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Abstract -- The Lunar Mapping and Modeling Project
(LMMP) is tasked to aggregate lunar data, from the Apollo
era to the latest instruments on the LRO spacecraft, into a
central repository accessible by scientists and the general
public. A critical function of this task is to provide users
with the best solution for browsing the vast amounts of
imagery available.

The image files LMMP manages range from a few gigabytes
to hundreds of gigabytes in size with new data arriving every
day. Despite this ever-increasing amount of data, LMMP
must make the data readily available in a timely manner for
users to view and analyze. This is accomplished by tiling
large images into smaller images using Hadoop, a
distributed computing software platform implementation of
the MapReduce framework, running on a small cluster of
machines locally. Additionally, the software is implemented
to use Amazon’s Elastic Compute Cloud (EC2) facility. We
also developed a hybrid solution to serve images to users by
leveraging cloud storage using Amazon’s Simple Storage
Service (S3) for public data while keeping private
information on our own data servers.

By using Cloud Computing, we improve upon our local
solution by reducing the need to manage our own hardware
and computing infrastructure, thereby reducing costs.
Further, by using a hybrid of local and cloud storage, we are
able to provide data to our users more efficiently and
securely. '

This paper examines the use of a distributed approach with
Hadoop to tile images, an approach that provides significant
improvements in image processing time, from hours to
minutes.

This paper describes the constraints imposed on the solution
and the resulting techniques developed for the hybrid
solution of a customized Hadoop infrastructure over local
and cloud resources in managing this ever-growing data set.
It examines the performance trade-offs of using the more
plentiful resources of the cloud, such as those provided by
S3, against the bandwidth limitations such use encounters
with remote resources. As part of this discussion this paper
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will outline some of the technologies employed, the reasons
for their selection, the resulting performance metrics and the
direction the project is headed based upon the demonstrated
capabilities thus far.
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1. INTRODUCTION

The Lunar Mapping and Modeling Project (LMMP) is a
NASA led initiative with the aim to create a single,
consistent, uniform, intuitive and easy-to-use NASA portal.
LMMP users consist of a number of communities including:
current NASA lunar mission designers and science
community, potential future lunar missions, international
partners, commercial entities, education and public outreach.
LMMP is tasked to aggregate lunar data from historical
missions, international missions, currently flying missions
and future mission data into a central state-of-the-art
database and to make this data accessible to scientists and
the general public. Particular data products include: lunar
terrain and surface imagery, lunar gravity, lunar rock
distributions, lunar crater distributions, lunar surface
temperature, lunar mineralogy, and lunar lighting. The
LMMP project is managed by MSFC and is being developed
at JPL, GSFC, USGS, AMES and CRREL.

The LMMP system utilizes many open standards to allow
access to the data. These standards conform to the platform-
independent Open Geospatial Consortium (OGC) Standard
Protocol including Web Map Service (WMS), Web Feature
Service (WFS), Web Coverage Service (WCS), and
Keyhole Markup Language (KML). Information is stored
with metadata conforming to the Federal Geographic Data
Committee (FGDC) standard. The LMMP Portal is expected
to be operational in December 2010. It is implemented as a
multi-tier system with a backend data management system, a
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middle tier computation infrastructure and a lightweight,
client-side Flash application front-end (see Figure 1). Users
can use the interface to view maps, create complex overlays
to analyze multiple maps, search for information, and
download data directly to their computers.
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Figure | LMMP Portal

In addition to the web interface, we’ve also ported the
viewing functionality to mobile devices, such as Apple’s
iPad (see Figure 2). This app allows users to view and layer
lunar map images from the Internet. Both the web client and
the mobile applications are made possible with the
techniques outlined in this paper.

Figure 2 LMMP iPad App

As previously mentioned, LMMP also consolidates data
acquired from missions that span over five decades, from the
early Apollo missions to the latest and high definition
cameras aboard the LRO and LCROSS spacecraft. These
data products are mapped to the lunar surface through a
common coordinate system and LMMP is working to
register these data products with the to-be-established LRO
control network [1].  This will facilitate more accurate
information layering such as the potassium concentration
map in Figure 5.

Additional examples of some of the data that LMMP serves
include:

Figure 3 shows a complete lunar map composed of many
regional images collected by the Ultraviolet/Visible camera
(UVVis) aboard the Clementine spacecraft in 1994. The
image size is 92160x46080 (4 gigapixels) compressed with
JPEG2000 to 200 megabytes with a physical resolution of
approximately 100 meters/pixel.

Figure 4 shows a composite image consisting of multiple
images taken by Apollo 15 Metric Camera imaging system
as it orbited the moon [2]. The size of the image is
49152x33496 (1.6 gigapixels) as a 3.3 gigabyte TIFF image.
The physical resolution of the image is approximately 10
meters/pixel.

Figure 5 shows a coarse map of the potassium concentration
on the moon. The red regions on the image show higher
concentrations of potassium while the blue shows lower
concentrations. The Lunar Prospector spacecraft collected
the raw data to compose this image in 1998-1999 using the
onboard gamma ray spectrometer.

Figure 6 shows a close-up image taken by the narrow angle
camera aboard the Lunar Reconnaissance Orbiter. The
image is (only a sub-image is shown) has a resolution of
5064x52224 (264 megapixels) as a 264 megabyte TIFF
image. The physical resolution of the image is
approximately 1 meter/pixel. We currently have over two
thousand of these images.



Figure 3 Global Lunar Map from Clementine

Figure 4 Apollo 15 Orbit 33 Mosaic

Figure S Potassium Concentration Map

Figure 6 LRO Narrow Angle Camera Image

These images are only a subset of the types of image that are
stored in LMMP and many are of similar or larger sizes.

In a normal scenario, users view images by opening up the
entire image file on the users’ computer — loading the entire
image into memory. However, this is not possible with
images used in LMMP. For example, the image from Figure
3 would require over a thousand 30-inch monitors to show
the image at full resolution. This is assuming that the
memory can even be loaded into memory. A solution is
required that partitions the larger image into several smaller
images and facilitates on-demand retrieval of those images.
Additionally, due to the rapid influx of new data, we also
need to be able to process this data quickly and efficiently.
We solve these issues by leveraging Amazon’s cloud
services, including the EC2 elastic computing infrastructure
for image tiling and processing, as well as the S3 platform
for data storage and retrieval. EC2 allows us to dynamically
scale up and scale down our computational capacity as
needed. This allows us to pay and use compute resources
only when we need it. The S3 platform offers scalable
storage at commodity pricing.

The goals of LMMP are two-fold. The primary goal of
LMMP is to provide engineers a comprehensive data
repository to support various types of analyses. Engineers
involved in mission planning may use the rock and crater
maps to identify regions of the moon where there are
potential hazards and use the information to choose potential
landing sites. Other scientists may use the latest high-
resolution images to identify features of interest. In addition
to processing new data quicklyy, LMMP also needs to
maintain security so that protected and private images are
only viewable by those that have permission.

The second goal is to allow the general public to view,
download or analyze appropriate datasets. The system needs
to accommodate large numbers of users with minimal
latency to maintain expected performance. At the same time,
public users need to be limited to public data and should not
be able to view private or unreleased data.

In the following sections, we will discuss how we use
Amazon’s Cloud Computing infrastructure to solve the
technical problems that allow us to satisfy our goals for the
user. We will discuss the image tiling process, distributing
the computation across multiple machines, and the storage
of resulting tiles for on-demand retrieval.

2. IMAGE TILING

As Powell et. al. describe in their description of image
processing of Mars planetary images, most image processing
software assumes you can load the entire image into
memory. [3] However, the Mars images are too large to
efficiently load and manipulate in memory. The same is true
for LMMP lunar surface data. So, we must break the images



down into workable sized tiles. The general idea in tiling is
to slice a large image into many small images and to merge
and resize until the last merge and reduce yields a
reasonably sized image that depicts the entire image. The
benefits of this method are threefold: 1) images are handled
in small enough sizes that the computer does not need to
retain the entire image in memory 2) the iterative process
efficiently reuses previously computed images for future
computations and 3) the task can be parallelized across
many machines.

At the beginning of the algorithm, we determine the nominal
tile size. The nominal tile size used in LMMP is 512x512
pixels. We then look at the size of the original image to
determine the depth of the tiles as:

zoom depth = abs(log,( max(width,height)/tilesize)) + 1

We chose this algorithm to ensure that at the lowest depth
the image would retain as much of the original image as
possible without unnecessary downscaling. For example, a
300,000x150,000 pixel image using 512x512 pixel tiles
would yield a zoom depth of 10. Thus, the image tiles sliced
at the lowest depth (highest resolution) would be 2'=1024
along the longest side of the image, which in this case is the
width. This calculation leads to an initial tile size of
300,000/1024 = 293 pixels. The initial tile size is then
resized to the nominal tile size to establish the lowest level
of our image-tiling pyramid. The 293x293 pixel tile is
upscaled to a 512x512 pixel tile. If we had chosen a zoom
depth of 9, our initial tile size would have been 586x586
pixels, which would have required downscaling and a loss of
image data. If we had chosen a zoom depth of 11, our initial
tile size would have been 146x146 pixels, which would
yield no more image information than an initial tile size of
283x283 pixels.

Tiled Image Original Image

Figure 7 Image Tiling

Once we have resized the initial tile images to the nominal
tile size, we can start the image pyramid generation. Figure 7
depicts a graphical representation of the tiling process. The
first task is to tag a set of four tiles, aptly named NW, NE,
SW, and SE. In Figure 7, these would be tiles 1, 2, 3, and 4,
respectively. These four tiles would be duplicated from the

original image and while retaining their original
arrangement, be downscaled by a factor of 2. This resized
tile is depicted as tile A in Figure 7. The resized tile is
placed at index ((NW’s row index)/2, (NW’s column
index)/2). This procedure is then performed on the next set
of four tiles in the original image until all image tiles in the
original image have been duplicated, resized, and positioned
in the new image. If there are missing tiles near the
boundaries of the original image, blank tiles are used as part
of the four set tiles. Once the original image has been
converted into the resized image, the process starts again
with the resized image becoming the original image in the
next iteration. This continues until the resized image fits on
just one nominal tile.

3. PARALLEL COMPUTING APPROACH

Because the tile sets at each zoom depth are duplicated and
manipulated independently of the other tiles at the same
zoom depth, the image tiling operation lends itself to being
parallelizable across multiple computers. While there are
several distributed computing software frameworks to chose
from, we decided to use the Apache Hadoop framework for
our implementation. [4]

The Hadoop framework, a Java-based implementation of
Google’s Map-Reduce algorithm, makes parallelization
extremely simple and straightforward. The key concept of
Map-Reduce is to take a large data set, and through two
programming functions, map and reduce, produce a
relatively small, yet valuable, amount of output data. The
canonical case for Map-Reduce is to process web server log
files. While the inputs to this problems are large files
containing raw web server access information, the output are
relatively smaller, usually summary statistical information
about web service usage. The problem we are trying to solve
is similar in that our initial input is a very large image,
potentially many gigapixels in size. The output at the highest
zoom depth is the same image on a 512x512 pixel tile.

The map step of the algorithm takes a subset of the input
data and performs some computation and returns an answer.
The reduce step consolidates the outputs from the map step
and returns the final answer to the problem. In the web
server log file example, suppose we wanted to count the
number of times visitors went to the “news,” “sports,” or
“games” section of our web site. Our input data would be
the web server log files. The input to a single map function
would be a single line in the log file. The map function
would perform the string search and produce a count number
for each of the keywords we were interested in. The outputs
are then sorted by the keyword and forwarded to the reduce
function, which sums the outputs of the map functions to
yield the particular keyword. The results of all reduce
functions yields the final answer to the problem.

The implementation for image tiling is similar. The input



data is a large image file. The image is initially sliced into
tiles based on the zoom depth calculation described
previously. Each image tile is then processed through a map
function. The map function performs a calculation to
determine where the tile image would be in the new image
and its orientation relative to the other three tiles, whether
it’s the NW, NE, SW, or SE tile. This output is then sorted
on the new location and forwarded to the reduce function.
The reduce function positions the tiles and resizes the tile to
produce the output tile for the next zoom depth. This
process is graphically depicted in Figure 8.
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Figure 8 Map Reduce for Image Tiling

Initial Attempts

Our initial attempts at tiling high-resolution lunar images
were done using a commercial tiling package on a single
Windows PC. The size of the image and the processing
required became readily apparent as the process took up to
10 hours and would occasionally fail due to out-of-memory
problems.

We proceeded to develop a Map-Reduce implementation of
image tiling and used several machines available in our lab.
We used six Sun Fire x4170 machines with a heterogeneous
mix of Solaris 10 and Linux, some with hard drives, and
others with solid-state drives. All the machines were
configured to run both map and reduce tasks, up to the limit
of available CPU threads on the system. This setup worked
well initially, however, it became apparent on reflection that

there was a limitation

configuration.

to our proposed hardware

While the machines cost tens of thousands of dollars to
purchase and require maintenance costs to keep the
machines cool and powered on, we had never used these
machines to capacity all at the same time. Because of the
Hadoop framework, we only needed to specify how many
CPUs to use and could let the software automatically
schedule tasks to fully utilize the system. As our
performance statistics later show, this local configuration
produced better performance metrics on average. However,
we determined for our problem we did not have real-time
performance requirements, we just needed reasonable
performance that could scale to the amount of data we were
receiving at any given time. Owning and maintaining our
own machines is a costly proposition when you can get
access to machines at a fraction of the cost and at any time
you may need them. Further, we needed a solution to our
scale problem, which our local installation was not going to
solve. After considering the costs and issues of standing up
the necessary infrastructure we opted for another solution.
Instead we could acquire and manage a small core group of
machines for processing competition-sensitive data and rely
on external machines for processing the bulk of the public
domain data. The security issues associated with this choice
are described more in 4.3 below.

So, we decided to look at using outside cloud computing
infrastructure. At the time, just two years ago, for the
feature set we wanted, there weren’t a large number of
choices. Our evaluation indicated that Amazon’s EC2 for
computations and S3 for storage and distribution would
meet our requirements.

4. CLOUD IMPLEMENTATION

Amazon EC2 is a cloud computing infrastructure that allows
users to “rent” virtual machines by the hour and only pay for
their usage. Amazon offers different virtual machines sizes
with different speeds (Elastic Compute Units), RAM, and
local storage. Depending on the service agreement, users can
run anywhere from 1 to 100 or more instances for
computations. [5]

In addition to providing generic virtual machines, Amazon
also provides a service on top of EC2 called Elastic
MapReduce, which preconfigures Hadoop on a given
number of virtual machines. The inputs to Elastic
MapReduce are the Java libraries that implement the map
and reduce functions and data inputs from Amazon’s S3
service. While this simplifies configuring and setting up
Hadoop, we felt the input parameters to the service were too
limiting and we also required the use of external Java
libraries. We opted to configure Hadoop ourselves on
generic EC2 instances.



The process to configure Hadoop on an EC2 instance
requires time initially to install Hadoop, configure Java and
the requisite external libraries for our task, and to develop
scripts to update configuration files. However, once this
machine is configured, we can use EC2’s feature to save a
machine image and to duplicate the machine. When we need
to start a cluster, we can start up a number of virtual
machines, all using the same disk image with the saved
Hadoop configuration. Once the machines are up and
running, we designate one machine to be the master node
and execute a script which will update Hadoop’s
configuration file to know the IP addresses of the slave
nodes.

Once our EC2 cluster is configured, we transfer the initial
image file to the master node of the cluster and store it on
the local storage of the virtual machine. We then run the
program that will tile the image.

The program, before invoking MapReduce, will run a
process to split the large image into the set of initial tiles.
This task, which could be computationally intensive, is
relatively fast compared to the subsequent merge and resize
tasks. This process first reads the raw bytes needed for the
tile (may need to decompress that portion of the image) and
encodes it in PNG format. This PNG data is stored into
Hadoop’s file system (HDFS) that is automatically
propagated to the slave machines. Once this initial slicing is
performed, MapReduce begins.

The output from each iteration of Map-Reduce is stored
inside HDFS as it is needed for the next iteration. When all
zoom depths are complete, the output is written out to the
file system or directly to S3.

4.1 Performance Results

For our tests, we will use 3 different configurations and
compare and contrast the performance with consideration to
cost.

Our first configuration will be the Hadoop cluster running
on our own machines, running on 2 Sun Fire 4170’s using
hard drives with gigabit interconnects. These machines cost
$10,000 each to purchase and require power, persistent
cooling, floor space and a system administrator.

The next configuration will use 20 EC2 large instances
running in a Hadoop cluster. These instances cost $0.34 per
instance per hour.

Finally, our third configuration will utilize the new cluster
compute instances on EC2. We will run 4 instances at a cost
of $1.60 per instance per hour.

All configurations use Java 1.6 with Hadoop 0.20.2.
External libraries required include Java Advanced Imaging
1.1.3 with ImagelO-Ext 1.0.8 and BigTIFF support, as well

as the GDAL libraries 1.7.2 compiled with Kakadu 6.3.1.
The image we will use is a 2 GB global lunar map.

Upload Processing Storage

Time Time Time
Configuration 1 N/A 0:37 0:12
Configuration 2 0:58 1:45 0:42
Configuration 3 0:58 0:53 0:34

Table 1 Processing Times

Upload time is the time required to upload the data for
processing. In configuration 1, we already store the image
data on our machines for processing. However, for new
images, we receive them from the other institutions would
create the images from raw data and in those cases, the
upload time should be considered. Processing time is the
amount of time that it takes Hadoop to run. Storage time is
the amount of time required to store the data to the file
system from HDFS.

4.2 Performance Analysis

Our results show that in the best case, Configuration 1 yields
the best results with Configuration 3 following close behind.
Configuration 2 is the slowest out of the three tests. We do
not contend that files processed on local machines will
perform worse than files processed on the cloud, especially
if the machines are relatively new and have significant
processing capability. However, we do show that in terms of
a cost-benefit point of view, EC2’s “rental” model offers
better performance per dollar than having to purchase and
maintain our own machines.

4.2 Image Storage

After the tiles have been generated, we need to make the
images available to users of LMMP. LMMP runs on its own
web server, which we host at JPL. However, as we expect
the system to be accessible to the general public, we may
encounter capacity issues. We may have problems when we
have hundreds of users accessing our website, retrieving
gigabytes of image data.

Just as EC2 allows us to use and pay for just the resources
we use, S3 allows us to host files and pay for just the
bandwidth we consume. This eliminates the need for us to
purchase extra hardware and bandwidth to handle the
occasional spikes in usage.

Our current implementation had some image data on S3 and
others on our own servers.




4.3 Security Considerations

LMMP obtains lunar data from various spacecraft at
different times. Some data are publicly released and do not
require user authorization. Other data are time sensitive,
such as the most recent LRO images, or they have other
scientific restrictions to prevent general access. In all cases,
we are also required to keep access logs to determine system
usage. LMMP uses a hybrid cloud and local storage to solve
this security problem.

For private data, we retain all the data and host them through
our own servers. This ensures that LMMP is the sole
custodian of the data and eliminates the potential security
hole where a system administrator for the cloud
infrastructure could potentially access the files. For public
data, we store the images on Amazon’s S3 storage service.
From the users’ point of view, the retrieval of images is
completely transparent as the client application seamlessly
integrates images from both sources to present to the user.

To address the usage statistic issue, we maintain logs of all
accesses. For files hosted on our own system, this is
relatively straightforward. Each access will be tracked in the
access files. For files stored on the cloud, this may be less
obvious because clients are connecting directly to cloud
servers to retrieve data. We solve this by requiring users to
access our servers, but only for the purpose of obtaining a
signed URL to the file on S3. A signed URL is a time-
constrained URL that will expire after a certain length of
time. Once the client application obtains the signed URL, it
then automatically uses the URL to retrieve the image.

While this process requires our servers to provide some
data, the amount of bandwidth used is significantly reduced
and offloaded to S3. Instead of our servers transferring the
typical 100K image data, we only transmit typically 200
bytes, the amount of data needed to return the signed URL
to S3.

5. CONCLUSIONS AND FUTURE WORK

In this paper we described the approaches that the Lunar
Mapping and Modeling project used in solving its
computation and data distribution problems through the use
of cloud computing. We described an implementation of the
MapReduce framework, Hadoop, and how it improved our
computation times. We also described a multi-tiered data
access approach that leveraged cloud storage and utilized
local data in a way that provided the best data possible for
the credentials of the user.

We plan to conduct further research into cloud capabilities
that hold promise in improving our results. It appears that
cloud computing is in its nascence and has the potential for
many more capabilities. =~ Amazon alone has accelerated
their cloud feature rollouts rapidly, almost doubling their

feature releases every year. 2009 had 43 feature releases of
note [6]. One of those features, competitive spot pricing
for unused EC2 capacity, could further improve the
economics of our solution [7]. And, while Hadoop has
shown to provide tremendous performance improvements,
the data must still be served to the edge user in a timely
manner. For mobile apps, caching information on the
device is not an option; the data must be staged close to the
user to make this solution practical. One related cloud
feature we are interested in evaluating is CloudFront. This
new Amazon capability, still in beta, delivers static and
streaming content using a global network of edge locations
[8]. This solution is integrated with the other Amazon
facilities used by LMMP such as EC2 and S3 and shows
promise for addressing edge distribution of data.

And finally, this implementation is relatively generic and
can be utilized outside of this particular domain. We are
also looking into offering this as a generic service to other
customers.
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