
DAQ: Software Architecture for Data Acquisition in
Sounding Rockets

Mohammad Ahmad, Thanh Tran, Heidi Nichols, Jessica N. Bowles-Martinez
Jet Propulsion Laboratory, California Institute of Technology

Pasadena, CA 91009
818-458-0709

mohammad.ahmad@jpl.nasa.gov

Abstract—A multithreaded software application was developed
by Jet Propulsion Lab (JPL) to collect a set of correlated
imagery, Inertial Measurement Unit (IMU) and GPS data for a
Wallops Flight Facility (WFF) sounding rocket flight. The
data set will be used to advance Terrain Relative Navigation
(TRN) technology algorithms being researched at JPL. This
paper describes the software architecture and the tests used to
meet the timing and data rate requirements for the software
used to collect the dataset. Also discussed are the challenges of
using commercial off the shelf (COTS) flight hardware and
open source software. This includes multiple Camera Link (C-
link) based cameras, a Pentium-M based computer, and Linux
Fedora 11 operating system. Additionally, the paper talks
about the history of the software architecture’s usage in other
JPL projects and its applicability for future missions, such as
cubesats, UAVs, and research planes/balloons. Also talked
about will be the human aspect of project especially JPL’s
Phaeton program and the results of the launch.

TABLE OF CONTENTS

1. INTRODUCTION ...1
2. SYSTEM DESIGN ...2
3. FLIGHT HARDWARE ...3
4. SOFTWARE ARCHITECTURE ..5
5. PHAETON ..8
6. FUTURE USES ...8
7. CONCLUSIONS ..9
ACKNOWLEDGEMENTS ..9
REFERENCES ..9
BIOGRAPHY ..9

1. INTRODUCTION
One of the long term goals of NASA’s planetary exploration
program calls for robotic missions to extraterrestrial
planetary bodies in the solar system such as the Moon,
Mars, Europa, Titan, comets and asteroids. In particular
there are some high value targets on these surfaces, such as
craters, dry lakes, and meteorite impact sites that have
greater scientific value than a generic location. The
problem arises in that quite often these targets are not large
enough to be navigated to by current state of the art
spacecraft guidance and navigation technology; current
technology has a 3-sigma landing error of 1 km from a
planned target. [1], [2]

1 978-1-4244-7351-9/11/$26.00 ©2012 IEEE.
2

 IEEEAC paper #1201, Version 1, Updated December 1, 2011

A proposed solution to this problem is to utilize TRN. TRN
technology utilizes camera images of a planetary surface
and inertial measurement unit (IMU) data of a spacecraft as
inputs into a Kalman filter based algorithm which can
determine the position of a moving spacecraft in real-time
and with relatively high-accuracy. The image processing
technique is called Map Matching, which utilizes a large
preloaded map of the targeted landing area to compare
against the images taken by the spacecraft cameras and
create a vector of landmarks. The vector of landmarks is
then fed as an input into the Kalman filter, along with a
correlated set of inertial measurements. Another image
processing technique that TRN is developing is called
feature tracking. This technique uses the location of the
landmarks from one image to the next to help determine the
speed of the spacecraft as well as do hazard detection. The
spacecraft then utilizes the position information to
continually do course corrections during the Entry Descent
and Landing (EDL) phase resulting in a landing accuracy of
< 100 meters. [2]

However, currently TRN is at a Technology Readiness
Level (TRL) of 4, i.e. “technology development phase”. To
advance to the next stage of “technology demonstration” a
flight-like data set must be collected. A realistic and cost-
effective method of doing so here on Earth is to use a
sounding rocket with a trajectory similar to a spacecraft’s
planetary entry as an analogue.

To this end JPL has conducted sounding rocket flights in
conjunction with WFF’s NASA Sounding Rocket
Operations Contract (NSROC) for collecting the necessary
data. To date there have been two of these flights
conducted. The first was 41.068/Seybold in 2006 and the
second one, followed by 41.087/Heyne in 2010. [3]

TRN technology development requirements dictated
sounding rocket system requirements such as minimum
frame rate for images, minimum image size, minimum data
rate for IMU (measurements), minimum GPS location
accuracy, and maximum timestamping errors. In addition to
these science requirements, any hardware utilized had to
survive the extreme g forces, temperatures, and pressure
changes experienced during a sounding rocket flight.

A systems architecture that leveraged the suite of legacy
flight-proven hardware provided by NASROC and COTS
devices designed to survive in similar extreme environments

 1

was deemed to be the most cost effective method of meeting
the mission objectives of gathering the necessary data.

The resulting architecture utilized a COTS computer that
interfaces with NSROC provided hardware such as the GPS
and IMU and with the COTS devices such as cameras and a
Solid State Drive (SSD). The data is stored on board the
SSD during flight and it’s recovered from the rocket after it
landed. The COTS computer utilizes a Linux OS running a
C programming language based software application to
accomplish this. An important reason for utilizing COTS
Linux and C is the desire to reduce development time and to
create a product that could be easily tailored to meet the
needs of a similar mission operating with different
instruments. [3]

This paper will introduce in later sections the details of the
hardware and software as well as the how the software
architecture was adapted from the needs of the first
sounding rocket flight to the second flight. There will also
be an explanation of the mission-operating scenario as well
as a discussion of the testing effort utilized to verify that the
software developed on the COTS devices was meeting the
stringent TRN requirements. Some fault-tolerant techniques
used to perform successfully in one-shot and relatively
expensive sounding rocket flights will be discussed
including aspects such as software quality assurance, JPL
rules, and balancing time and money with the scale of the
project.

This paper will also talk about the human aspect of the two
sounding rocket flights and its impact on the software effort.
Particularly highlighted will be relationship between the
workforce on the first flight and the second flight; especially
the role that JPL’s Phaeton program played in leveraging the
experience of the scientists and engineers from the first
flight to support the scientists and engineers working on the
second flight.

At the end of this paper will talk about the role this
particular software architecture has played in other JPL
projects and its possible uses of it on future projects. Under
consideration are projects involving other sounding rockets,
weather balloons, UAVs and autonomous vehicles. In the
last section conclusions will be presented relating to the
effectiveness of the DAQ software architecture and the
usage of COTS software and hardware to satisfy soft real-
time requirements.

2. SYSTEM DESIGN
TRN requirements required that the trajectory of the
sounding rocket follow as closely as possible an EDL
trajectory of a spacecraft attempting to land on a planetary
body such as the Moon or Mars. To meet this goal the
sounding rockets were designed for a 15-20 minute flight.
The trajectory is such that the rocket reached an apogee of
120 km about 2 minutes into the flight and it stays in the
exo-atmosphere (aka space) for about 2 minutes. The

atmospheric reentry phase begins at about 5 minutes after
launch, with rocket at about 100,000 feet. Shortly following
this the parachutes deploy at approximately 15,000 feet and
the payload begins descending through the atmosphere until
touchdown about 8-15 minutes later.

The design of the sounding rocket was broken up among the
JPL team and the NSROC team. The NSROC team utilized
their vast experience in sounding rocket development to
build a number of active systems on board the rocket.
These range from the fabrication of a custom aluminum
shell, to building a power supply for the electronics on
board the payload, to creating the software that controls the
trajectory and maneuvers of the rocket, as well as supplying
the Terrier Improved Orion rocket motor which actually
launches the payload. Another important instrument
provided by the NSROC team was the GPS and IMU
system. [4] IMU measurements consisted of x, y, z
accelerations, velocity, and delta thetas (turning angles).
The GPS measurements were the x, y, z position, velocity,
and GPS time. The GPS measurements served as a ground
truth so that in post-processing the TRN algorithm’s
performance could be compared against a known truth. [2]
All this data is combined into a large packet by the
NSROC’s microcontroller and transmitted out via RS-422.

The JPL team’s contribution to the rocket payload was less
broad, but just as important. Other than working with the
NSROC team to define the rocket trajectory and TRN
required activities, the JPL team was responsible for
providing the onboard cameras and their associated
peripheral devices such as lenses and lens heaters. Their
additional contribution was the onboard computer, which
interfaced with the cameras as well as the NSROC provided
GPS and IMU units. The computer ran a software
application developed by JPL to collect data from these
sensors and timestamp it and store the timestamped data on
computer’s main drive, which was a Solid State Drive
(SSD).

As mentioned earlier, there were two sounding rocket
flights; however, each flight had a slightly different mission.
When the first flight (41.068/Seybold) was launched its
main purpose was to provide a proof of concept of the idea
of using sounding rockets as way to advance TRN. [3] In
keeping with this goal, the design was kept relatively
straightforward. Cameras were only present in one section
of the rocket known as the “descent” section. This section
was aligned such that when the rocket was parachuting
down through the atmosphere, the camera in the descent
section was pointing towards the ground. The on-board
computer utilized the Camera Link (C-Link) protocol to
control the cameras and snap images at the desired frame
rate dictated by TRN.

The set of IMU/GPS data was fed to JPL provided on-board
computer through the computer’s RS-232 port (with a RS-
422 to RS-232 converter in between the NSROC
microcontroller and the JPL computer’s port). The data

 2

from this port was timestamped by the same clock and in the
same format used to timestamp the camera images. The
result is a correlated set of images, IMU and GPS data.

The system design for 41.087/Heyne built upon the work
and experience from the first flight and had new
requirements so that TRN could be advanced further. The
main goal was to develop a complementary data set to the
“descent” phase by getting images from when the rocket is
in the “exo-atmospheric” phase. This exo-atmospheric
phase was representative of a spacecraft’s approach from
orbit above a planet to just before it entered the atmosphere.
In the case of the sounding rocket flight, this phase was
approximately 2 minutes after the rocket approached the
apogee. During this phase the camera was required to take
images of the ground, in particular the location on the
ground where the rocket was expected to touchdown. When
the rocket reentered the atmosphere and the parachutes were
deployed a second camera took images of the ground, in a
manner similar to the 41.068/Seybold. The design chosen
to accomplish this used two different cameras in two
different sections of the rocket payload. The first camera
was in the “exo-atmospheric” section, which was
maneuvered so that the side containing the camera pointed
down towards the ground. This descent section was similar
to the descent section from the first flight, with a camera
located on the portion of the payload opposite the parachute
such that it always points downward. (see Figure 1).

C-Link cameras were used once again to interface cameras
with the on-board flight computer; however, now there was

the addition of an extra camera. The IMU/GPS interface
mechanism remained the same as being via the RS-232 port
attached to the computer. The IMU/GPS dataset was logged
for the duration of the flight similarly to 41.068/Seybold.

The key requirements that applied to the flight software
from a TRN point were for minimum imaging frame rates of
6 Hz in the descent section and 3.5 Hz in the exo-
atmospheric portion of the flight. An imaging blur
requirement translated into a maximum exposure time of 1.1
ms for the cameras. The requirements for the IMU were to
collect data at a rate of 100 Hz, and the GPS to collect at a
rate of 20 Hz. The timestamping requirement was such that
all data be timestamped within an accuracy of 10 ms. This
requirement includes any timestamping jitter as well as any
latency uncertainties: latencies by themselves are not bad as
long as it’s known to enough precision.

In both flights a user remotely logs in to the flight computer
via an Ethernet connection during the launch countdown
and initiates the software application. After the rocket
landing, a team would recover the payload shortly after the
launch (approx 2 hours). Because of the possibility that the
system could remain powered on during some of this time,
it was also critical for the software not to overwrite any
flight data, if/when it ran out of space on the SSD.

3. FLIGHT HARDWARE
The hardware instruments provided by NSROC included the
JAVAD GPS and the LN200 IMU. Both of these

Figure 1 – flight and trajectory of the 41.087/Heyne sounding rocket flight, also shown are the major events
such as the imaging portions of the flight. Image courtesy of the Phaeton project. [6]

 3

As described in the previous section, the imaging rate
requirements for 41.087/Heyne were 3.5 Hz and 6 Hz for
the descent and exo-atmospheric phase respectively. TRN
technology development could possibly benefit from
imaging rates greater than the required rates. A throughput
analysis/testing of the Kontron, the frame grabber, and the
SSD revealed that the biggest throughput bottleneck was the
Kontron’s PATA interface with the SSD, which limited the
maximum write speed to 19-20 Mb/s. This analysis affected
the design of the software for 41.087/Heyne. As the
desired write speed for operating both TM2030CL cameras
simultaneously was a minimum of 19 Mb/s, there was no
margin. The design for 41.087/Heyne then was changed to
capturing only images from exo-atmospheric camera during
exo-atmospheric mode and capturing only descent camera
images during only the descent portion of the flight. In this
scenario, the imaging rate could be increased to 8 Hz, with
each camera only operating during its required phase in the
flight and software controlled switching between phases.

4. SOFTWARE ARCHITECTURE
The Kontron’s processor and the memory use a 1.7 GHz
Pentium M processor and 1 GB of RAM and it is capable of
supporting a large COTS OS such as Windows XP or
Linux. There was a need for high degree of OS
customization to maximize performance and to support
drivers for the various sensors. This drove the decision to
use a Linux based OS such as Fedora. Fedora 6 was used in
41.068/Seybold and Fedora 11 in 41.087/Heyne (each the
latest version available at the time of their usage). A real-
time operating system was strongly considered, as it
would’ve made the task of ensuring the timestamping
accuracy much simpler; however, due to budget and
especially schedule constraints, the project chose to go the
route of a highly optimized non real-time OS in order to
minimize development time.

Software Drivers for Sensors

The next step in software development was to identify and
install any drivers for the hardware instruments. In the
41.068/Seybold, the two instruments interfacing with the
Kontron were the TM1020-CL C-Link camera and the RS-
232 output from the GLN-MAC. In 41.087/Hyene, the
three instruments interfacing with the Kontron were two
TM2030-CL C-Link cameras and the RS-232 output from
GLN-MAC (see Figure 2).

As the EDT C-Link frame grabbers were the method of
interfacing the Kontron with the C-Link cameras it was
necessary to install drivers only for the frame grabber.
Linux compatible drivers are available from EDT and install
bug-free, at least on Fedora. The default install directory is
the “/opt/EDTpdv” location in Linux. All necessary include
files containing the camera drivers’ Application
Programming Interface (API) were by default installed to
this location. Any program using the drivers simply

included the proper file from the install directory and called
on the appropriate methods as defined in the API.

A challenging aspect of properly interfacing the cameras
with the frame grabber was the need for a camera specific
“config” file. This file had a special format and was used by
the frame grabber to load camera characteristics such as
image size, number of bits per pixel, and interlacing or non-
interlacing mode among many other things. The EDT
drivers had a large selection of config files for many
different cameras; however, the cameras chosen by JPL
(TM1020CL and TM2030CL) were not included. For
41.068/Seybold a significant effort had to be devoted to
creating a proper config file. Much of the same task had to
be repeated for 41.087/Heyne as the cameras had changed
although the learning curve was much smaller due to
previous experience.

The drivers necessary for using the COM ports on the
Kontron came as part of the Fedora package. It is
represented as the “/dev/ttyS0” device file and is very
commonly used by a very large number of users in various
applications [5]. There are also plenty of online resources
dealing with proper usage of these drivers with sample
source code.

DAQ Software Architecture

Software architecture is based on a multithreaded design;
two threads are responsible for data from each sensor. The
first thread acquires data and writes the acquired data to a
ring buffer; while the second reads data from the ring buffer
and writes this data to the SSD (see Figure 3). The threads
are Linux posix threads and utilize the standard Linux
“pthread” library. This library is available on all versions of
Fedora.

This design is implemented in such a way as to create a
standard approach to adding or removing new instruments.
Two top-level global arrays hold instrument specific data
and function pointers for all instruments.

The first array is of structure types defined as SENSOR.
The SENSOR struct contains the following information:

• size: an integer representing the number of bytes per
data point (example: 179 bytes per GLN-MAC packet
or 1920*1080*8 bytes per TM2030CL image).
Assuming that all packets of data from a specific sensor
are always of the same size.

• rate: an integer specifying the rate of samples per
second (example: 8 Hz imaging rate for 41.087
cameras)

• description: a string describing the sensor (example:
“Pulnix TM2030CL”

The second array is of DAQ_TASK structure types and
contains function pointers (C language data type

 5

“Main()” then launches the “log_start()” function. A mirror
image of the “acq_start()” function, except now a thread is
spawned to read the data written into the ring buffer and
write it out to disk. This function uses the “taskSpawn()” to
spawn a thread of the “log_save()” function, which contains
a loop to continuously grab the data from the ring buffer and
write it out using the “saveData()” method defined for each
sensor type.

Mutexes are used to protect the data flow between the
acquire threads and the save threads. The “log_save()”
threads also use a thread mutex to block the thread if there is
no data in the ring buffer to save. This is meant to save
CPU cycles.

A race case condition exists if the “log_save()” thread can
not write data and clear out the ring buffer as fast as the
threads spawned from the “acq_start()” were writing it to
disk. If the acquire threads encounter a full ring buffer, the
data is dropped, until the sensor’s “log_save()” thread can
read the data out and clear space in the ring buffer. This is
detected if the log_queue variable is equivalent to the
capacity of the ring buffer.

Soft real-time camera switching

As mentioned in Section 3, the 41.087/Heyne’s software on
the Kontron was required to switch cameras from exo
camera to descent camera at the proper time. This was
implemented by utilizing the information in the incoming
packets from the GLN-MAC. A special timer in 179-byte
packet was such that its value only started incrementing
when the rocket left the launch pad. This timer was also
accurate enough to be useful in knowing whether the rocket
is in the two-minute portion of the flight between exo-
atmospheric imaging and descent imaging phase. The
GLN-MAC acquire thread continually analyzes the timer to
see when it reached the “desired value”. At the
programmed time the GLN-MAC acquire thread
incremented a specific global variable. This global variable
was read by the camera acquire thread and at that time, the
camera acquire thread switches to acquiring from the
descent camera. (Note: The exo-atmospheric camera is on a
specific channel of the frame grabber, while the descent
camera is on the other channel, the software simply switches
channels) Once the switching occurred, only a restart of the
software could switch it back to exo-atmospheric mode. A
fault tolerance mechanism was built in to prevent a spurious
signal from causing a premature switch. Each frame’s timer
analyzed by the GLN-MAC acquire thread would have to be
at the desired value for at least seven consecutive frames
and each timer value would have to be greater than the
previous value. If any frame’s timer contained a value less
than the pre-programmed “desired value” or the previous
timer value, the count would start from zero once again.

Timestamping Analysis

The timing tests on the software/hardware revealed a total
latency uncertainty of 2 milliseconds. The latency
uncertainty for applying timestamp to an image was very
low, approximately 50 microseconds. This was due to the
fact that the frame grabber drivers used the PCI bus to write
data directly into the DRAM. The frame grabber drivers
utilized Direct Memory Access (DMA) by transferring
directly from the camera’s CCD into the Kontron’s DRAM
with no intermediate buffering in the frame grabber. The 50
microseconds latency number was provided by the frame
grabber manufacturer as a maximum latency for DMA
transfer over the PCI bus. As the frame grabber driver also
timestamps the data after receiving

The latency for applying the timestamp to a RS-232 packet
was higher at about 1.8 milliseconds. This was due to the
lower priority the UART interrupt has in the Linux kernel’s
default drivers. A test byte of data was sent from one COM
port to another COM port on the Kontron, the byte was time
tagged before it was transmitted and after it was received;
the maximum delay observed in these tests was no more
than 1.8 ms. The actual latency for just receiving serial data
and timestamping it was almost certainly less than this
value, as this added in the transmit latency on the Kontron’s
COM part as well. Serial port latency is higher because the
data is buffered by the UART chip’s internal register, rather
than using DMA. Part of the 1.8 ms latency comes from the
RS-232 chip on the Kontron, which is an UART16550A. It
has an internal buffer of 16 bytes. At a baud rate of 115200
symbols/sec a maximum of .11 milliseconds worth of data
can be stored on the chip before the processor accesses it
and is able to timestamp it. As the system requirement was
for an under 10 milliseconds latency uncertainty, no further
testing was conducted to narrow down the RS-232 latency
uncertainty and to be safe the whole RS-232 latency of 1.8
milliseconds was included as part of the latency uncertainty.

Linux Optimizations

The versions of Fedora used in 41.087/Heyne (Fedora 11)
has default built-in (Graphical User Interface) GUI
interface. This GUI consumed valuable CPU cycles, which
directly affected the latencies of any timestamps applied by
the DAQ software application and the priority of interrupts
used by the sensor drivers. The GUI can be deactivated by
editing the “/etc/inittab” file and changing the runlevel from
5 to 3. [6] This had no detrimental impact on the usage of
the software application, as the user would log in to the
Kontron through its Ethernet connection to use it.

Another Linux modification used was to launch the DAQ
application as soon as the Kontron runs through its boot
sequence, through editing the “/etc/rc.local” file. [6] This
was implemented as a fault tolerant feature incase the
Kontron temporarily lost power in mid-flight.

 7

The data recovery portion of the mission involved removing
the PATA SSD from the flight Kontron and installing it on
an identical model spare Kontron. As the OS is installed on
the SSD, the spare Kontron would boot with flight OS and
data, which could then be copied over to an external hard
drive using the USB port on the Kontron.

5. PHAETON
An important human aspect of the sounding rocket flights
was the involvement of the Phaeton program at JPL.
Phaeton is a program at JPL whose primary purpose is to
train young engineers and scientists at JPL a hands-on
experience to allow them to experience the full life cycle of
a flight project. Typical flight projects at JPL can last up to
a decade from project conception to actual launch. Some
projects are also very large so that engineers only
experience a very limited aspect of it. In 2008, a group of
young JPL engineers conceived of the Phaeton program so
that young engineers could get hands-on experience
working on a small short life-cycle project. [7]
Importantly Phaeton required that projects be useful to JPL
in their scientific and technological objectives and
accomplishments. Another important aspect of the Phaeton
program is that all the team members on the Phaeton project
must be young engineers (aka Early Career Hires (ECH):
defined at JPL as having received a degree within the last 3
years). Once selected into the Phaeton program, the ECHs
are assigned a mentor in the aspect of the project they were
chosen to work on, and meet with them on a weekly basis
and guide them in all aspects of their projects. [7] The
mentors for the software development effort included Kenny
Meyer, Calina Seybold, and Paolo Bellutta. The software
architecture is primarily based on Paolo Bellutta’s original
source code from 41.067/Seybold.

A sounding rocket flight was considered a natural project to
be part of the Phaeton project; they are typically small
projects with budgets from $1 million to $5 million
(compared to $1+ billion for a flagship JPL mission), and a
quick design turnaround time of 1-2 years. Another useful
aspect of a sounding rocket flight as part of the Phaeton
program was the recent flight of 41.068/Seybold to advance
TRN. TRN technology development plans called for more
sounding rocket flights to advance TRL levels; and much of
the scientific justification for a new sounding rocket flight
had already been done as well as the willingness of team
members from 41.068/Seybold to serve as mentors of the
next sounding rocket flight to advance TRN through another
sounding rocket flight.

At the time of the formation of Phaeton a NASA proposal
known as Hands-On Project Experience (HOPE) also started
up. However, this was a announce of opportunity (AO)
released by NASA for proposals of projects that use a
sounding rocket flight via NASA WFF and NSROC to train
young engineers. It was to be competed among the different
NASA centers. Ultimately the JPL team won the

competitive proposal, which became known as
41.087/Heyne. [8]

The 41.087/Heyne sounding rocket was launched in
December 2010, and was for the most part successful; there
was a mechanical problem with the deployment of the exo
atmospheric door, resulting in the collection of black images
for the exo atmospheric portion of the flight. The problem
was traced to unknown problem with the pyrotechnic screws
that did not properly deploy. The JPL software performed
exactly as planned, with the collection of complete
correlated set of IMU/GPS data along with images from the
exo-atmospheric and descent cameras; however, only
images from the descent camera were of scientific value for
the reason mentioned above. Although without a doubt an
exo-atmospheric dataset would have been useful; a second
descent dataset is still of scientific value as it provides an
opportunity to verify the TRN algorithms with a second
dataset and the data quality of the images and IMU
measurements is far superior. Work on the data processing
is ongoing and will be published at a later time by JPL.

Software Lifecycle

An important part of being a Phaeton project was the
requirement to fulfill many of the JPL flight project
practices followed by typically larger project. These
included activities such as detailed requirements drawn up
by the software cognizant-engineer, Mohammad Ahmad,
with support from project system engineers (Benjamin
Solish, Heidi Nichols), scientists (Martin Heyne, Shane
Brennan, Nikolas Trawny) and project managers (Don
Heyer). The design and the requirements also had to pass
through several major peer reviews such as a Requirements
Review, Preliminary Design Review, and a Comprehensive
Design Review among other smaller internal reviews.

Other JPL internal reviews included those led by the
Software Quality Assurance Engineer (SQAE), Ken
Evensen, for verifying that the software met JPL
institutional software development requirements.

The Integration and Test (I&T) Engineer (Thanh Tran and
Jessica Bowles-Martinez) were responsible for verifying
independently that the software meets all the software
requirements and validating the functionality of the software
meets the planned mission objectives. The I&T Engineers
also had the key responsibility for certifying that the flight
software interfacing properly with external interfaces such
as Wallops Flight Facility software and hardware.

6. FUTURE USES
The software architecture and the implementation of the
code make the DAQ software very amenable to being used
on different projects. In fact many JPL research projects are
technology development projects or science projects on
earth based “vehicles” such as balloons, helicopters,
sounding rockets, autonomous vehicles and UAVs. It is
likely to be used in another Phaeton project involving

 8

weather balloons. Currently the DAQ architecture is under
consideration to be used on another Phaeton project
involving a research balloon flight into the upper
atmosphere, with the intent of collecting data from some
instruments under development at JPL.

The software architecture has been used on various JPL
technology development tasks to collect data on board
autonomous vehicles (PredaTOR project and (Mars Science
Lab) MSL technology development tasks for machine
vision related activities). The functionality was similar, to
collect data from various sensors (typically cameras) and
store it on board for post-processing.

7. CONCLUSIONS
The utility of the DAQ architecture can be measured by its
use over the last couple of years in many different projects
at JPL, under different developers. The key reasons for the
utilization is its use of generic Linux libraries to make it
usable across many different machines as well as the well
defined function structure which allows a user to easily
customize it to any number of sensors. The main weakness
identified with the DAQ architecture is that all data points
from a single sensor must be of the same size. The
workaround to this weakness is for the sensor to be
initialized to a certain size and smaller sized data must be
padded with garbage bits and bigger sized data must be
broken up into smaller packets by the sensor’s acquire
thread.

The analysis of the timing test data from 41.087/Heyne also
shows that COTS Linux’s timestamping capabilities are
capable of achieving millisecond level accuracy, esentially a
soft-real time framework. Linux performance can also be
improved with certain optimizations. The DAQ architecture
can also be adapted to an actual real-time OS that uses posix
threads; fortunately most real-time Linux OSes have posix
libraries included.

ACKNOWLEDGEMENTS
The research described in this paper was carried out at the
Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics
and Space Administration. The work was also carried out
through the Advanced Computer Systems and Technologies
Group at JPL in the Flight Electronics and Software Section,
which provided key management support and technical
reviews.

The NASA Sounding Rocket Office Contract (NSROC)
operating out of Wallops Flight Facility (WFF) provided
significant technical and scientific support. Funding was
provided via JPL’s Phaeton program and NASA’s HOPE
program. The authors would especially like to thank Dr.
Johnny Kwok, Ross Jones, and Valerie Duval of JPL for
their leadership and support of the Phaeton program. Also

we would like to thanks the Flight Electronics and Software
Section’s management team for their support and
leadership, especially Bill Whitaker, Naomi Palmer, Elihu
Mcmahon and Michael Sierchio.

REFERENCES
 [1] NASA. (2006, Sep.) “Solar system exploration
roadmap,” [Online]. Available:
http://solarsystem.nasa.gov/multimedia/download-
detail.cfm?DL_ID=302

[2] A. I. Mourikis, N. Trawny, S. I. Roumeliotis, A. E.
Johnson, A. Ansar, and L. H. Matthies, “Vision-Aided
Inertial Navigation for Spacecraft Entry, Descent, and
Landing” IEEE TRANSACTIONS ON ROBOTICS, VOL.
25, NO. 2, APRIL 2009

 [3] C. Seybold, G. Chen, P. Bellutta, A. Johnson, L.
Matthies, and S. Thurman. “Suborbital Flight Test of a
Prototype Terrain-Relative Navigation System”, AIAA
Infotech@Aerospace 2007 Conference and Exhibit 7-10
May 2007, Rohnert Park, California

[4] D. J. Krause “NASA’s Sounding Rocket Program
NSROC, Accomplishments and the Future”. Proceedings
of the 17th ESA Symposium on European Rocket and
Balloon Programes and Related Research, Sandeford,
Norway. 30 May – 2 June 2005 (ESA SP-590, August
2005) Available:
http://adsabs.harvard.edu/full/2005ESASP.590..305K

[5] “Setting up Permissions” [Onlne] Available:
http://gphoto.sourceforge.net/doc/manual/permissions-
serial.html

[6] “Manpage of INITTAB” [Online] Available:
http://www.netadmintools.com/html/5inittab.man.html

 [7] Phaeton TRaiNED project status website [Online]
Available:
http://phaeton.jpl.nasa.gov/internal/ProjectStatus/TRGS/

 [8] NASA (2009, Fall) “HOPE for the future” [Online].
Available:
http://askmagazine.nasa.gov/issues/36/36s_hope_for_future.
html

BIOGRAPHY
Mohammad Ahmad is a software
/ hardware engineer at JPL’s Flight
System Avionics section. He has
worked on various projects at JPL
such as Mars Science Laboratory,
research on wireless avionics, and
FPGA development for real-time
image processing. Currently he is

working on the Soil Moisture Active Passive (SMAP). He

 9

http://solarsystem.nasa.gov/multimedia/download-detail.cfm?DL_ID=302
http://solarsystem.nasa.gov/multimedia/download-detail.cfm?DL_ID=302
http://phaeton.jpl.nasa.gov/internal/ProjectStatus/TRGS/

graduated from Carnegie Mellon University in 2007 with a
Masters in Electrical and Computer Engineering. His role
on 41.087 was as the software cognizant engineer for the
JPL’s experiment software.

Thanh Tran is an integration and test
engineer at JPL. He graduated from
UCLA in 2006 with a Masters in
Electrical Engineering. His main job
at JPL for the past 3 years has been to
conduct rigorous testing of the
functionality of the on-board FPGA
and electrical system of the MSL
rover. His role on the 41.087 project

was as the lead I&T engineer for the JPL subsystem.

Jessica N. Bowles-Martinez is a
electrical and computer engineer at
JPL. She graduated from MIT and
Johns Hopkins University. Her
specialty is analysis of effect of
radiation on FPGA’s and computer
memory in space environments.
Her role on 41.087 was as
environmental test engineer and

I&T engineer.

Heidi Nichols is an engineer at JPL.
She graduated from Chico State
University with a Masters in
computer engineering. Her
specialty at JPL is as a parts
environmental reliability analysis.
Her role on 41.087 involved aiding
the I&T, systems engineering, and
software engineering teams. Other
project experiences include the Juno

mission to Jupiter and the SMAP satellite.

 10

 11

