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Finite Impulse Response (FIR) Filter
Digital Signal Processing (DSP) 101

An FIR filter is a digital filter with finite impulse response.
Each output is a weighted sum of the previous N inputs.

y(n) =
N�1

∑
k=0

h(k)x(n�k)

N is the size, or taps of the filter, h is a coefficient vector.
N determines the number of multiplications required per
output.
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Down- and Upsampling
Digital Signal Processing (DSP) 101

Downsampling reduces the sampling rate by removing samples.

Downsampling by a factor of M means to reduce the sampling
rate f to f

M

Upsampling increases the sampling rate by introducting
duplicate samples.

Upsampling by a factor of L means to increase sampling rate f
to Lf
Fills the new samples with exisiting sample values

Downsampling and Upsampling are combined with FIR filters
to create Multi-Rate FIRs (MRFIR).
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Multi-Rate FIR (MRFIR)
Digital Signal Processing (DSP) 101

Decimation filter when L=1.
Interpolation filter when M=1.
MRFIRs are widely used as digital frontends for radar, imager,
spectrometer, etc.
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The Basic Problem

How to efficiently implement an MRFIR on a Field
Programmable Gate Array (FPGA) platform?
Problem Definition:

All coefficients are arbitrary.
All inputs samples are arbitrary.
Input samples must be processed in real time without buffering.
Given N, M, and L, performance is defined as the highest
sustainable input rate.
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Observations

The FPGA platform has a limited number of multipliers
available.
Multiplier count is the bottleneck of MRFIR performance.
Down- and Upsampling suggests not all computations are
necessary.
Real question: How to design a filter architecture to maximize
the performance/multiplier ratio?
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Straight Forward Implementation

Implemenation discrete FIR, downsample, and upsample
blocks.
No multiplier sharing/optimization.
Many wasted/repeated computations.
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Polyphase Decomposition

Source: Porat, 1996.

A decimation filter is split to M sub-filters with tap size of N=M.
Inputs are multiplexed, outputs are the sum of all sub-filters.
Difficult to conceptualize multiplier sharing.
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Each Output is a Thread

Pseudocode of an Output Thread
y(n) = 0
for i from n-N+1 to n:

y(n) = y(n) + x(i)*h(N-i)

Each thread represents the finite convolution for an output.
Threads spawn and terminate at a fixed output rate.
Multiplier sharing becomes a static scheduling problem.
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Thread Decomposition (TD) Diagram

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9
y0 *h4 *h3 *h2 *h1 *h0
y1 *h4 *h3 *h2 *h1 *h0
y2 *h4 *h3 *h2 *h1 *h0
y3 *h4 *h3 *h2 *h1 *h0
y4 *h4 *h3 *h2 *h1 *h0
y5 *h4 *h3 *h2 *h1 *h0

N=5, L=1, M=1
Columns represent the required multiplications per input cycle.
Rows represent output threads.
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Decimation TD Diagram

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9
y0 *h4 *h3 *h2 *h1 *h0
y1 *h4 *h3 *h2 *h1 *h0
y2 *h4 *h3 *h2 *h1 *h0
y3 *h4 *h3 *h2 *h1
y4 *h4 *h3

N=5, L=1, M=2.
Outputs removed by decimation are not shown.
At most three multiplications needed per input.
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Interpolation TD Diagram

x0 x0 x1 x1 x2 x2 x3 x3 x4 x4
y0 *h4 *h3 *h2 *h1 *h0
y1 *h4 *h3 *h2 *h1 *h0
y2 *h4 *h3 *h2 *h1 *h0
y3 *h4 *h3 *h2 *h1 *h0
y4 *h4 *h3 *h2 *h1 *h0
y5 *h4 *h3 *h2 *h1 *h0

N=5, L=2, M=1.
Two columns represent one input cycle.
N unique multiplications per input cycle.
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Optimal Multiplier Sharing

Multiplications per input cycle Nmpi are clearly indicated in the
columns of TD diagrams.
Final factor to consider: how fast is the multiplier clock fmult
relative to the input rate f ?
Min. multiplier required: Nmult = Nmpi

f
fmult

fmult
f : Multiplier Clock Advantage (MCA).
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More on Multiplier Clock Advantage (MCA)

MCA exploitation leads to very efficient designs in
multi-staged MRFIR filter banks (see above).
All multipliers run at clock rate fmult = f1
The first stage needs 15

3 = 5 multipliers (MCA=1).
With an MCA of 3, the second stage needs 2 multipliers
Despite being a 72-tap filter, the last stage only needs 2
multipliers.
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Advantages

Thread Decomposition (TD) facilitates global, arbitrary
multiplier sharing.
Polyphase Decomposition (PD) facilitates sharing by
multiplexing sub-filters, or locally within sub-filters.
TD exploits the MCA to the fullest extent, while PD is tightly
coupled with M and L.
The MCA effect is more substantial for cascaded MRFIR filter
banks.
Result: higher throughput (performance) per multiplier.
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The Thread Decomposition Diagram translates an MRFIR
design into a static scheduling problem of the multipliers.
The minimum number of multipliers is determined by the
number of multiplications per input (Nmpi ) and the multiplier
clock advantage ( fmult

f ).
Thread Decomposition is designed to accomplish the goal of
minimum multiplier count.
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