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Abstract -- The Lunar Mapping and Modeling Project 
(LMMP) is tasked to aggregate lunar data, from the Apollo 
era to the latest instruments on the LRO spacecraft, into a 
central repository accessible by scientists and the general 
public. A critical function of this task is to provide users 
with the best solution for browsing the vast amounts of 
imagery available.  

The image files LMMP manages range from a few gigabytes 
to hundreds of gigabytes in size with new data arriving every 
day. Despite this ever-increasing amount of data, LMMP 
must make the data readily available in a timely manner for 
users to view and analyze. This is accomplished by tiling 
large images into smaller images using Hadoop, a 
distributed computing software platform implementation of 
the MapReduce framework, running on a small cluster of 
machines locally.  Additionally, the software is implemented 
to use Amazon’s Elastic Compute Cloud (EC2) facility.  We 
also developed a hybrid solution to serve images to users by 
leveraging cloud storage using Amazon’s Simple Storage 
Service (S3) for public data while keeping private 
information on our own data servers.  

By using Cloud Computing, we improve upon our local 
solution by reducing the need to manage our own hardware 
and computing infrastructure, thereby reducing costs. 
Further, by using a hybrid of local and cloud storage, we are 
able to provide data to our users more efficiently and 
securely. 12 

This paper examines the use of a distributed approach with 
Hadoop to tile images, an approach that provides significant 
improvements in image processing time, from hours to 
minutes.  

This paper describes the constraints imposed on the solution 
and the resulting techniques developed for the hybrid 
solution of a customized Hadoop infrastructure over local 
and cloud resources in managing this ever-growing data set.  
It examines the performance trade-offs of using the more 
plentiful resources of the cloud, such as those provided by 
S3, against the bandwidth limitations such use encounters 
with remote resources.  As part of this discussion this paper 
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will outline some of the technologies employed, the reasons 
for their selection, the resulting performance metrics and the 
direction the project is headed based upon the demonstrated 
capabilities thus far. 
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1. INTRODUCTION 
The Lunar Mapping and Modeling Project (LMMP) is a 
NASA led initiative with the aim to create a single, 
consistent, uniform, intuitive and easy-to-use NASA portal.  
LMMP users consist of a number of communities including: 
current NASA lunar mission designers and science 
community, potential future lunar missions, international 
partners, commercial entities, education and public outreach. 
  LMMP is tasked to aggregate lunar data from historical 
missions, international missions, currently flying missions 
and future mission data into a central state-of-the-art 
database and to make this data accessible to scientists and 
the general public.  Particular data products include: lunar 
terrain and surface imagery, lunar gravity, lunar rock 
distributions, lunar crater distributions, lunar surface 
temperature, lunar mineralogy, and lunar lighting. The 
LMMP project is managed by MSFC and is being developed 
at JPL, GSFC, USGS, AMES and CRREL.   

The LMMP system utilizes many open standards to allow 
access to the data. These standards conform to the platform-
independent Open Geospatial Consortium (OGC) Standard 
Protocol including Web Map Service (WMS), Web Feature 
Service (WFS), Web Coverage Service (WCS), and 
Keyhole Markup Language (KML). Information is stored 
with metadata conforming to the Federal Geographic Data 
Committee (FGDC) standard. The LMMP Portal is expected 
to be operational in December 2010.  It is implemented as a 
multi-tier system with a backend data management system, a 
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data is a large image file. The image is initially sliced into 
tiles based on the zoom depth calculation described 
previously.  Each image tile is then processed through a map 
function. The map function performs a calculation to 
determine where the tile image would be in the new image 
and its orientation relative to the other three tiles, whether 
it’s the NW, NE, SW, or SE tile. This output is then sorted 
on the new location and forwarded to the reduce function. 
The reduce function positions the tiles and resizes the tile to 
produce the output tile for the next zoom depth. This 
process is graphically depicted in Figure 8. 
 

 
Figure 8 Map Reduce for Image Tiling 

 

 Initial Attempts 

 
Our initial attempts at tiling high-resolution lunar images 
were done using a commercial tiling package on a single 
Windows PC. The size of the image and the processing 
required became readily apparent as the process took up to 
10 hours and would occasionally fail due to out-of-memory 
problems. 

We proceeded to develop a Map-Reduce implementation of 
image tiling and used several machines available in our lab. 
We used six Sun Fire x4170 machines with a heterogeneous 
mix of Solaris 10 and Linux, some with hard drives, and 
others with solid-state drives. All the machines were 
configured to run both map and reduce tasks, up to the limit 
of available CPU threads on the system. This setup worked 
well initially, however, it became apparent on reflection that 

there was a limitation to our proposed hardware 
configuration. 

While the machines cost tens of thousands of dollars to 
purchase and require maintenance costs to keep the 
machines cool and powered on, we had never used these 
machines to capacity all at the same time. Because of the 
Hadoop framework, we only needed to specify how many 
CPUs to use and could let the software automatically 
schedule tasks to fully utilize the system.  As our 
performance statistics later show, this local configuration 
produced better performance metrics on average. However, 
we determined for our problem we did not have real-time 
performance requirements, we just needed reasonable 
performance that could scale to the amount of data we were 
receiving at any given time.  Owning and maintaining our 
own machines is a costly proposition when you can get 
access to machines at a fraction of the cost and at any time 
you may need them.  Further, we needed a solution to our 
scale problem, which our local installation was not going to 
solve.  After considering the costs and issues of standing up 
the necessary infrastructure we opted for another solution.  
Instead we could acquire and manage a small core group of 
machines for processing competition-sensitive data and rely 
on external machines for processing the bulk of the public 
domain data.  The security issues associated with this choice 
are described more in 4.3 below. 

So, we decided to look at using outside cloud computing 
infrastructure.  At the time, just two years ago, for the 
feature set we wanted, there weren’t a large number of 
choices.  Our evaluation indicated that Amazon’s EC2 for 
computations and S3 for storage and distribution would 
meet our requirements. 

4. CLOUD IMPLEMENTATION 
Amazon EC2 is a cloud computing infrastructure that allows 
users to “rent” virtual machines by the hour and only pay for 
their usage. Amazon offers different virtual machines sizes 
with different speeds (Elastic Compute Units), RAM, and 
local storage. Depending on the service agreement, users can 
run anywhere from 1 to 100 or more instances for 
computations. [5] 

In addition to providing generic virtual machines, Amazon 
also provides a service on top of EC2 called Elastic 
MapReduce, which preconfigures Hadoop on a given 
number of virtual machines. The inputs to Elastic 
MapReduce are the Java libraries that implement the map 
and reduce functions and data inputs from Amazon’s S3 
service. While this simplifies configuring and setting up 
Hadoop, we felt the input parameters to the service were too 
limiting and we also required the use of external Java 
libraries. We opted to configure Hadoop ourselves on 
generic EC2 instances. 
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The process to configure Hadoop on an EC2 instance 
requires time initially to install Hadoop, configure Java and 
the requisite external libraries for our task, and to develop 
scripts to update configuration files. However, once this 
machine is configured, we can use EC2’s feature to save a 
machine image and to duplicate the machine. When we need 
to start a cluster, we can start up a number of virtual 
machines, all using the same disk image with the saved 
Hadoop configuration. Once the machines are up and 
running, we designate one machine to be the master node 
and execute a script which will update Hadoop’s 
configuration file to know the IP addresses of the slave 
nodes. 

Once our EC2 cluster is configured, we transfer the initial 
image file to the master node of the cluster and store it on 
the local storage of the virtual machine. We then run the 
program that will tile the image. 

The program, before invoking MapReduce, will run a 
process to split the large image into the set of initial tiles. 
This task, which could be computationally intensive, is 
relatively fast compared to the subsequent merge and resize 
tasks. This process first reads the raw bytes needed for the 
tile (may need to decompress that portion of the image) and 
encodes it in PNG format. This PNG data is stored into 
Hadoop’s file system (HDFS) that is automatically 
propagated to the slave machines. Once this initial slicing is 
performed, MapReduce begins. 

The output from each iteration of Map-Reduce is stored 
inside HDFS as it is needed for the next iteration. When all 
zoom depths are complete, the output is written out to the 
file system or directly to S3. 

4.1 Performance Results 

For our tests, we will use 3 different configurations and 
compare and contrast the performance with consideration to 
cost. 

Our first configuration will be the Hadoop cluster running 
on our own machines, running on 2 Sun Fire 4170’s using 
hard drives with gigabit interconnects. These machines cost 
$10,000 each to purchase and require power, persistent 
cooling, floor space and a system administrator.  

The next configuration will use 20 EC2 large instances 
running in a Hadoop cluster. These instances cost $0.34 per 
instance per hour.  

Finally, our third configuration will utilize the new cluster 
compute instances on EC2. We will run 4 instances at a cost 
of $1.60 per instance per hour. 

All configurations use Java 1.6 with Hadoop 0.20.2. 
External libraries required include Java Advanced Imaging 
1.1.3 with ImageIO-Ext 1.0.8 and BigTIFF support, as well 

as the GDAL libraries 1.7.2 compiled with Kakadu 6.3.1. 
The image we will use is a 2 GB global lunar map. 

 

 Upload 
Time 

Processing 
Time 

Storage 
Time 

Configuration 1 N/A 0:37 0:12 

Configuration 2 0:58 1:45 0:42 

Configuration 3 0:58 0:53 0:34 

Table 1 Processing Times 

Upload time is the time required to upload the data for 
processing. In configuration 1, we already store the image 
data on our machines for processing. However, for new 
images, we receive them from the other institutions would 
create the images from raw data and in those cases, the 
upload time should be considered. Processing time is the 
amount of time that it takes Hadoop to run. Storage time is 
the amount of time required to store the data to the file 
system from HDFS. 

4.2 Performance Analysis 

Our results show that in the best case, Configuration 1 yields 
the best results with Configuration 3 following close behind. 
Configuration 2 is the slowest out of the three tests. We do 
not contend that files processed on local machines will 
perform worse than files processed on the cloud, especially 
if the machines are relatively new and have significant 
processing capability. However, we do show that in terms of 
a cost-benefit point of view, EC2’s “rental” model offers 
better performance per dollar than having to purchase and 
maintain our own machines. 

4.2 Image Storage 

After the tiles have been generated, we need to make the 
images available to users of LMMP.  LMMP runs on its own 
web server, which we host at JPL. However, as we expect 
the system to be accessible to the general public, we may 
encounter capacity issues. We may have problems when we 
have hundreds of users accessing our website, retrieving 
gigabytes of image data. 

Just as EC2 allows us to use and pay for just the resources 
we use, S3 allows us to host files and pay for just the 
bandwidth we consume. This eliminates the need for us to 
purchase extra hardware and bandwidth to handle the 
occasional spikes in usage. 

Our current implementation had some image data on S3 and 
others on our own servers. 
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4.3 Security Considerations 

LMMP obtains lunar data from various spacecraft at 
different times. Some data are publicly released and do not 
require user authorization. Other data are time sensitive, 
such as the most recent LRO images, or they have other 
scientific restrictions to prevent general access. In all cases, 
we are also required to keep access logs to determine system 
usage. LMMP uses a hybrid cloud and local storage to solve 
this security problem. 

For private data, we retain all the data and host them through 
our own servers. This ensures that LMMP is the sole 
custodian of the data and eliminates the potential security 
hole where a system administrator for the cloud 
infrastructure could potentially access the files. For public 
data, we store the images on Amazon’s S3 storage service. 
From the users’ point of view, the retrieval of images is 
completely transparent as the client application seamlessly 
integrates images from both sources to present to the user. 

To address the usage statistic issue, we maintain logs of all 
accesses. For files hosted on our own system, this is 
relatively straightforward. Each access will be tracked in the 
access files. For files stored on the cloud, this may be less 
obvious because clients are connecting directly to cloud 
servers to retrieve data. We solve this by requiring users to 
access our servers, but only for the purpose of obtaining a 
signed URL to the file on S3. A signed URL is a time-
constrained URL that will expire after a certain length of 
time. Once the client application obtains the signed URL, it 
then automatically uses the URL to retrieve the image.  

While this process requires our servers to provide some 
data, the amount of bandwidth used is significantly reduced 
and offloaded to S3. Instead of our servers transferring the 
typical 100K image data, we only transmit typically 200 
bytes, the amount of data needed to return the signed URL 
to S3. 

5. CONCLUSIONS AND FUTURE WORK 
In this paper we described the approaches that the Lunar 
Mapping and Modeling project used in solving its 
computation and data distribution problems through the use 
of cloud computing.  We described an implementation of the 
MapReduce framework, Hadoop, and how it improved our 
computation times.  We also described a multi-tiered data 
access approach that leveraged cloud storage and utilized 
local data in a way that provided the best data possible for 
the credentials of the user. 

We plan to conduct further research into cloud capabilities 
that hold promise in improving our results.   It appears that 
cloud computing is in its nascence and has the potential for 
many more capabilities.   Amazon alone has accelerated 
their cloud feature rollouts rapidly, almost doubling their 

feature releases every year.  2009 had 43 feature releases of 
note  [6].    One of those features, competitive spot pricing 
for unused EC2 capacity, could further improve the 
economics of our solution [7].  And, while Hadoop has 
shown to provide tremendous performance improvements, 
the data must still be served to the edge user in a timely 
manner.   For mobile apps, caching information on the 
device is not an option; the data must be staged close to the 
user to make this solution practical.  One related cloud 
feature we are interested in evaluating is CloudFront.  This 
new Amazon capability, still in beta, delivers static and 
streaming content using a global network of edge locations 
[8].   This solution is integrated with the other Amazon 
facilities used by LMMP such as EC2 and S3 and shows 
promise for addressing edge distribution of data. 

And finally, this implementation is relatively generic and 
can be utilized outside of this particular domain.  We are 
also looking into offering this as a generic service to other 
customers. 
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