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Abstract— Cognitive bias is generally recognized as playing a 
significant role in virtually all domains of human decision 
making. Insight into this role is informally built into many of 
the system engineering practices employed in the aerospace 
industry. The review process, for example, typically has 
features that help to counteract the effect of bias. This paper 
presents a discussion of how commonly recognized biases may 
affect the verification and validation process.  

Verifying and validating a system is arguably more challenging 
than development, both technically and cognitively. Whereas 
there may be a relatively limited number of options available 
for the design of a particular aspect of a system, there is a 
virtually unlimited number of potential verification scenarios 
that may be explored. The probability of any particular 
scenario occurring in operations is typically very difficult to 
estimate, which increases reliance on judgment that may be 
affected by bias. Implementing a verification activity often 
presents technical challenges that, if they can be overcome at 
all, often result in a departure from actual flight conditions 
(e.g., 1-g testing, simulation, time compression, artificial fault 
injection) that may raise additional questions about the 
meaningfulness of the results, and create opportunities for the 
introduction of additional biases. In addition to mitigating the 
biases it can introduce directly, the verification and validation 
process must also overcome the cumulative effect of biases 
introduced during all previous stages of development.  

A variety of cognitive biases will be described, with research 
results for illustration. A handful of case studies will be 
presented that show how cognitive bias may have affected the 
verification and validation process on recent JPL flight 
projects, identify areas of strength and weakness, and identify 
potential changes or additions to commonly used techniques 
that could provide a more robust verification and validation of 
future systems. 
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1. INTRODUCTION 
The role of cognitive bias in decision making has been the 
subject of interest in many domains: economists, marketing 
professionals, and even the intelligence community. But it 
does not appear to have been systematically employed in the 
aerospace business.  

Although the field was recognized in the early 20th century, 
the touchstone work was published in 1974 by Amos 
Tversky and Daniel Kahneman [16]. Tversky and 
Kahneman outlined three biases: Representativeness, 
Availability, and Anchoring & Adjustment. Subsequent 
research explored variations on these topics, and opened 
investigation on other potential bias phenomena such as 
Confirmation Bias, Overconfidence, and so-called “Illusions 
of Control”.  

Cognitive science professionals have attempted to explain 
bias in terms of a mechanistic model of the mind. 
Unfortunately, our understanding of the brain does not 
support anything more than notional models of cognitive 
function: concepts such as short-term and long-term 
memory refer to established facts, but we do not understand 
the actual mechanisms involved. As a consequence, it is not 
clear whether the dozens of named biases are in fact distinct 
phenomena, or are instead manifestations of a more general 
principal rooted in how our minds are organized and 
operate. Eliminating confounding factors, and understanding 
the influence of gender, cultural, and other influences 
remains a challenge for the conduct of research as well as its 
broader application.  

Consequently, the analysis and examples in this paper will 
be limited to discussion of how bias may affect system 
verification, and point to potential mitigations. Examples 
intended to illustrate one bias may also include discussions 
of other biases, and their possible interactions. 
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Figure 1. 

2. THE VERIFICATION PROBLEM 
For purposes of this paper, the problem of system 
verification will be formulated as follows. Given a set of test 
results of the actual system (Rai) lying within (or possibly 
mostly within1) the subset of all possible results R that 
satisfy the system success criteria (Rs), what is the 
probability that the actual system (Sa) is a member of the 
subset of possible systems S that represent systems that will 
always satisfy the success criteria (Ss)?  

Even when S is constrained to minor variations on the actual 
system design, the subset Ss is still quite small compared to 
S. Likewise, even when R is constrained to results that are 
meaningfully distinct, Rs is small, and Rai much smaller still. 
The actual probabilities are generally not feasible to 
calculate, and even estimates are likely to be worthless.  

In practice, systems are accepted based on confidence that 
they have a qualitatively “high” probability of success, 
and/or a “low” probability of failure. Test results play an 
important part in this judgment2.  

3. COGNITIVE BIASES  
Dozens of cognitive biases have been identified. Not all are 
distinct enough to warrant separate treatment. The material 
to follow presents a handful of well-researched biases that 
have prospective application to the task of system 
verification. In each subsection a new bias will be briefly 
described, followed by an account of salient empirical 
results, and a discussion of their potential applicability. Case 
studies will be presented where possible.  

 
1 It is common to accept systems with small deviations from specified 
behavior or performance. 
2 Other factors such as the results of probabilistic risk assessments, design 
characteristics, and so forth, also make important contributions to the 
overall judgment that a system is ready for deployment. 

The alert reader will no doubt begin seeing commonalities 
and interrelations between biases. I believe this is entirely 
warranted. Cognitive science literature allows for common 
causes underlying seemingly disparate phenomena, and in 
some cases even suggests them. However, the state of our 
understanding of the mechanisms of thought and cognition 
in general is not sufficient to support any but the most 
notional theory. The material presented here will refrain 
from speculation on potential underlying causes. The reader, 
however, is encouraged to consider the ways in which 
biases may be interrelated, either in a reinforcing or 
counteracting manner. Some discussion along those lines 
will be provided in the concluding section. 

Representativeness 

A representativeness bias is said to exist when a person 
estimates the likelihood of an outcome based on the 
similarity between the information available and the 
outcome itself. Estimates with this bias occur even when 
subjects are provided with quantitative information on the 
probabilities involved. The effect is starkly illustrated by an 
experiment conducted by Tversky and Kahneman [16]. Test 
subjects were told that a group of individuals consisted of 
30 engineers and 70 lawyers. When asked the probability 
that an individual randomly selected from the group would 
be an engineer, they correctly responded 30%. However, 
when provided a description of the person selected that had 
characteristics of a stereotypical engineer, estimates of the 
likelihood that the individual was an engineer rose to 50%, 
despite the fact that the description provided no useful 
information on what the person actually did for a living.  

The preceding is an example of the more general 
phenomenon of neglecting base rates when estimating 
probabilities. A common result of base rate experiments is 
that rare events are typically overestimated, while the 
likelihood of common events is underestimated. As 
Koehler, et al, showed, this affects even trained 
professionals (in this case, doctors) asked to evaluate 
probabilities in their own domain [7].  
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Tversky and Kahneman explored several other aspects of 
representativeness. They found that people judged the 
likelihood of the sequence H-T-H-T-T-H as more likely 
than the sequence H-H-H-T-T-T to be the result of a series 
of coin tosses, even though the probabilities of either 
sequence are the same. Their hypothesis was that the 
increased estimate of the likelihood of the first sequence 
was based on the similarity between the sequence itself and 
the characteristics of the underlying process (i.e., 
randomness). In a related finding, they found that people 
have greater confidence in predictions based on a set of 
results that are internally consistent or redundant, despite the 
fact that this violates the statistics of correlation—correlated 
inputs actually decrease the accuracy of predictions.  

 

Figure 2. Attributing Results to a Process 

To illustrate how representativeness might affect judgments 
in verification, consider the situation shown in Figure 2. A 
set of inputs (the test case) is put into a “black box” that 
contains two processes, A and B. To which process would 
we attribute the results obtained? If representativeness were 
operating, those evaluating the results would be more likely 
to attribute the results to process A, if they were more 
similar to what they expect process A to produce.  

If process A were a system that always operates correctly, 
while system B does not, there would be a bias towards 
assuming that a set of correct results3 was the product of 
process A. This effect would be reinforced if the test team 
had already formed an opinion that the system under test 
was reliable.  

The rules of probability would not support this conclusion, 
at least not to the degree one might suppose. Referring back 
to the model of the verification problem in section 2, the 
situation is this: we have only one system under test, but its 
exact behavior under a variety of conditions is either not 
known, or not known with certainty. Therefore, it belongs to 

 
3 Correct test results are the only case of interest—systems are not 
generally deployed with failures in the test program unless they are waived 
or otherwise accepted at “good enough”. 

one of two sets of possible systems; those that fully satisfy 
requirements, and those that don’t. In this example, Process 
A corresponds to the ensemble of solutions Ss that satisfy 
requirements under all circumstances, and Process B 
corresponds to SS  = S – Ss, the ensemble of systems that do 
not satisfy requirements under all circumstances. So, given 
successful test results R, what is the probability that R is the 
result of a 100% reliable system, or one that is less reliable?  

For notational convenience, we will return to the Process A 
and B convention. The probability that a successful test 
outcome is the product of a flawed system is the conditional 
probability P(B|R). The probability that the same test 
outcome is the product of a completely reliable system is 
P(R|A). Using Bayes Theorem, the ratio of the two 
probabilities is given by: 

���|��
���|�� = ����|�����|��� ∗ ����������   (1) 

The first operand on the right corresponds to the ratio of the 
reliabilities of ensembles A and B, respectively, while the 
second corresponds to the probability that our system lies 
within Ss or SS . It might appear that that is precisely the 
ratio our verification seeks to quantify, but it isn’t. It’s the 
ratio between the number of systems in Ss and SS . 
Simplification and substitution using the law of total 
probability we get: 

�(�|�) = �	

��	,  where (2) 

� = ����|�����|��� , and (3) 

� = ����������  (4) 

There are a few important cases to consider. First, if we 
presume that design and manufacturing quality is such that 
the likelihood that an out-of-spec error has been introduced 
is 50%, then α is unity. Suppose the potential errors we have 
allowed for will still result in a system that is 99% reliable. 
The probability that a successful test result indicates that our 
system is indeed a member of the set of 100% reliable 
systems would only be 50.25%. This is hardly better than 
our going-in assumption of how well we had constrained the 
solution space we needed to consider. In other words, for a 
design and manufacturing process that is well-constrained 
enough to ensure that all systems that are produced by it 
have very high reliability, a successful test program cannot 
tell us much beyond our a priori assumptions about how 
likely it is that the process will produce an unreliable 
system.  

In the more likely scenario where SS  is much larger than Ss, 
α is rather small. If the ratio of reliabilities of the resulting 
ensembles is still close to unity, then for very small α 
equation (2) simplifies to P(A|R) = α. In other words, if we 
acknowledge that our process controls will allow for a 
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relatively large set of possible systems that are very good, 
but not quite perfect, then positive test results give us no 
real information on whether we truly have built the reliable 
system we set out to.  

Most complex systems are currently verified at least in part 
via the use of simulations, since in many cases it is either 
impossible, or unacceptably dangerous, to test all conditions 
using a live system. This further muddies the waters. Our 
ability to infer total system reliability from a combination of 
simulated and real component performance data depends 
entirely on the fidelity of the simulation. Unless this fidelity 
is anything other than 100% (at least in the features that 
affect testing) then it will provide even less information than 
the already disappointing results just described. 

If the population of possible systems that are close, but not 
quite close enough, to the desired level of reliability is larger 
than the population of reliable ones, then a given set of tests 
will comprise a smaller sampling of that population than it 
would of the satisfactory system population. Thus, a test set 
that adequately samples the population of closely related 
satisfactory systems, will likely undersample the population 
of unsatisfactory systems, with concomitant implications for 
the reliability of conclusions drawn on the basis of their 
results. The fact that people, even those trained in their use, 
tend to be insensitive to the statistics of sample size implies 
that this disproportion further exacerbates bias due to 
representativeness. 

Availability 

The availability heuristic posits that people rate uncertain 
events as more or less likely according to how easily they 
can recall instances of the event having occurred in the past, 
or how easily they can construct a (subjectively) credible 
scenario where the event would occur. Studies have shown 
that this works in reverse: uncertain events are estimated as 
being less likely if it is difficult to recall or imagine 
scenarios where the event has, or could, occur [15].  

This tendency has important implications in both 
development and verification. If developers of a system 
have difficulty recalling or imagining an adverse scenario 
(“that’s never happened before”, or “I can’t see how that’s 
possible”) they are unlikely to invest significant effort in 
designing defenses against an event perceived as unlikely. If 
this conclusion is conveyed to the verification team, other 
heuristics may come into play: familiarity and anchoring, 
for example. Engineers tasked with verifying the system 
may likewise assess the probability of the event as being 
(again, subjectively) improbable, and thus may even 
conclude that no test is necessary. Indeed, if a verification 
team cannot construct a scenario where an adverse event 
would occur, they cannot construct a test, or if they do, it 
will most likely be ineffective.  

NASA’s Phoenix mission illustrates the difficulty, even 
when a general failure scenario can be constructed. In order 
to save power and transmit all of its acquired data to Earth, 

the lander would go into a sleep mode during the Martian 
night, and wake up periodically to transmit data to relay 
satellites passing overhead. Alert operators discovered that 
it was taking longer and longer for the computer to reboot 
when exiting sleep mode. If the trend continued too long, 
reboots would take longer than the hard-wired watchdog 
timer setting, which would effectively end the mission. 
Investigation revealed that a rare combination of conditions 
would trigger a chain of events that would eventually lead to 
a lengthening of the reboot time. Engineers correctly 
identified sleep/wake cycling as a critical function, and it 
was thoroughly tested. However, the precise combination of 
events was not foreseen and built into the tests. Even if 
engineers had identified the circumstances as a potential test 
case, the chain of reasoning leading from cause to ultimate 
consequence was sufficiently arduous as to make it unlikely 
that it would have been singled out as an important case 
among the large number of possible cases. 

Sherman, et al [15] were also able to show that the relative 
concreteness of language used to describe a potential failure 
has a significant influence on others’ estimates of 
likelihood. Causes of an event that are described in vague 
terms increase the difficulty encountered in imagining a 
failure scenario, while specific language increases estimates 
of likelihood. This has important implications for training. 
Engineers must be trained to be as specific and concrete as 
possible when raising concerns about potential failure 
modes, and conversely, they must be trained to take vaguely 
expressed concerns seriously enough to explore them in 
more concrete terms instead of dismissing them out of hand. 

Anchoring and Adjustment 

The anchoring and adjustment heuristic was described by 
Tversky and Kahneman in 1974, and subsequent research 
has elaborated upon it. In brief, it has been observed that 
people make estimates based on an initial answer, and make 
adjustments from there based on additional information. As 
Tversky and Kahneman put it, “adjustments are typically 
insufficient.” [16]  

Although the phenomenon was initially described in terms 
of anchoring on initial values when arriving at numeric 
estimates, the results have been found to hold in more 
general cases. One arena in engineering where this effect 
can be seen is in the use of so-called “heritage”. Whether at 
the component, system, or concept level, the initial solution 
people have in mind when they first consider a problem can 
dominate the entire development process. Of course, use of 
proven ideas, designs, and components is a valuable tool in 
reducing cost and development time, as well as improving 
reliability.  

The Mars Climate Orbiter may provide an example of how 
anchoring on a known quantity might adversely affect 
reasoning.  In a 1999 report, the Mishap Investigation Board 
found, “the operations navigation team supporting MCO to 
be somewhat isolated from the MCO development and 
operations teams, as well as from its own line organization, 
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by inadequate communication. One contributing factor to 
this lack of communication may have been the operations 
navigation team’s assumption that MCO had Mars Global 
Surveyor (MGS) heritage and the resulting expectation that 
much of the MCO hardware and software was similar to that 
on MGS.” [11] 

Overconfidence 

Stuart Oskamp [12] conducted a study correlating the 
relationship between level of confidence and level of 
accuracy. The results have important implications for 
system verification. 

In the study, a group of trained experts were provided with 
progressively more information about a case, and then asked 
to answer a set of multiple choice questions based on their 
conclusions. Their answers, overall accuracy, and self-
assessment of their confidence were recorded after each of 
four increments of information was provided.  

The difference between the experts’ accuracy (~28%) and 
random chance (20%) was nonsignificant. Moreover, there 
was no significant change in accuracy with successive 
increments of information. However, confidence in their 
answers increased monotonically from approximately 33% 
to 53% over the course of the experiment. As the test 
progressed, respondents made fewer changes to their 
previous answers, reflecting their increased confidence. 

One implication of the Oskamp study is that more testing 
may not necessarily be better, at least from the perspective 
of drawing accurate conclusions about system readiness. It 
would be foolish to deploy a system without verifying that it 
met its specifications. Requirements testing is a reasonably 
well-bounded problem, but where should we draw the line 
when it comes to testing off-nominal conditions? This is a 
potentially infinite space, and yet it is the “outlier” cases 
that often bring systems down. Although I will have more to 
say about this later, it seems warranted at this point to 
emphasize that quality of testing is probably more important 
than quantity. 

One might object that studies done in the context of clinical 
psychology might not be applicable to engineering. While it 
is always reasonable to question extrapolation of results 
from one domain to another, overconfidence has been the 
subject of many studies, including those examining experts 
in technical domains. In a 2004 survey of the state of the 
practice, Ulrich Hoffrage reported that overconfidence was 
the dominant finding across all studies [5]. Research 
findings on the calibration of experts within their domain of 
expertise varies from nearly perfect in the case of weather 
forecasters4, to little better than chance in one study of 
lawyers predicting case outcomes.  

 
4 This does not mean that weather forecasters were found to be perfectly 
accurate, merely that their confidence in their accuracy was in near perfect 
correspondence with their actual ability to predict the weather. 

It is tempting to believe that, as engineers, our performance 
would be similar to the weather forecasters, who operate in 
the realm of theoretical models and measurement. However, 
Wilson et al observed that people are notoriously bad at 
recognizing bias in themselves, and equally poor in 
correcting their own bias even when they recognize it [18]. 
In a survey on debiasing Baruch Fischhoff found, 
“particularly striking…the lack of differences in…experts 
making judgments in their own fields.” It would appear that 
overconfidence should be assumed until proven otherwise. 

Indeed, overconfidence is often assumed in the review of 
aerospace projects. We expect, among other things, that 
reviewers will recognize, and hopefully correct, overly 
optimistic assessments of system readiness. Unfortunately, 
we may be overconfident in their effectiveness. Replacing, 
or at least augmenting the judgment of, a single individual 
(e.g., a project manager) with a review board is effectively 
acknowledging that there is nothing to be done about the 
bias presumed in the individual subject their scrutiny. While 
this may ameliorate biases affected by motivational factors, 
it isn’t necessarily the most effective strategy. Training 
seems to be the most effective debiasing strategy [2], at least 
as far as confirmation bias goes. Unfortunately, this may 
require more time and data relevant to the individuals 
involved5 than is practical. In very large projects, review 
boards charged with assessing mission readiness generally 
do not have access to all the relevant information that would 
allow them to home in on specific areas where 
overconfidence might be a problem.  Time constraints may 
also limit their ability to dig deep enough to identify 
problem areas. Persistent controversy over the actual versus 
claimed capabilities of large military projects such as 
ballistic missile defense systems serve as a case in point. 

Illusions of Control 

Ellen Langer [8] defined an illusion of control as “an 
expectancy of a personal success probability inappropriately 
higher than the objective probability would warrant.” In a 
classic experiment Langer found that allowing participants 
to select a specific lottery ticket dramatically increased their 
belief that they held the winning ticket. The same study also 
found that participants who were familiar with the images 
printed on the tickets (football players) were more 
optimistic about their chances of winning than those who 
were less familiar.  

These results were later generalized into a group of factors 
relating to skill, where aspects of a situation involving 
knowledge, choice, competition, or active engagement act 
as cues that mislead participants into believing they have 
control where little or none exists. For example, Alloy and 
Abramson conducted an experiment where participants were 
asked to press a button to cause a light to turn on. The light 
was programmed to turn on at one of two fixed rates (25% 
or 75%) regardless of how the button was pressed. 

 
5 The most effective training uses feedback on the trainee’s own confidence 
versus actual accuracy. 
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Nevertheless, participants all believed they had some 
control over the operation of the light, with estimates of 
control being higher when the light came on 75% of the 
time, and lower in the 25% case. It appears that the mere act 
of engaging in the task created the illusion of control. 

Other studies have found that previous success influences 
people to believe they can predict chance events such as a 
coin toss [9], and that the stress relief accompanying a belief 
in control enhances the illusion [3].  

System verification contains elements of both skill and 
chance. The skill aspect hardly needs explanation. Test 
engineers bring to bear considerable knowledge of the 
system, its planned use, and related knowledge of materials 
and the like. But as the research has shown, the opportunity 
to apply skill to a task that also contains elements of chance 
can lead to an exaggerated sense of control over the 
outcome.  

The chance element enters into the picture when we 
consider the fact that in the “real world” the deployed 
system will interact with users and the environment, both of 
which are rich sources of stochastic input. If we define 
success in verification as showing that the system will 
perform as expected over its lifetime, then successful 
verification is unquestionably a matter of both skill and 
luck. There is simply no way to test more than a tiny 
fraction of all possible scenarios. Furthermore, since the 
number of potentially dangerous latent flaws in the system 
is itself unknown, there is no way to know how much 
additional confidence one should have in the system, given 
that it has passed any particular test or tests. 

Confirmation 

Science and engineering professionals are quite familiar 
with the notion of confirmation bias. It is standard practice 
to assign the task of verification to people who were not 
involved in the development to avoid tainting the results. 
But research in cognitive science has shown that there is 
more to confirmation bias than we might suspect. 

We begin with a definition: “’Confirmation bias’ means that 
information is searched for, interpreted, and remembered in 
such a way that it systematically impedes the possibility that 
the hypothesis could be rejected.” [13] Although this 
definition would include the practice of seeking, or 
accepting, only information that confirms one’s previous 
belief, it is clear that confirmation bias involves much more 
that. It includes effects produced by the way we retrieve and 
store information as memories, and the strategies we use to 
test theories.  

In a classic early experiment on the subject, Peter Wason 
conducted a simple experiment involving a sequence of 
numbers. Participants were given the sequence “2, 4, 6”, and 
asked to come up with other three-number sequences to 
determine the underlying rule. For each guess they would be 
told whether or not their series fit the rule. When they had 

gathered enough data to be confident they had correctly 
determined the rule, the “testing” stopped, and they were 
told whether they had determined the rule correctly or not. 
[17] 

The results were revealing. Most participants guessed a rule 
(e.g., even numbers, multiples of the series “1, 2, 3”, etc) 
and tested their theories by coming up with examples that fit 
their rule. Participants were allowed as many trials (a yes or 
no answer to whether a proposed series matched the rule) as 
they wanted before stating what they believed the rule to be. 
Most (~80%) required more than one round of trials before 
correctly identifying the rule. The rule itself was simple: any 
series of increasing numbers. Wason found that the people 
who had the most difficulty failed to test series that would 
falsify their hypothesis, whereas those who did needed 
fewer rounds of trials.   

The strategy employed by most participants is known as a 
positive test strategy (PTS). A PTS has the advantage of 
simplicity and efficiency, as it is relatively straightforward 
to generate cases that support a hypothesis, and it requires 
relatively fewer trials. It is also an important part of any 
system verification. The assertion that the system meets a 
requirement becomes the hypothesis, and the verification 
activities performed provide the evidence to support or 
falsify the hypothesis. A PTS per se does not introduce a 
confirmation bias unless the results comprise a subset of the 
correct hypothesis (i.e., the actual system behavior). The 
problem is that unless the test program includes all cases 
that would confirm correct behavior, it omits cases that 
might falsify the notion that the system meets requirements. 
The following example illustrates how easily a confirmation 
bias can be introduced into a test program: 

A spacecraft has a solid state recorder that 
implements a circular buffer, which is very large 
compared to the units of data it stores. When the 
C&DH is done sending data it sends a message to 
mark the end of recording, and in return receives a 
pointer to the next write location. The system is 
required to handle both compressed and 
uncompressed data. The verification program tested 
all required behavior. However, in operation it was 
discovered that the unusual combination of using 
compression and wrapping around the end of the 
circular buffer caused the recorder to erroneously 
return an error code. This in turn caused the next 
write location pointer to not get updated correctly on 
the C&DH side. Subsequent recording overwrote the 
previously recorded data.  

In general, research has not found that people deliberately 
seek only that information that confirms their beliefs, or 
select strategies that are biased towards a particular 
outcome. However, it has confirmed that motivational 
factors can influence the way information is retrieved or 
evaluated. Sanitoso et al found that individuals recalled 
more instances of events that confirmed their possession of 
positive traits, and that these memories were recalled more 
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quickly [14]. Lord et al found that participants were more 
critical of evidence that refuted their beliefs than 
information in support [10]. Other researchers [4] have 
found that people give greater weight to evidence that 
supports a previously adopted hypothesis.  

These findings suggest that the usual strategy of populating 
a test team with individuals who were not involved in 
development may not be enough. If test engineers have any 
personal stake in the “goodness” of the system under test 
(e.g., company pride, personal regard for the developers, or 
personal bias towards an aspect of the technical solution), 
their selection of test cases and interpretation of test data 
may be subtly biased.  

Mitigating this problem can be challenging. Hiring a 
separate company to test a system does not guarantee that 
other biases are not thereby introduced. However, measures 
such as surveying team members for their attitudes towards 
the product and development team may alert leadership to 
potential problems. These may be ameliorated through 
judicious selection of reviewers who can be called in at 
various points in the process  

4. DEBIASING 
The biases and heuristics research program of the 1970’s 
and 1980’s eventually stimulated work challenging its 
conclusions, or at least bounding the conditions under which 
bias occurred. Efforts to explain away findings of bias as 
artifacts of flawed methodology have not been particularly 
successful, nor have efforts to eliminate bias. The latter 
result is a disappointment to those concerned with its 
potentially disastrous effects (e.g., a decision to operate a 
manned mission that is not ready). In this section I will 
outline the findings in two reviews that examined the 
debiasing problem. 

Baruch Fischhoff reviewed the literature specifically on the 
hindsight and overconfidence biases [2]. He presented a 
framework of categories for debiasing strategies which 
centered on either modifications to the task presented to 
individual judges, the judges themselves, or a combination 
of the two. Although the intent of the framework was related 
more towards characterizing the research, it provides a 
useful reference for discussing strategies for countering bias 
in “real life”. 

It might first appear that we have little choice in the 
problems we face in system verification. And yet Fischhoff 
identified flaws in research methods that have analogs in 
system verification. First off, clarity in the verification task 
is important. Testers should know exactly what questions 
they are expected to answer. Vague directives like, “just tell 
us if it’s going to work” are not helpful. Test engineers may 
also be sensitive to what may be termed the “political” 
environment. If the perceived goal of the test program (e.g., 
“convince the customer we’re good to go so we can get stop 
spending money on testing”) is other than the explicitly 
stated one, then the results may be tainted. Test engineers 

should also be allowed enough latitude to express their 
findings in the way that best enables them to communicate, 
rather than be forced to present their findings in a preset 
manner. Finally, limit the number and scope of questions 
put to them. Too much redundancy or irrelevance can lead 
to knee-jerk responses whose functional purpose is simply 
to get through the exercise as quickly as possible. 

Doubts about the ability of individuals to counter their own 
biases notwithstanding, Fischhoff identified some 
approaches to mitigating overconfidence that have met with 
some success. Alerting people to the possibility of bias is a 
first step. Identifying the direction and magnitude of the bias 
provides additional, potentially useful, information. The 
most effective measures incorporate personalized feedback 
on the trainee’s measurable bias through specific examples 
and exercises, though care must be taken to do so without 
creating defensive resistance. Forcing people to explicitly 
express tacit knowledge, and encouraging the search for 
falsifying evidence have also been tried. 

Some have suggested strategies for compensating for bias 
by eliminating the biased individual altogether. Proposed 
alternatives include using a decision-making instrument 
(e.g., a weighted matrix of desired & undesired 
characteristics), replacing individuals with teams of experts, 
using calibration data to correct biases a posteriori, or 
simply acknowledging the existence of bias and using 
additional or other criteria to make important decisions. 
Decision matrices are common elements of decision 
processes, though as anyone who has used one knows, they 
can be “gamed” easily, and their use does not eliminate bias 
without careful oversight. Use of teams of experts—in 
aerospace we often call them review boards—has been 
discussed previously. Data suitable to correct known biases 
is generally not available, nor would it be easily obtained. It 
may be that simply acknowledging the existence of bias and 
incorporating that awareness into the overall decision-
making process may be one of the most pragmatic 
approaches available. 

Wilson et al looked at the debiasing problem from a very 
different angle: mental “contamination” [18]. The 
theoretical and experimental work they discuss are 
concerned with efforts at an individual level to detect and 
correct the influence of bias. Unlike Fischhoff, Wilson et al 
took on debiasing in the general sense, so unless otherwise 
indicated the following discussion may be applied to any 
bias.  

They present a conceptually simple test to determine 
whether bias will occur. If the answer to any of the 
following questions (predicated on the fact that a potentially 
biased thought process has occurred) is “no”, mental 
contamination is assumed. All “yes” answers indicate the 
absence of contamination. 

1) Is the person aware that a potentially biased 
thought process has occurred? 

2) Are they motivated to correct it? 
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3) Do they know the direction and magnitude of the 
bias? 

4) Do they have the internal ability to correct it? 

This appears to offer a straightforward means to identify the 
existence of bias (or proof of its absence), as well as hints at 
a strategy to eliminate it. Unfortunately, as the authors go on 
to show, this is not the case. Nevertheless, it remains a 
useful conceptual reference.  

Their criteria for establishing the presence or absence of 
bias are similar to the causes they discuss: 

1) Lack of awareness of one’s own mental process 
2) Lack of control over one’s mental process 
3) Poor understanding of the existence and nature of 

biases they may have 
4) Inadequate motivation to correct their own bias 

The third cause is clearly amenable to education, but 
mitigating the others may be difficult, if not impossible. It is 
at least theoretically possible to provide sufficient 
motivation for people to try to correct their own biases, but 
doing so would depend on correctly identifying potentially 
conflicting motivations and the ability to offer appropriate 
incentives. Causes one and two present the greatest 
difficulty. Beyond providing some relatively superficial 
awareness training and cognitive/behavioral modification, 
addressing these issues is more than a typical organization is 
willing to contemplate.  

Relying on individuals to correct their own bias, whether or 
not they have had training intended to improve their ability 
to do so, is not only flawed, but may actually exacerbate the 
problem. Wilson et al concluded that, “even in the rare 
instances in which people believe that their judgments are 
biased, they may not successfully debias these judgments. In 
fact, their corrected judgments might be worse than their 
uncorrected ones.”  

Part of the problem is that people generally have inaccurate 
theories about debiasing. Prior to being exposed to 
potentially contaminating information6, people who 
anticipate the possibility may take steps to eliminate or 
reduce the effect. The simplest and most effective by far, 
means of eliminating bias is via exposure control: it is not 
possible to be influenced by information that one has not 
been exposed to. People may also make mental 
preparations, such as developing counteracting arguments, 
for dealing with biasing information. Once exposure to 
biasing information has occurred, people may attempt to 
resist its influence, correct for it, or simply decide to 
override their own conclusions when it comes time to act on 
their beliefs. Interventions at the outset of the process (i.e., 
before exposure to contaminating information) are far more 
effective that interventions that occur later in the process. 

 
6 Here we are concerned with biases relating to the undue influence of 
information, such as anchoring, or potentially motivating factors. Biases 
due to the counterintuitive nature of statistical reasoning are excluded. 

Unfortunately, people tend to have greater faith in their 
ability to intervene in later stages. This may be due to an 
illusion of control, following the Cartesian concept that 
beliefs are accepted after due consideration, when the reality 
may be that we operate in the reverse, believing everything 
at first, and then only rejecting those things that we decide 
to “unbelieve” later. 

5. MARS POLAR LANDER ANALYSIS 
Following the loss of the Mars Polar Lander (MPL) mission, 
a special review board was convened at JPL. The board 
performed a thorough investigation into the incident, and 
identified with near certainty the proximal cause of the 
failure. In addition to elucidating the exact nature of the 
software logic error that caused the descent engines to 
terminate prematurely, the final report [6] identified a 
number of contributing factors, including weaknesses in the 
verification program. This section will analyze the findings 
contained in the board’s final report and discuss them in 
light of the cognitive biases discussed in this paper. 

The fact that the touchdown sensors could produce spurious 
positive signals was known to the team, and a requirement 
was written to ignore the inputs prior to reaching 40m 
altitude. However, the report found that, “the requirement 
did not specifically describe [events leading to spurious 
signals], and consequently, the software designers did not 
properly account for them.” This finding points directly at 
the availability bias, which would lead the test team (and, 
indeed, the independent Mission Safety and Success Team 
assembled at JPL during development) to mistakenly 
assume that nothing was amiss on the basis of their inability 
to envision scenarios where the logic would fail.  

The argument that availability played a role in the MPL 
failure is bolstered implicitly by the board’s 
recommendation to perform fault tree analysis prior to test 
planning to “define test cases that are needed to drive out 
logic paths that must be tested.” This recommendation, if 
followed, would have increased the likelihood that scenarios 
where the logic failure was possible would have been more 
easily identified (i.e., “available”, in the terms of cognitive 
science). 

The problem was compounded by the fact that the 
touchdown sensing logic was not tested in flight 
configuration. As discussed in the section on 
representativeness bias, this introduced a confounding factor 
in the reasoning that allowed the project to assume that test 
results in the simulated environment were directly 
transferrable to the flight configuration. 

The lack of clear information in the requirements may also 
have contributed an inadvertent confirmation bias, induced 
by misinterpretation of a positive test strategy. The 
requirements as written were verified, but because the actual 
system could behave in ways that were contrary to 
expectations under certain (untested) conditions, the results 
were a subset of a larger set of behaviors that included 
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undesirable ones. These are precisely the conditions that 
induce a confirmation bias. Indeed, the recommendation that 
“test teams need to assume that there is an error[and] must 
examine every requirement on the software to test whether 
they can identify a set of conditions that could ‘break’ the 
software” is precisely the sort of negative test that Tversky 
and Kahneman identified as a key ingredient to effective 
testing. 

It is important to note that MPL was subjected to an extra 
level of scrutiny compared to other projects. This was a 
result of the findings in the investigation into the loss of the 
Mars Climate Orbiter (MCO), which had occurred only 3 
months prior to MPL’s scheduled arrival at Mars. The 
Mission Safety and Success Team mentioned earlier was 
convened with the purpose of ensuring that problems on 
MCO did not recur on MPL. Appointing a team of 
independent experts is one strategy to counteract the 
assumed bias in those it is charged with overseeing, as 
discussed in the section on overconfidence. The fact that 
this outside board looked at much of the same material as 
the developers and testers, and found no problems either 
with the design or test program highlights the difficulty of 
removing bias. Superficially, it seems like a tactic that 
would likely find errors and biases in the project team’s 
work, but unless great care is exercised in the selection and 
conduct of the team’s activities, it is quite possible that they 
will fall into the same traps as the project team itself.  

MPL was lost due to a vulnerability in the touchdown logic. 
However, the board found that it may well have encountered 
problems of equal gravity had the landing been successful. 
A complex interaction between software logic, parameter 
settings, and the loss of the receiver during entry, decent, 
and landing (EDL), could result in the lander never 
switching over to the backup receiver, and thus never being 
able to receive commands from the ground again. This dire 
consequence would have required that the lander also 
experience circumstances that would trigger a safe mode 
entry before a backup sequence was able to perform the 
receiver swap.  

The complex logic and somewhat obscure combination of 
events needed to trigger the problem is another case where 
availability could be expected to come into play. A review 
of the test program revealed that the specific circumstances 
were never tested, and in some instances the parameters 
involved were not tested in any scenario. Additionally, tests 
of the post-touchdown functionality assumed 
commandability (this would not have been the case in the 
failure scenario), and verified requirements from that point 
forward. The positive test strategy employed by the project 
likely contributed to an overconfidence that the system 
would perform correctly. The problem of availability was 
also present, and could have been mitigated had the team 
followed the board recommendation to use “flow diagrams 
and logic charts [that can be] used to identify test cases that 
must be run to verify that the logic provides the desired 
actions.”   

 
6. CONCLUSION 
Some level of bias is inevitable in system verification. 
Although cognitive science does not provide many proven 
techniques to eliminate the problem, it does suggest some 
general strategies that may mitigate it.  

It would appear that availability is perhaps the most 
significant problem, as most engineering professionals are 
already aware. Overconfidence due to a variety causes is 
also ubiquitous. Use of many of the tools and techniques 
listed below are already common in aerospace systems 
development and verification, but the results presented here 
emphasize their importance, and can sharpen our focus in 
their use: 

• Employ “Red Teams” to devise tests designed to 
find and exploit vulnerabilities in the system design 

• Use randomized testing, such as Monte Carlo 
simulations, to increase test volume and remove 
the human factor from test case selection 

• Develop a culture of tolerance that allows 
individuals to propose seemingly absurd failure 
scenarios, and make sure they get a fair hearing 

• Provide training to reviewers and testers on the 
nature and effects of biases that may affect their 
work 

• Begin development of test scenarios early, and 
revisit and refine then throughout the development 
process, incorporating changes to system design 
and new ideas about failure modes 

• Avoid speculating on the likelihood of failure 
scenarios, and challenge assumptions about system 
behavior and operations 

• Use care in the selection of test engineers and 
reviewers to minimize the potential for bias, and 
monitor their efforts 

• Do not rely on any single mitigation to counteract 
potential bias 

• Employ hazard analysis techniques such as 
STAMP or HAZOP that shift the focus away from 
familiar component-level failure analysis and 
challenge engineers to think of how failures could 
occur from a different perspective 

• Improve development and manufacturing processes 
to eliminate defects up front rather than hope to 
discover and fix them in test 
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