in decreasing priority order 
08      if wasStarted(gi) 
09        or isBestGoal(gi, selectedGoals) 
10        add gi to selectedGoals 
11 
12  bool isBestGoal(g, selectedGoals) 
13    for each interacting Goal gi of g 
14      if gi is in selectedGoals 
15         and gi conflicts with g 
16        return false 
17    return true 
 
Figure 1: Incrementally updating the set of selected goals 

 

Goal A  priority=1 

Goal B  priority=2 

Goal C  priority=3 

 
Figure 2: Goals A and C are selected 
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selected regardless of priority. A goal expires if it is unselected and falls in the past, or if it is selected and all of its 
interacting goals completely fall in the past. Expired goals are periodically removed from the goal sets. As a final 
note, the definition of “interacting” and “conflicting” can be arbitrary boolean operators. In this work, resources 
define which goals interact and resource calculations are performed to determine conflicts. 

VI. Algorithm Analysis 
We now describe the run-time computational complexity of our goal selection algorithms. Selecting the best 

goals and updating the cache (updateSelectedGoals) is: 
 
O(MlgM + N(lgM + Xi(lgM + Si))) 
 

where N is the number of all goals, M is the number of selected goals, Xi is the number of interacting goals for goal 
i, and Si is the number of resources shared by goal i. Goals are stored in tree data structures with a log-based 
lookup. The first term comes from removing lower-priority goals from the selected goals (lines 2-4). The longer 
second term comes from re-selecting the best goals (lines 5-10). 

Assuming worst case, where each goal interacts with every other goal (Xi == N for all i), each goal uses all 
resources (Si == R for all i), and all goals are selected (M == N): 

 
O(NlgN + N(lgN + N(lgN + R))) 
 

Or: 
 
O(NlgN + NlgN + N2lgN + N2R) 
 

Since N2lgN dominates NlgN: 
 
O(N2lgN + N2R) 
 

And assuming that R is constant (defined by the domain), we have: 
 
O(N2lgN) 
 

This is a theoretical worst case complexity. In practice, each goal will typically use a subset of the resources, and 
many of the goals will not be selected for execution. More importantly, goals interact with a small number of other 
goals (Xi is constant) due to the temporal scope of the resource constraints (i.e. effects on resources have limited 
extent). This gives us: 

 
Θ(NlgN) 
 

Our empirical analysis (discussed in a later section) supports this average case bound. 
Once we have cached the best goals, checking a specific goal is a simple lookup in the set. Dispatching a 

selected goal for execution is: 
 
O(lgN + lgM) 
 

The first term is from the lookup for goals due for execution which we assume to be small (typically one). The 
second term is from the lookup in the set of selected goals. Assuming worst case where all goals are selected (M == 
N), we get: 

 
O(lgN) 
 
Finally, we take a look at the expected quality of the output of the algorithm. Our primary claim is that the 

algorithm is optimal for the given priority rule. In other words, a goal with priority P will always be selected in place 
of any number of goals with priority less than P. Intuitively, this follows from the decreasing priority order in which 
goals are selected. Now consider scoring the selected goal set with a weighted sum using weights sufficiently large 
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at priority P to outweigh all goals at priority less than P. Our goal selection algorithm will maximize this score, but 
only when the requested goals are assigned unique priorities. If goal priorities are not unique, the overall weighted 
sum of priorities depends on the order in which we select goals with equal priority. In our implementation, the goal 
submitted first is selected first. This goal, however, may use more resources than the other goals with the same 
priority, accommodating fewer goals at lower priorities, and producing an overall lower score. Our initial empirical 
analysis, however, shows that our solutions do not fall far from the maximum score. 

VII. Algorithm Assumptions, Limitations, and Requirements 
We make several assumptions to keep the goal selection algorithm simple and efficient.  

• We do not solve the general planning problem.  We only decide which high level goals should be 
selected. We do not search for alternate methods of achieving the high level goals. While less powerful, 
this tends to be more accepted by spacecraft engineers who prefer consistency and predictability. The 
tasks of goal decomposition and command execution are left to an executive or sequencing engine (e.g. 
VML). These systems can be very expressive and allow goals to be expanded in a complex, context-
dependent manner. 

• We do not solve the general scheduling problem. We only decide on which subset of requested goals 
and activities to add to the plan, not on when they should be scheduled. Goals and activities must be 
submitted with predetermined start times. As an example, for an orbiting spacecraft with repeating 
science opportunities, this restricted form of planning can select which observation to perform on a 
specific orbit, but can not select alternate overflights for a particular observation.  

• We are only reasoning at the goal level. Resource reasoning is performed on goal resources which are 
assumed to be abstractions of the expected use of resources by the lower-level commands. We found 
this abstraction useful for many of the EO-1 resource constraints  

• We also assume that goals are ranked using the strict priority rule. In other words, any number of low-
priority goals can be preempted by a high-priority goal. When goals have equal priority, the goal that 
was requested first will take precedence (i.e. first-come-first-served). EO-1 scientists were most 
comfortable with this simple priority scheme. 

It is worth pointing out that even with these restrictive assumptions, the goal replacement capabilities we are 
offering far exceed what is available on typical spacecraft today, whether implemented in general commanding 
capabilities or custom flight software. 

To benefit from these capabilities, however, users must encode some additional knowledge when defining goals 
compared to defining activities or sequences strictly for the purpose of execution. First, users must provide some 
form of selection criteria. In our case, this is a priority for the goal. The user must also specify a summary of the 
expected resource usage for each goal. Where resource use at runtime may be intricate or even implicit, goal 
resources force the user to define resource use in an explicit and predictable way. Finally, users must provide an 
expected start and end time for the activity or sequence requested by the goal. This is necessary for predicting the 
temporal scope of the resource use. 

VIII. Planning and Execution with VML 
Designed as a multi-mission application, VML is one of the most advanced onboard execution systems in 

widespread use for NASA missions [Grasso 2004]. Missions currently using VML include Odyssey, Spitzer, Dawn, 
MRO, and Phoenix. On these missions, VML has been used for a wide range of sequencing functions including: 
launch routines, orbit insertion, entry-descent-and-landing, science acquisition, and fault response. 

We have implemented goals, resources, and the goal selection algorithm as prototype extensions to VML. A new 
thread/task, the Goal Manager (GM), implements the goal selection algorithm and invokes the dispatch function 
periodically. Finally, new user interface functions are added to allow goals to be added, removed, or changed. 

At runtime, we ultimately need a set of executable commands that achieve the selected goals. Using existing 
VML 2.0 sequencing capabilities, we define a general pattern to the language to enable goal achievement with 
flexible and robust execution. Specifically, the language pattern consists of defining hierarchies, preconditions and 
effects familiar to the AI planning community. To implement a hierarchy, a VML sequence for a goal or activity can 
spawn other VML sequences for sub-activities, eventually breaking down to executable commands. When 
appropriate, sequence execution can be delayed to wait for the preconditions to be met, allowing more flexible 
execution. Finally, effects of the commands are monitored and appropriate responses can be defined to recover from 
failures and provide more robust execution. 
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IX. Autonomous Spacecraft Operations 
Our work was motivated by scenarios taken from the Autonomous Sciencecraft Experiment (ASE) used in 

operating the Earth-Observing 1 (EO-1) satellite. In these scenarios, the science team starts by providing a set of 
data collect requests that oversubscribe spacecraft resources. A baseline set of collects and alternates are selected 
and uplinked. During execution, on-board science processing may generate new goal requests [Chien et al., April 
2005]. Ground-based sensorweb processing may do the same using uplinked commands [Chien et al., June 2005]. A 
prototype Goal Manager was implemented and tested on these scenarios. The EO-1 model consists of VML 
sequences that implement activities for operating EO-1, including collecting and downlinking science data. The 
system was run on a typical EO-1 collect-downlink cycle where on-board resources (e.g. science data storage) are 
oversubscribed. At runtime, a simple spacecraft simulator was used to mimic command behavior, including effects 
on resources. Goal request changes were simulated using a time-tagged file containing the change specifications. 

We also studied planning and sequencing problems from the Mars Reconnaissance Orbiter (MRO) and the Mars 
Exploration Rover (MER) missions. From these, we identified several scenarios that might benefit from this 
technology. For example, in data relay scenarios an anomaly can either trigger a request for an emergency relay 
communication goal, or create a relay opportunity from a failed goal that releases resources. In addition, goal 
selection could be used to maximize the use of onboard data storage. Rejected science goals, which at first seem to 
oversubscribe this highly-contended resource, could be selected at runtime if more data storage is available than 
originally expected. 

X. Empirical Analysis 
The motivation for our experiments is to: 

• Quantitatively present the difference between our solutions and optimal solutions. 
• Quantitatively present the difference between our solutions and solutions generated by a greedy, 

forward dispatch algorithm. 
• Empirically show that the run-time of the algorithm matches the theoretical analysis. 

Experiments were run on two problem sets: 
• Randomly generated problems for randomly generated domains 
• Randomly generated problems for the EO-1 domain 

For the randomly generated domains, we identified several domain parameters that affect performance, 
including: number of goal types (G), number of resource types (R), and number of resources per goal (RPG). These 
parameters impact the level of interaction between goals. We expect higher levels of interaction to result in slower 
runtimes, but a higher potential for quality improvements when compared to greedy solutions.  

When generating random problem sets for either a random domain or the EO-1 domain, we looked at the 
following parameters: number of goal instances (N), number of goals per goal type (NPG), number of goals per time 
unit (NPT), and number of goals per priority level (NPP). Again, the first three parameters impact the level of goal 
interaction. More goals in a smaller time range will have more shared resources that interfere. The last parameter, 
number of goals per priority level (NPP), was used to show that our solutions are optimal when guaranteed (NPP = 
1) and do not stray far from optimal otherwise (NPP > 1). 

Experiments were generated using a random problem generator. Specifically, random domains include 20 
resource types and 20 goal types with each goal type using 10 resources. The EO-1 domain contains 7 resource 
types and 5 goal types with each goal using about 3 resources on average. Goals are defined for collecting, 
processing, and downlinking data. Shared resources are defined for the onboard data recorder and file system. For 
both random and EO-1 domains, we generated 300 problems sets containing 300 goals each. 

Three algorithms were used to generate solutions from the problems sets: 
• Goal Manager (GM) 
• Optimal (OPT) 
• Greedy Forward Dispatch (GFD) 

GM runs the algorithm described in this paper. OPT is a variant of this algorithm that tries all possible orderings 
for adding goals with equal priority. This is meant to find better solutions that may have been missed by GM which 
breaks ties using a first-come-first-served rule. In GFD, goals with earlier requested start times are selected first, 
ignoring the interactions with unselected goal requests. This simplifies the resource reasoning by removing the need 
to propagate resource values into the future. Also, rejected goals are not maintained for future consideration, 
reducing the number of interactions that must be analyzed. GFD is used as a representative algorithm that is simple 
and fast, but more naïve at selecting goals, giving a lower bound on both runtime and solution quality. All 
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algorithms were implemented in C++ and run on a Sun workstation configured with two 2.6 GHz AMD Opteron™ 
252 processors, 16 GBytes of RAM, and the 64-bit Red Hat Enterprise Linux operating system. 

The graphs show the average runtimes (Figure 3 bottom) and scores (Figure 3 top) for adding a single goal to an 
increasing baseline goal set for the EO-1 domain (Figure 3 right) and random domains (Figure 3 left) . The CPU 
times reported are for adding one new goal to a set of N goals plotted on the x-axis. The scores reported are for the 
resulting set of selected goals. The score of a single goal is calculated using the function GPPmax(p – Pmax where 
GPPmax is the maximum goals per priority level, p is the priority of the goal, and Pmax is the maximum priority of all 
goals. The score for a set of goals is the sum of scores for all goals in the set. This function ensures that the score for 
any number of goals at a lower priority will not sum up to more than the score of a single goal at a higher priority. 

In these runs, start times and priorities were chosen at random from an increasing range of values, representing 
typical scenarios where NPT and NPP are relatively constant. This corresponds to the average case complexity 
analysis, and the data for random domains support the Θ(NlgN) result. The NlgN fit to the GM data is shown in 
the graph. The EO-1 domain demonstrates the worst case where nearly all goals share the same resource (the 
onboard file system), and we see a best fit to an N2 curve. The exponential runtime of OPT is due to our naïve 
implementation that considers all possible ordering of goals with equal priority. The graphs also show GM 
producing solutions with scores at or slightly lower than OPT (plotted on top of each other), but with GM and OPT 
both scoring much higher than GFD. The 95% confidence intervals (using standard error of the mean) are shown, 
but are very small for OPT and GM. The scores produced by GFD are noisy due to its preference for selecting goals 
with earlier start times instead of higher priority. 

In other experiments we looked at performance on problems that added larger sets of goal requests. We also 
examined algorithm behavior along individual dimensions such RPG, NPT, and NPP. The details of these 
experiments are beyond the scope of this paper, but preliminary results support the theoretical analysis. 

In summary, we have empirically shown our goal selection algorithm to: 
• Exhibit low-order polynomial runtime behavior with respect to the size of the problem 
• Generate solutions near optimal and much better than a greedy approach 

In other words, with a few restrictions, we show that it is possible to preserve alternative goal sets and (when the 
need arises) re-consider previously rejected goals in a timely fashion in order to maintain high quality solutions. 
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XI. Estimating Onboard Response Times 
In addition to empirically demonstrating the run time of the Goal Manager algorithm and the quality of its 

solutions, we have conducted tests to estimate its run time onboard a spacecraft.  This scenario projects expected 
onboard run times if the goal manager algorithm were running onboard the Mars Reconnaissance Orbiter (MRO) 
mission.  While actually running the goal manager algorithm on an embedded processor would have been ideal, the 
version of the available VxWorks compiler was not advanced enough to compile the Goal Manager C++ code.  To 
estimate run-times for the algorithm on a flight processor and compare to an operational scenario, we performed the 
following steps: 

1. The Linux workstation was scaled against a commercial PowerPC 750 processor by running ASPEN 
(Automated Scheduling and Planning Environment) [Chien et al. 2000] on both platforms. 

2. The PowerPC 750 was compared against the RAD 750 operating on MRO. 
3. An MRO operations scenario mission requirement was derived based on the historical MRO observation 

request rate (e.g. requested observations per week). 
4. Using 1 & 2 above, the GM runtimes for Linux were converted to estimated runtimes for the MRO 

computing environment, then compared to MRO mission requirements from step 3. 
Both ASPEN and the Goal Manager were run on the Linux workstation previously described.  ASPEN was also 

run on a Gespac 150 MHz PowerPC 750 embedded board, with 128 MB RAM, running VxWorks 5.3.  The MRO 
flight computer is a RAD 750 running at 133 MHz, with 128 MB of DRAM, also running VxWorks [NASA 2006].  
The Gespac system and the MRO flight computer are both based on the same architecture, have similar clock 
speeds, and run the same OS, so we expect similar performance. 

ASPEN is a modular, re-configurable application framework based on Artificial Intelligence techniques, which 
is capable of supporting a variety of planning and scheduling applications including spacecraft operations planning, 
planning for mission design, surface rover planning, ground antenna utilization planning, and coordinated multiple 
rover planning [Chien et al. 2000].  It is currently operating onboard the EO1 spacecraft. Using the same inputs, 
ASPEN was run on both the Linux workstation and the Gespac, providing a point of comparison between the two 
systems. 

The time scaling factor comes from three elements.  First, the ASPEN runs averaged about 28 times faster on the 
Linux workstation as compared to the Gespac. Second, the 150 MHz Gespac PPC is about 1.13 times faster than the 
133 MHz MRO PPC.  Third, based on step 3 above, we assumed that a maximum of 0.5% of the processor time 
could be allocated to the Goal Manager running on MRO.  The Gespac was able to devote nearly 100% of its cycles 
to running ASPEN, so this results in a 200-fold scaling factor between the Gespac and MRO PPCs. Multiplying the 
above three factors together results in expected run times on MRO that are 6,322 times longer than those on the 
Linux workstation. 

Next, we look at current MRO operations. MRO can perform up to 1200 nadir and off-nadir observations every 
14 days, and MRO science teams consider more observations than are actually scheduled. A single observation can 
take up to 20 minutes.  Two eight-hour downlink sessions for primary science acquisition were conducted each day 
for the science phase of the mission [Zurek and Smrekar 2007].  Thus, goals would only have to be stored for 24 
hours.  These facts provide several inputs to the test: a 1-day window for scheduling observations, the number of 
observations that should be selected, and the duration range for a single observation (1-20 minutes). 

 The EO1 problem, used in the empirical analysis of the Goal Manager, proved a comparably difficult 
problem to scheduling observations for MRO.  Therefore, rather than creating a brand-new model to simulate MRO, 
we reuse the EO1 model to analyze the runtime of the Goal Manager on a scenario that is comparable to MRO 
operations. The scenario included 2030 goals spread over 14 days, yielding about 145 goals per day, of which about 
90 were selected in each trial. In these tests, two types of data were collected: 

1. Generating random sets of 145 goals each, and measuring total time to schedule these; and 
2. After running the algorithm with an initial set of 145 goals, adding 1 more goal with a random priority, 

rerunning the algorithm, and measuring the time taken to perform this addition. 
Running the Goal Manager with the input goals took an average of 0.193 seconds on the workstation.  

Multiplying by the scale factor, this turns out to be 20.3 minutes on MRO.  The maximum time for adding all goals 
was 0.236 seconds on the workstation, translating to 24.9 minutes on MRO.    The GM would thus use a small 
fraction of time to schedule all goals for a day of operations - less than 30 minutes out of 24 hours.  The time to add 
a single goal depends on its priority, but is much shorter. On average, adding a single goal to the set took 11.5 
milliseconds, or 72.5 seconds on MRO. In the worst case, adding a maximum-priority goal requires that all goals be 
rescheduled, but even this does not take an inordinate amount of time. Adding a maximum-priority goal took up to 
22.3 milliseconds on the workstation, scaling to 145.4 seconds on MRO. The implication of this is that goals can be 
changed and re-selected up to only a few minutes of their scheduled execution time. 
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These run-times indicate that, even when running with a very small allocation of a slow CPU, the GM can 
function in a timely manner. It would be most useful when accommodating a new goal on short notice.  For 
example, if science planners noticed an interesting phenomenon taking place in current observations, they could 
quickly upload a new opportunity for observing it, and the spacecraft could reschedule observations to accommodate 
the request.  By keeping all requested observations in memory, including those that were not scheduled, the 
spacecraft would be able to schedule new observations to take the place of others discarded in favor of new requests. 

XII. Related Work 
Much of the research in planning and goal selection has focused on more general, intractable problems. For 

example, [Smith 2004] looks at the more general problem that includes selecting goals and choosing their order 
when resource usage depends on the order of the goals (e.g., for a traveling rover). Both the Squeaky Wheel 
Optimization [Joslin and Clements 1999] and the Task Swapping [Kramer and Smith 2004] algorithms have been 
shown to improve oversubscribed schedules by re-scheduling tasks to allow more goals to fit. Instead, we look at a 
more constrained problem that can be solved in polynomial time, while still providing advanced autonomy 
capabilities useful for many embedded applications. 

Tractable planning solutions typically take one of the following three approaches: 
1. focus on average case performance  
2. use domain-specific knowledge to simplify the general problem 
3. apply general restrictions to the problem to make planning tractable 

In the first approach average case performance is considered for difficult applications when occasional failures 
are acceptable (e.g. with the use of heuristics [Bonet and Geffner 2001]). When relying on average-case 
performance, one must accept the fact that the algorithm may not efficiently solve some problems. In the second 
approach, domain-specific knowledge is used to encode problem-specific solutions when possible including the use 
of hierarchies [Tate et al. 1994, Erol et al. 1994, Nau et al. 2003] or context-dependent effects [Wilkins and 
DesJardins 2001]. A knowledge-based solution, however, is a one that is tailored for a particular problem and can be 
difficult to formally verify. Our work is most closely related to the third approach, which is supported by theoretical 
work showing how the efficiency of planning is related to the expressivity of the planning domain language. For 
example, [Bylander 1994] and [Erol et al. 1995] examine limited forms of STRIPS-style operators and the effect on 
planning complexity. [Erol et al. 1994] investigates restricted HTN planning. [Jonsson and Backstrom 1998] 
examine how structural restrictions on state transition graphs impact planning complexity for the SAS+ formalism (a 
state variable representation). In the goal selection problem we describe, goals have fixed start times and durations. 
In all cases, different levels of restrictions result in different guarantees on the worst case performance of planning. 
For applications that can meet sufficient restrictions, planning becomes verifiably tractable. 

A considerable amount of work has been done in the area of online planning and execution. We list some of the 
implemented systems here. For example, SCL [ICS] provides a procedural language for spacecraft commanding 
similar to VML.  ESL [Gat 1996] is an execution language for autonomous agents, implemented as an extension to 
the Common Lisp programming language. TDL [Simmons et al.] extends the C++ programming language to include 
the concept of a task. Like ESL, programs in TDL can take advantage of the generic language on which they are 
based. The tradeoff, however, is that it can be much more difficult to verify programs written in an expressive 
language. Model-based executives such as Titan [Williams et al. 2003] and Kirk [Kim et al. 2001] use a declarative 
specification of system behavior (plant model) to track system state and compute desired sequences of control 
actions. The focus of these executives is primarily on the execution and monitoring of goals, while ours is on the 
selection of goals prior to execution. 

Finally, our goals and resources are similar to the concepts of goals and state variables that are central to JPL’s 
Mission Data System (MDS). MDS [Dvorak et al. 1999, Barrett et al. 2004] is a comprehensive approach to systems 
engineering and a methodology for the design and development of control system applications. Goal selection is a 
core capability required by many such applications. 

XIII. Conclusion 
We have described a carefully constrained set of resource and priority reasoning capabilities designed to enable 

run-time goal selection within a limited computational environment. These capabilities enable fast re-optimization 
of goal sets which oversubscribe available resources and have a strict priority ranking. We have presented both a 
theoretical and an empirical analysis of our algorithm as well as described its application to a number of typical 
spacecraft operations scenarios. 
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