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Abstract—A multithreaded software application was developed 
by Jet Propulsion Lab (JPL) to collect a set of correlated 
imagery, Inertial Measurement Unit (IMU) and GPS data for a 
Wallops Flight Facility (WFF) sounding rocket flight.  The 
data set will be used to advance Terrain Relative Navigation 
(TRN) technology algorithms being researched at JPL.  This 
paper describes the software architecture and the tests used to 
meet the timing and data rate requirements for the software 
used to collect the dataset.  Also discussed are the challenges of 
using commercial off the shelf (COTS) flight hardware and 
open source software.  This includes multiple Camera Link (C-
link) based cameras, a Pentium-M based computer, and Linux 
Fedora 11 operating system.  Additionally, the paper talks 
about the history of the software architecture’s usage in other 
JPL projects and its applicability for future missions, such as 
cubesats, UAVs, and research planes/balloons.  Also talked 
about will be the human aspect of project especially JPL’s 
Phaeton program and the results of the launch. 
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1. INTRODUCTION 
One of the long term goals of NASA’s planetary exploration 
program calls for robotic missions to extraterrestrial 
planetary bodies in the solar system such as the Moon, 
Mars, Europa, Titan, comets and asteroids.  In particular 
there are some high value targets on these surfaces, such as 
craters, dry lakes, and meteorite impact sites that have 
greater scientific value than a generic location.  The 
problem arises in that quite often these targets are not large 
enough to be navigated to by current state of the art 
spacecraft guidance and navigation technology; current 
technology has a 3-sigma landing error of 1 km from a 
planned target.   [1], [2]     
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A proposed solution to this problem is to utilize TRN. TRN 
technology utilizes camera images of a planetary surface 
and inertial measurement unit (IMU) data of a spacecraft as 
inputs into a Kalman filter based algorithm which can 
determine the position of a moving spacecraft in real-time 
and with relatively high-accuracy. The image processing 
technique is called Map Matching, which utilizes a large 
preloaded map of the targeted landing area to compare 
against the images taken by the spacecraft cameras and 
create a vector of landmarks.  The vector of landmarks is 
then fed as an input into the Kalman filter, along with a 
correlated set of inertial measurements. Another image 
processing technique that TRN is developing is called 
feature tracking.  This technique uses the location of the 
landmarks from one image to the next to help determine the 
speed of the spacecraft as well as do hazard detection.  The 
spacecraft then utilizes the position information to 
continually do course corrections during the Entry Descent 
and Landing (EDL) phase resulting in a landing accuracy of 
< 100 meters. [2] 

However, currently TRN is at a Technology Readiness 
Level (TRL) of 4, i.e. “technology development phase”.  To 
advance to the next stage of “technology demonstration” a 
flight-like data set must be collected. A realistic and cost-
effective method of doing so here on Earth is to use a 
sounding rocket with a trajectory similar to a spacecraft’s 
planetary entry as an analogue.   

To this end JPL has conducted sounding rocket flights in 
conjunction with WFF’s NASA Sounding Rocket 
Operations Contract (NSROC) for collecting the necessary 
data.  To date there have been two of these flights 
conducted.  The first was 41.068/Seybold in 2006 and the 
second one, followed by 41.087/Heyne in 2010.  [3] 

TRN technology development requirements dictated 
sounding rocket system requirements such as minimum 
frame rate for images, minimum image size, minimum data 
rate for IMU (measurements), minimum GPS location 
accuracy, and maximum timestamping errors.  In addition to 
these science requirements, any hardware utilized had to 
survive the extreme g forces, temperatures, and pressure 
changes experienced during a sounding rocket flight.  

A systems architecture that leveraged the suite of legacy 
flight-proven hardware provided by NASROC and COTS 
devices designed to survive in similar extreme environments 
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was deemed to be the most cost effective method of meeting 
the mission objectives of gathering the necessary data.   

The resulting architecture utilized a COTS computer that 
interfaces with NSROC provided hardware such as the GPS 
and IMU and with the COTS devices such as cameras and a 
Solid State Drive (SSD).  The data is stored on board the 
SSD during flight and it’s recovered from the rocket after it 
landed.  The COTS computer utilizes a Linux OS running a 
C programming language based software application to 
accomplish this.  An important reason for utilizing COTS 
Linux and C is the desire to reduce development time and to 
create a product that could be easily tailored to meet the 
needs of a similar mission operating with different 
instruments. [3]  

This paper will introduce in later sections the details of the 
hardware and software as well as the how the software 
architecture was adapted from the needs of the first 
sounding rocket flight to the second flight.  There will also 
be an explanation of the mission-operating scenario as well 
as a discussion of the testing effort utilized to verify that the 
software developed on the COTS devices was meeting the 
stringent TRN requirements.  Some fault-tolerant techniques 
used to perform successfully in one-shot and relatively 
expensive sounding rocket flights will be discussed 
including aspects such as software quality assurance, JPL 
rules, and balancing time and money with the scale of the 
project.   

This paper will also talk about the human aspect of the two 
sounding rocket flights and its impact on the software effort.  
Particularly highlighted will be relationship between the 
workforce on the first flight and the second flight; especially 
the role that JPL’s Phaeton program played in leveraging the 
experience of the scientists and engineers from the first 
flight to support the scientists and engineers working on the 
second flight.   

At the end of this paper will talk about the role this 
particular software architecture has played in other JPL 
projects and its possible uses of it on future projects.  Under 
consideration are projects involving other sounding rockets, 
weather balloons, UAVs and autonomous vehicles.  In the 
last section conclusions will be presented relating to the 
effectiveness of the DAQ software architecture and the 
usage of COTS software and hardware to satisfy soft real-
time requirements.   

2. SYSTEM DESIGN 
TRN requirements required that the trajectory of the 
sounding rocket follow as closely as possible an EDL 
trajectory of a spacecraft attempting to land on a planetary 
body such as the Moon or Mars.  To meet this goal the 
sounding rockets were designed for a 15-20 minute flight.  
The trajectory is such that the rocket reached an apogee of 
120 km about 2 minutes into the flight and it stays in the 
exo-atmosphere (aka space) for about 2 minutes. The 

atmospheric reentry phase begins at about 5 minutes after 
launch, with rocket at about 100,000 feet. Shortly following 
this the parachutes deploy at approximately 15,000 feet and 
the payload begins descending through the atmosphere until 
touchdown about 8-15 minutes later.  

The design of the sounding rocket was broken up among the 
JPL team and the NSROC team.  The NSROC team utilized 
their vast experience in sounding rocket development to 
build a number of active systems on board the rocket.  
These range from the fabrication of a custom aluminum 
shell, to building a power supply for the electronics on 
board the payload, to creating the software that controls the 
trajectory and maneuvers of the rocket, as well as supplying 
the Terrier Improved Orion rocket motor which actually 
launches the payload.  Another important instrument 
provided by the NSROC team was the GPS and IMU 
system. [4] IMU measurements consisted of x, y, z 
accelerations, velocity, and delta thetas (turning angles).  
The GPS measurements were the x, y, z position, velocity, 
and GPS time. The GPS measurements served as a ground 
truth so that in post-processing the TRN algorithm’s 
performance could be compared against a known truth.  [2] 
All this data is combined into a large packet by the 
NSROC’s microcontroller and transmitted out via RS-422.    

The JPL team’s contribution to the rocket payload was less 
broad, but just as important.  Other than working with the 
NSROC team to define the rocket trajectory and TRN 
required activities, the JPL team was responsible for 
providing the onboard cameras and their associated 
peripheral devices such as lenses and lens heaters.  Their 
additional contribution was the onboard computer, which 
interfaced with the cameras as well as the NSROC provided 
GPS and IMU units.  The computer ran a software 
application developed by JPL to collect data from these 
sensors and timestamp it and store the timestamped data on 
computer’s main drive, which was a Solid State Drive 
(SSD).  

As mentioned earlier, there were two sounding rocket 
flights; however, each flight had a slightly different mission.  
When the first flight (41.068/Seybold) was launched its 
main purpose was to provide a proof of concept of the idea 
of using sounding rockets as way to advance TRN. [3] In 
keeping with this goal, the design was kept relatively 
straightforward.  Cameras were only present in one section 
of the rocket known as the “descent” section.  This section 
was aligned such that when the rocket was parachuting 
down through the atmosphere, the camera in the descent 
section was pointing towards the ground.  The on-board 
computer utilized the Camera Link (C-Link) protocol to 
control the cameras and snap images at the desired frame 
rate dictated by TRN. 

The set of IMU/GPS data was fed to JPL provided on-board 
computer through the computer’s RS-232 port (with a RS-
422 to RS-232 converter in between the NSROC 
microcontroller and the JPL computer’s port).  The data 
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from this port was timestamped by the same clock and in the 
same format used to timestamp the camera images.  The 
result is a correlated set of images, IMU and GPS data.   

The system design for 41.087/Heyne built upon the work 
and experience from the first flight and had new 
requirements so that TRN could be advanced further.  The 
main goal was to develop a complementary data set to the 
“descent” phase by getting images from when the rocket is 
in the “exo-atmospheric” phase.  This exo-atmospheric 
phase was representative of a spacecraft’s approach from 
orbit above a planet to just before it entered the atmosphere.  
In the case of the sounding rocket flight, this phase was 
approximately 2 minutes after the rocket approached the 
apogee.  During this phase the camera was required to take 
images of the ground, in particular the location on the 
ground where the rocket was expected to touchdown.  When 
the rocket reentered the atmosphere and the parachutes were 
deployed a second camera took images of the ground, in a 
manner similar to the 41.068/Seybold.  The design chosen 
to accomplish this used two different cameras in two 
different sections of the rocket payload.  The first camera 
was in the “exo-atmospheric” section, which was 
maneuvered so that the side containing the camera pointed 
down towards the ground.  This descent section was similar 
to the descent section from the first flight, with a camera 
located on the portion of the payload opposite the parachute 
such that it always points downward.  (see Figure 1). 

C-Link cameras were used once again to interface cameras 
with the on-board flight computer; however, now there was 

the addition of an extra camera.  The IMU/GPS interface 
mechanism remained the same as being via the RS-232 port 
attached to the computer.  The IMU/GPS dataset was logged 
for the duration of the flight similarly to 41.068/Seybold.   

The key requirements that applied to the flight software 
from a TRN point were for minimum imaging frame rates of 
6 Hz in the descent section and 3.5 Hz in the exo-
atmospheric portion of the flight.  An imaging blur 
requirement translated into a maximum exposure time of 1.1 
ms for the cameras.  The requirements for the IMU were to 
collect data at a rate of 100 Hz, and the GPS to collect at a 
rate of 20 Hz.  The timestamping requirement was such that 
all data be timestamped within an accuracy of 10 ms. This 
requirement includes any timestamping jitter as well as any 
latency uncertainties: latencies by themselves are not bad as 
long as it’s known to enough precision.   

In both flights a user remotely logs in to the flight computer 
via an Ethernet connection during the launch countdown 
and initiates the software application.  After the rocket 
landing, a team would recover the payload shortly after the 
launch (approx 2 hours).  Because of the possibility that the 
system could remain powered on during some of this time, 
it was also critical for the software not to overwrite any 
flight data, if/when it ran out of space on the SSD.   

3. FLIGHT HARDWARE  
The hardware instruments provided by NSROC included the 
JAVAD GPS and the LN200 IMU.  Both of these 

Figure 1 – flight and trajectory of the 41.087/Heyne sounding rocket flight, also shown are the major events 
such as the imaging portions of the flight. Image courtesy of the Phaeton project. [6] 
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As described in the previous section, the imaging rate 
requirements for 41.087/Heyne were 3.5 Hz and 6 Hz for 
the descent and exo-atmospheric phase respectively.   TRN 
technology development could possibly benefit from 
imaging rates greater than the required rates.  A throughput 
analysis/testing of the Kontron, the frame grabber, and the 
SSD revealed that the biggest throughput bottleneck was the 
Kontron’s PATA interface with the SSD, which limited the 
maximum write speed to 19-20 Mb/s.  This analysis affected 
the design of the software for 41.087/Heyne.   As the 
desired write speed for operating both TM2030CL cameras 
simultaneously was a minimum of 19 Mb/s, there was no 
margin.  The design for 41.087/Heyne then was changed to 
capturing only images from exo-atmospheric camera during 
exo-atmospheric mode and capturing only descent camera 
images during only the descent portion of the flight.  In this 
scenario, the imaging rate could be increased to 8 Hz, with 
each camera only operating during its required phase in the 
flight and software controlled switching between phases.     

4. SOFTWARE ARCHITECTURE  
The Kontron’s processor and the memory use a 1.7 GHz 
Pentium M processor and 1 GB of RAM and it is capable of 
supporting a large COTS OS such as Windows XP or 
Linux.  There was a need for high degree of OS 
customization to maximize performance and to support 
drivers for the various sensors. This drove the decision to 
use a Linux based OS such as Fedora.  Fedora 6 was used in 
41.068/Seybold and Fedora 11 in 41.087/Heyne (each the 
latest version available at the time of their usage).  A real-
time operating system was strongly considered, as it 
would’ve made the task of ensuring the timestamping 
accuracy much simpler; however, due to budget and 
especially schedule constraints, the project chose to go the 
route of a highly optimized non real-time OS in order to 
minimize development time.  

Software Drivers for Sensors 

The next step in software development was to identify and 
install any drivers for the hardware instruments.  In the 
41.068/Seybold, the two instruments interfacing with the 
Kontron were the TM1020-CL C-Link camera and the RS-
232 output from the GLN-MAC.  In 41.087/Hyene, the 
three instruments interfacing with the Kontron were two 
TM2030-CL C-Link cameras and the RS-232 output from 
GLN-MAC (see Figure 2).  

As the EDT C-Link frame grabbers were the method of 
interfacing the Kontron with the C-Link cameras it was 
necessary to install drivers only for the frame grabber.  
Linux compatible drivers are available from EDT and install 
bug-free, at least on Fedora.  The default install directory is 
the “/opt/EDTpdv” location in Linux.  All necessary include 
files containing the camera drivers’ Application 
Programming Interface (API) were by default installed to 
this location.   Any program using the drivers simply 

included the proper file from the install directory and called 
on the appropriate methods as defined in the API. 

A challenging aspect of properly interfacing the cameras 
with the frame grabber was the need for a camera specific 
“config” file.  This file had a special format and was used by 
the frame grabber to load camera characteristics such as 
image size, number of bits per pixel, and interlacing or non-
interlacing mode among many other things.  The EDT 
drivers had a large selection of config files for many 
different cameras; however, the cameras chosen by JPL 
(TM1020CL and TM2030CL) were not included.  For 
41.068/Seybold a significant effort had to be devoted to 
creating a proper config file.  Much of the same task had to 
be repeated for 41.087/Heyne as the cameras had changed 
although the learning curve was much smaller due to 
previous experience.   

The drivers necessary for using the COM ports on the 
Kontron came as part of the Fedora package.  It is 
represented as the “/dev/ttyS0” device file and is very 
commonly used by a very large number of users in various 
applications [5].  There are also plenty of online resources 
dealing with proper usage of these drivers with sample 
source code.  

DAQ Software Architecture 

Software architecture is based on a multithreaded design; 
two threads are responsible for data from each sensor.  The 
first thread acquires data and writes the acquired data to a 
ring buffer; while the second reads data from the ring buffer 
and writes this data to the SSD (see Figure 3).   The threads 
are Linux posix threads and utilize the standard Linux 
“pthread” library.  This library is available on all versions of 
Fedora. 

This design is implemented in such a way as to create a 
standard approach to adding or removing new instruments.  
Two top-level global arrays hold instrument specific data 
and function pointers for all instruments.   

The first array is of structure types defined as SENSOR.  
The SENSOR struct contains the following information:  

• size: an integer representing the number of bytes per 
data point (example: 179 bytes per GLN-MAC packet 
or 1920*1080*8 bytes per TM2030CL image).  
Assuming that all packets of data from a specific sensor 
are always of the same size. 

• rate: an integer specifying the rate of samples per 
second (example: 8 Hz imaging rate for 41.087 
cameras) 

• description: a string describing the sensor (example: 
“Pulnix TM2030CL” 

The second array is of DAQ_TASK structure types and 
contains function pointers (C language data type 
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“Main()” then launches the “log_start()” function.  A mirror 
image of the “acq_start()” function, except now a thread is 
spawned to read the data written into the ring buffer and 
write it out to disk.  This function uses the “taskSpawn()” to 
spawn a thread of the “log_save()” function, which contains 
a loop to continuously grab the data from the ring buffer and 
write it out using the “saveData()” method defined for each 
sensor type.    

Mutexes are used to protect the data flow between the 
acquire threads and the save threads.  The “log_save()” 
threads also use a thread mutex to block the thread if there is 
no data in the ring buffer to save.  This is meant to save 
CPU cycles. 

A race case condition exists if the “log_save()” thread can 
not write data and clear out the ring buffer as fast as the 
threads spawned from the “acq_start()” were writing it to 
disk. If the acquire threads encounter a full ring buffer, the 
data is dropped, until the sensor’s “log_save()” thread can 
read the data out and clear space in the ring buffer.  This is 
detected if the log_queue variable is equivalent to the 
capacity of the ring buffer.   

Soft real-time camera switching 

As mentioned in Section 3, the 41.087/Heyne’s software on 
the Kontron was required to switch cameras from exo 
camera to descent camera at the proper time.  This was 
implemented by utilizing the information in the incoming 
packets from the GLN-MAC.  A special timer in 179-byte 
packet was such that its value only started incrementing 
when the rocket left the launch pad.  This timer was also 
accurate enough to be useful in knowing whether the rocket 
is in the two-minute portion of the flight between exo-
atmospheric imaging and descent imaging phase.  The 
GLN-MAC acquire thread continually analyzes the timer to 
see when it reached the “desired value”.  At the 
programmed time the GLN-MAC acquire thread 
incremented a specific global variable.  This global variable 
was read by the camera acquire thread and at that time, the 
camera acquire thread switches to acquiring from the 
descent camera.  (Note: The exo-atmospheric camera is on a 
specific channel of the frame grabber, while the descent 
camera is on the other channel, the software simply switches 
channels)  Once the switching occurred, only a restart of the 
software could switch it back to exo-atmospheric mode.  A 
fault tolerance mechanism was built in to prevent a spurious 
signal from causing a premature switch.  Each frame’s timer 
analyzed by the GLN-MAC acquire thread would have to be 
at the desired value for at least seven consecutive frames 
and each timer value would have to be greater than the 
previous value.  If any frame’s timer contained a value less 
than the pre-programmed “desired value” or the previous 
timer value, the count would start from zero once again.  

Timestamping Analysis 

The timing tests on the software/hardware revealed a total 
latency uncertainty of 2 milliseconds.  The latency 
uncertainty for applying timestamp to an image was very 
low, approximately 50 microseconds.  This was due to the 
fact that the frame grabber drivers used the PCI bus to write 
data directly into the DRAM. The frame grabber drivers 
utilized Direct Memory Access (DMA) by transferring 
directly from the camera’s CCD into the Kontron’s DRAM 
with no intermediate buffering in the frame grabber.  The 50 
microseconds latency number was provided by the frame 
grabber manufacturer as a maximum latency for DMA 
transfer over the PCI bus.  As the frame grabber driver also 
timestamps the data after receiving  

The latency for applying the timestamp to a RS-232 packet 
was higher at about 1.8 milliseconds.  This was due to the 
lower priority the UART interrupt has in the Linux kernel’s 
default drivers.  A test byte of data was sent from one COM 
port to another COM port on the Kontron, the byte was time 
tagged before it was transmitted and after it was received; 
the maximum delay observed in these tests was no more 
than 1.8 ms. The actual latency for just receiving serial data 
and timestamping it was almost certainly less than this 
value, as this added in the transmit latency on the Kontron’s 
COM part as well. Serial port latency is higher because the 
data is buffered by the UART chip’s internal register, rather 
than using DMA.  Part of the 1.8 ms latency comes from the 
RS-232 chip on the Kontron, which is an UART16550A.  It 
has an internal buffer of 16 bytes. At a baud rate of 115200 
symbols/sec a maximum of .11 milliseconds worth of data 
can be stored on the chip before the processor accesses it 
and is able to timestamp it.  As the system requirement was 
for an under 10 milliseconds latency uncertainty, no further 
testing was conducted to narrow down the RS-232 latency 
uncertainty and to be safe the whole RS-232 latency of 1.8 
milliseconds was included as part of the latency uncertainty.  

Linux Optimizations 

The versions of Fedora used in 41.087/Heyne (Fedora 11) 
has default built-in (Graphical User Interface) GUI 
interface.  This GUI consumed valuable CPU cycles, which 
directly affected the latencies of any timestamps applied by 
the DAQ software application and the priority of interrupts 
used by the sensor drivers.  The GUI can be deactivated by 
editing the “/etc/inittab” file and changing the runlevel from 
5 to 3.  [6]   This had no detrimental impact on the usage of 
the software application, as the user would log in to the 
Kontron through its Ethernet connection to use it.   

Another Linux modification used was to launch the DAQ 
application as soon as the Kontron runs through its boot 
sequence, through editing the “/etc/rc.local” file.  [6]  This 
was implemented as a fault tolerant feature incase the 
Kontron temporarily lost power in mid-flight.   
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The data recovery portion of the mission involved removing 
the PATA SSD from the flight Kontron and installing it on 
an identical model spare Kontron.  As the OS is installed on 
the SSD, the spare Kontron would boot with flight OS and 
data, which could then be copied over to an external hard 
drive using the USB port on the Kontron. 

5. PHAETON  
An important human aspect of the sounding rocket flights 
was the involvement of the Phaeton program at JPL.   
Phaeton is a program at JPL whose primary purpose is to 
train young engineers and scientists at JPL a hands-on 
experience to allow them to experience the full life cycle of 
a flight project.  Typical flight projects at JPL can last up to 
a decade from project conception to actual launch.  Some 
projects are also very large so that engineers only 
experience a very limited aspect of it.  In 2008, a group of 
young JPL engineers conceived of the Phaeton program so 
that young engineers could get hands-on experience 
working on a small short life-cycle project.  [7]   
Importantly Phaeton required that projects be useful to JPL 
in their scientific and technological objectives and 
accomplishments.  Another important aspect of the Phaeton 
program is that all the team members on the Phaeton project 
must be young engineers (aka Early Career Hires (ECH): 
defined at JPL as having received a degree within the last 3 
years).  Once selected into the Phaeton program, the ECHs 
are assigned a mentor in the aspect of the project they were 
chosen to work on, and meet with them on a weekly basis 
and guide them in all aspects of their projects.  [7]  The 
mentors for the software development effort included Kenny 
Meyer, Calina Seybold, and Paolo Bellutta.  The software 
architecture is primarily based on Paolo Bellutta’s original 
source code from 41.067/Seybold.  

A sounding rocket flight was considered a natural project to 
be part of the Phaeton project; they are typically small 
projects with budgets from $1 million to $5 million 
(compared to $1+ billion for a flagship JPL mission), and a 
quick design turnaround time of 1-2 years.  Another useful 
aspect of a sounding rocket flight as part of the Phaeton 
program was the recent flight of 41.068/Seybold to advance 
TRN.  TRN technology development plans called for more 
sounding rocket flights to advance TRL levels; and much of 
the scientific justification for a new sounding rocket flight 
had already been done as well as the willingness of team 
members from 41.068/Seybold to serve as mentors of the 
next sounding rocket flight to advance TRN through another 
sounding rocket flight.   

At the time of the formation of Phaeton a NASA proposal 
known as Hands-On Project Experience (HOPE) also started 
up. However, this was a announce of opportunity (AO) 
released by NASA for proposals of projects that use a 
sounding rocket flight via NASA WFF and NSROC to train 
young engineers.  It was to be competed among the different 
NASA centers.  Ultimately the JPL team won the 

competitive proposal, which became known as 
41.087/Heyne. [8]  

The 41.087/Heyne sounding rocket was launched in 
December 2010, and was for the most part successful; there 
was a mechanical problem with the deployment of the exo 
atmospheric door, resulting in the collection of black images 
for the exo atmospheric portion of the flight.  The problem 
was traced to unknown problem with the pyrotechnic screws 
that did not properly deploy.  The JPL software performed 
exactly as planned, with the collection of complete 
correlated set of IMU/GPS data along with images from the 
exo-atmospheric and descent cameras; however, only 
images from the descent camera were of scientific value for 
the reason mentioned above.  Although without a doubt an 
exo-atmospheric dataset would have been useful; a second 
descent dataset is still of scientific value as it provides an 
opportunity to verify the TRN algorithms with a second 
dataset and the data quality of the images and IMU 
measurements is far superior.  Work on the data processing 
is ongoing and will be published at a later time by JPL.   

Software Lifecycle 

An important part of being a Phaeton project was the 
requirement to fulfill many of the JPL flight project 
practices followed by typically larger project.  These 
included activities such as detailed requirements drawn up 
by the software cognizant-engineer, Mohammad Ahmad, 
with support from project system engineers (Benjamin 
Solish, Heidi Nichols), scientists (Martin Heyne, Shane 
Brennan, Nikolas Trawny) and project managers (Don 
Heyer).  The design and the requirements also had to pass 
through several major peer reviews such as a Requirements 
Review, Preliminary Design Review, and a Comprehensive 
Design Review among other smaller internal reviews.    

Other JPL internal reviews included those led by the 
Software Quality Assurance Engineer (SQAE), Ken 
Evensen, for verifying that the software met JPL 
institutional software development requirements.     

The Integration and Test (I&T) Engineer (Thanh Tran and 
Jessica Bowles-Martinez) were responsible for verifying 
independently that the software meets all the software 
requirements and validating the functionality of the software 
meets the planned mission objectives.  The I&T Engineers 
also had the key responsibility for certifying that the flight 
software interfacing properly with external interfaces such 
as Wallops Flight Facility software and hardware. 

6. FUTURE USES  
The software architecture and the implementation of the 
code make the DAQ software very amenable to being used 
on different projects.  In fact many JPL research projects are 
technology development projects or science projects on 
earth based “vehicles” such as balloons, helicopters, 
sounding rockets, autonomous vehicles and UAVs.  It is 
likely to be used in another Phaeton project involving 
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weather balloons.  Currently the DAQ architecture is under 
consideration to be used on another Phaeton project 
involving a research balloon flight into the upper 
atmosphere, with the intent of collecting data from some 
instruments under development at JPL.   

The software architecture has been used on various JPL 
technology development tasks to collect data on board 
autonomous vehicles (PredaTOR project and (Mars Science 
Lab) MSL technology development tasks for machine 
vision related activities).  The functionality was similar, to 
collect data from various sensors (typically cameras) and 
store it on board for post-processing.  
 

7. CONCLUSIONS  
The utility of the DAQ architecture can be measured by its 
use over the last couple of years in many different projects 
at JPL, under different developers.  The key reasons for the 
utilization is its use of generic Linux libraries to make it 
usable across many different machines as well as the well 
defined function structure which allows a user to easily 
customize it to any number of sensors.  The main weakness 
identified with the DAQ architecture is that all data points 
from a single sensor must be of the same size. The 
workaround to this weakness is for the sensor to be 
initialized to a certain size and smaller sized data must be 
padded with garbage bits and bigger sized data must be 
broken up into smaller packets by the sensor’s acquire 
thread. 

The analysis of the timing test data from 41.087/Heyne also 
shows that COTS Linux’s timestamping capabilities are 
capable of achieving millisecond level accuracy, esentially a 
soft-real time framework.  Linux performance can also be 
improved with certain optimizations.  The DAQ architecture 
can also be adapted to an actual real-time OS that uses posix 
threads; fortunately most real-time Linux OSes have posix 
libraries included.   
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