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Abstract—Adaptive Periodic-Correlation (APC) algorithm was 
developed for use in extended-scene Shack-Hartmann 
wavefront sensors.  It provides high-accuracy even when the 
sub-images in a frame captured by a Shack-Hartmann camera 
are not only shifted but also distorted relative to each other.  
Recently we found that the shift-estimate error of the APC 
algorithm has a component that depends on the content of 
extended-scene.  In this paper we assess the amount of that 
error and propose a method to minimize it. 
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1. INTRODUCTION 

A Shack-Hartmann wavefront sensor (SH-WFS) consists of 
a lenslet array and a camera at the focal plane of the lenslet 
array; the lenslet array is placed in a plane conjugate to the 
plane of  the wavefront error source.  Its simplicity, 
inexpensiveness and real-time data processing capability has 
made the Shack-Hartmann sensor a popular wavefront 
sensing instrument in various areas including astronomical 
adaptive optics, optical testing and ocular aberrometry since 
its invention [1]. The conventional method used in Shack-
Hartmann wavefront sensor (SH-WFS) first produces a set 
of spot images from a point-source, then determines the 
positions of the centroids of these spot images, and finally 
retrieves the phase information from the estimates of the 
offsets between these centroid positions and a set of pre-
determined reference positions.  When used in a closed-loop 
wavefront sensing and control system of a telescope, it 
offers high dynamic range, albeit with a lower wavefront 
measurement resolution than, for example, the Modified 
Gerchberg-Saxton (MGS) WFS approach [2].  In some 
applications of space-based, airborne, and ground-based 
adaptive optical systems, an extended-scene Shack-

Hartmann sensor (ES-SHS) provides some great benefits.  
Poyneer found that periodic correlation method works well 
in this application in terms of both performance with noise 
and computational simplicity [3].  In that approach, the sub-
pixel shift between two sub-images is determined from the 
location of the cross-correlation peak of the two sub-images.  
Recently we proposed two new approaches, the adaptive 
cross-correlation (ACC) algorithm [4] and adaptive 
periodic-correlation algorithm [5], to estimate with high 
accuracy the shift as large as several pixels between two 
extended-scene sub-images captured by a Shack-Hartmann 
camera (SHC).  The ACC algorithm determines the 
positions of all of the extended-scene sub-images or cells 
relative to a reference cell from the linear phase of the cross-
correlation spectrum of the two cells.  Whereas the APC 
algorithm does the same from the location of cross-
correlation peak of the two cells in the image-domain.  We 
tested the shift estimation accuracy of these approaches with 
measured point-source and extended-scene images having 
several hundred cells. For point-source spot-images, we 
compared their phase estimation accuracies with that of a 
conventional centroid-finding algorithm, and obtained good 
agreement between the centroiding and the two new 
approaches.  Also, we have found that the APC algorithm is 
more robust and more accurate than the ACC algorithm 
when the sub-images are not only shifted but also distorted 
[5]. 

The shift estimation accuracy of the APC algorithm depends 
on the content of the extended scene image captured by an 
SHC.  In order to obtain consistent high performance from 
an ES-SHS under practical, varying-scene conditions, it is 
necessary to minimize, or ideally completely eliminate, the 
scene-dependent errors in sub-image shift estimate obtained 
with the APC algorithm.  In this paper we assess the amount 
of the scene-dependent shift-estimate errors introduced by 
the APC algorithm and propose a method to minimize such 
errors. 

2. DESCRIPTION OF THE APC ALGORITHM  
The APC algorithm works in the same way as the ACC 

algorithm.  The only difference is that, the ACC algorithm 
calculates the shift of a test cell relative to a reference cell 
from the linear phase component of the cross-correlation 
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spectrum of the two cells.  Whereas the APC algorithm 
calculates the same from the location of the cross-
correlation peak in the image-domain. In our APC 
algorithm, the relative locations of the different SH 
extended-scene sub-images were determined in the 
following steps:  
(1) Determine the center coordinates of all of the cells in 

Figure 1, and store these x- and y-coordinate values in a 
[2xM] matrix.  In our case, we used the centroid locations 
of a point-source spot image for this purpose. 

(2) Choose an NbxNb pixel test cell, where Nb is 
preferentially a power of 2 for this algorithm and the 
subscript “b” means “big”, within each sub-image with 
the x- and the y-coordinates determined in Step 1 as its 
center, as shown with a red-box in Figure 1.  In this 
figure, the white-frame shows an 32x32 pixel (Nb=32) 
cell.  Also, choose one NsxNs  small cell as a reference, 
where Ns<Ns and the subscript “s” means “small”, 
preferably near the center of the extended-scene image.  
In Figure 2, the red-box shows an 16x16 pixel (Ns=16) 
small cell.  In the following, we use the position variables 
(x, y) to denote the position dependence of a cell in the 
image-domain, and use (u, v) to denote the position 
dependence of the Fourier-transform of a cell.  That is, 
the ),(ˆ),( vuryxr ↔   pair represents the reference cell in 
the original image and the Fourier domains, respectively.  
We represent the larger, NbxNb pixel test cells with the 

),( yxSi  ↔ ),(ˆ vuSi  pair, and the smaller, NsxNs pixel test 
cells with the ),( yxsi  ↔ ),(ˆ vusi  pair, respectively.  As a 
standard procedure, we measure a dark image for every 
signal image and subtract it out from the signal image 
before processing the image data.  

(3) Take the NsxNs pixel reference cell, ),( yxr , and 
calculate its Fourier-transform, ),(ˆ vur .   

(4) Inside a for-loop with index i, select ),( yxSi , and 

obtain the corresponding ),(ˆ vuSi  and  ),(ˆ vusi , 
respectively.  Multiply ),(ˆ vur ∗  and ),(ˆ vusi  to obtain a 
cross-correlation function in Fourier-domain, 

),(ˆ),(ˆ),(ˆ vusvurvuc ii ∗= , where “*” denotes a complex-
conjugate.  

(5) Inside a while-loop with index j, take the inverse-FFT 
(Fast Fourier-Transform) of ),(ˆ vuci  to obtain the cross-
correlation function ),( yxci  in the image-domain.   

(6) Assume Nb=32, Ns=16, ],[ yx  in ),( yxci  run from 8−  
to 7, and the integer-pixel peak of the ),( yxci  is located 
at ],[ peakpeak YX . Fit a parabola to 3 data points in 

),( yxci  having y = Ypeak and x = Xpeak-1, Xpeak, Xpeak+1, 
respectively, and determine the real-number pixel location 
of the ),( yxci  peak in the horizontal or the x-direction, 
δxij.  Do the same in the vertical or y-direction by fitting a 
parabola to 3 data points of the ),( yxci  having X = Xpeak 
and y = Ypeak-1, Ypeak, Ypeak+1, respectively,, and obtain 
δyij.  In practice, each peak-location-finding is done 

analytically using 3 data points to determine 3 unknowns, 
a, b, and xmax[3]: 

 bxxay +−= 2
max )(  (1) 

The [δxij, δyij] pair represent the incremental shifts in the 
x- and y-directions, respectively.  Also accumulate these 
incremental shifts to obtain the total shifts [∆xij, ∆yij] up to 
the current peak-finding iterations: 

 ∑∑ =∆=∆
j

ij
j

ij yyxx ijij δ,δ  (2) 

 

 

Figure 1 – A measured SHS extended-scene sub-image 
array.  The red-colored box shows a 32x32 pixel (Nb=32) 
big cell.   
 

 

Figure 2 –One 32x32 pixel big cell of the sub-image 
array shown in Figure 1.  The red-colored box shows a 
16x16 pixel (Ns=16) small cell.   
 

(7) Obtain a new ),( yxSij , a new version of ),( yxSi  

shifted to match with the ),( yxr , from the inverse-FFT 

of )](2exp[),(ˆ),(ˆ vyuxjvuSvuS ijijiij ∆+∆−= p .  Repeat 
the while-loop (Steps 5-6) until the radial incremental 

shift 22 δδδ ijijij yxr +=  becomes less than a pre-

 2 



 
determined tolerance value, such as 0.01 pixel, or until 
the total number of iterations, such as 15,  is reached.   

(8) Repeat the for-loop (Steps 4 through 7) for all test cells 
),( yxSi . 

It should be pointed out that ),(ˆ vur  needs to be calculated 

only once for each SHC image, and ),(ˆ vuSi  needs to be 
calculated only once for each test cell.  If the shift estimate 
for a particular test cell ),( yxsi  is completed in 4 shift-
finding iterations, for example, then one needs to carry out 
inverse-FFT on ),(ˆ vucij  for 4 times (Steps 4-7), and 
calculate the inverse-FFT of 

)](2exp[),(ˆ),(ˆ vyuxjvuSvuS ijijiij ∆+∆−= p also 4 times.   

3. SHIFT ESTIMATE ACCURACY 
The process of sub-image shift estimation described in the 
previous section yields a grid of sub-image in an SHC 
image.  To determine the wavefront error at the lenslet 
plane, we need two sets of sub-image locations.  One (or the 
set of reference locations) corresponds to a reference image, 
and the other (or the set of test locations) corresponds to a 
test image.  By subtracting the reference locations from the 
test ones, we obtain a 2-dimensional image-shift map 
specified by two shift vectors ]y ,x[


∆∆ .  Each element of 

this map corresponds to the local tilt of the wavefront at the 
corresponding lenslet location.  Depending on how the 
reference locations are determined in ES-SHS, the shift 
estimate process can be divided into two categories:  
Differential-mode and absolute-mode.  In the following, we 
briefly describe those two modes and the corresponding 
shift estimate accuracy. 

Differential-Mode 

In this mode, both the reference and the test locations are 
determined using the same scene, such as the one shown in 
Figure 1.  This is usually the case in an optical system 
laboratory.  We have evaluated the differential-mode shift 
estimate accuracy of the APC algorithm using some image 
data obtained on the Advanced Wavefront-sensing and 
Control Testbed (AWCT) at Jet Propulsion Laboratory 
(JPL), California Institute of Technology [6].  The testbed 
was described in details in Ref. [6], so its description will 
not be repeated here.  The sub-images produced by this 
testbed have a size of about 35x35 pixels.  Several different 
scenes were implemented on that testbed, but the results 
obtained from only one scene, the one shown in Figure 1, 
are presented here.   

Figure 3 shows an example of the SH wavefront sensing 
conducted on our AWCT testbed.  It is an Optical Path-
Difference (OPD) map and was obtained by analyzing two 
frames of extended-scene images with the APC algorithm.  
The extended-scene is the same as in Figure 1.  The ES-SHS 
system includes a deformable-mirror (DM) installed to a 
plane conjugate to the exit pupil of the system.  The 
reference image was taken with a set of actuator commands 

corresponding to a “flat-state”, a state where the wavefront 
error of the system is minimized, and the test image was 
taken after applying different amounts of voltages to four 
actuators in addition to their “flat-state” voltages.  Figure 4 
is an image-shift diagram resulted in the OPD map in Figure 
3.  If we separate the areas of four poked actuators on Figure 
4, and the plot the radial shifts falling inside those four  
areas, we obtain an  image shift distribution plot, Figure 5.  
This plot shows that the largest radial shift in Figure 4 
obtained with the APC algorithm is less than 0.02 pixels.  
This result proves that the APC algorithm is highly accurate 
in the differential-mode.  This is one of the most significant 
findings of this study.   

 

 

Figure 3 –Optical Path-Difference (OPD) map obtained 
in a differential-mode ES-SHS experiment.   
 

 

Figure 4 –Image shift diagram resulted in the OPD map 
shown in Figure 3.   
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Absolute-Mode  

In this mode, different scenes are used for the reference and 
the test images.  This is the typical case of the real operation 
of an ES-SHS, such as in a telescope used for remote-
sensing of a planet’s surface from space.  In such an 
application, the scene to be captured as the test images 
changes constantly, and the reference image locations needs 
to be determined in advance.  No adequate experimental 
SHC image data have been available for us so far to 
evaluate the accuracy of the APC algorithm in the absolute-
mode.  Even though some SHC images have been taken on 
our AWCT testbed with different scenes, they were done so 
by moving some hardware, namely, a filter-wheel, in the 
optical system.  As a result, such images could not be used 
for determining the accuracy of the APC algorithm in 
absolute-mode.  Therefore, in the following section, we 
evaluate the absolute-mode shift estimate accuracy of the 
APC algorithm by using half-measured, half-synthesized 
extended scene images.  Using such images, we also 
determine the scene-dependent shift estimate errors and 
propose a method to minimize them. 

 

Figure 5 –Distribution of radial image shifts inside the 
four areas in Figure 4.   
 

4. SCENE DEPENDENT SHIFT ESTIMATE ERROR 
AND ITS MINIMIZATION 

The extended scene we used to study the absolute-mode 
shift estimate error is a 512x512 pixel satellite photo shown 
in Figure 6.  It is the same photo we used to study the 
dependence of our Adaptive Cross-Correlation algorithm 
performance on the extended scene image quality [7].  A 
65x65 pixels square-shaped sub-image is indicated with a 
yellow-box on this figure, and is shown in Figure 7 after 
multiplied with a circular mask.  Figure 8 shows the part of 
a point-source spot-image taken on another ES-SHS testbed  

 

Figure 6 –A 512x512 pixels satellite photo.  The yellow-
box shows a 65x65 pixels sub-image.   
 

 

Figure 7 –A 65x65 pixels sub-image corresponding to the 
yellow-box on Figure 6.     
 

 

Figure 8 –Part of a measured point-source spot-image.     
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at JPL [8].  The sub-image size is about 65x65 pixels and 
the whole image has a total of 510 sub-images.  The original 
image was taken with a 12-bit camera and has a gray-scale 
of 0 – 4095.  We chose from the image in Figure 7 a total of 
180 sub-images similar to the one shown in Figure 8 such 
that they are interleaved by 64 pixels in both the x- and the 
y-directions.  Then we convolved those 180 sub-images  

 

Figure 9 –An extended-scene sub-image array obtained 
from the convolution of the two images shown in Figures 
7 and 8.     
 

 

Figure 10 –Shift estimate errors of the extended-scene 
image shown in Figure 9. 
 

with the spot-image in Figure 8, and generated 180 ES- SHS 
images with different scenes.  It should be pointed out that 
the different cells in each sub-image array generated this 
way have different noise characteristics determined by the 
original spot-image, but the same cells, that is, the cells 
located at the same position, of the different sub-image 
arrays have the same noise characteristics.  This is the ideal 
feature of the current sub-image arrays to study the scene-
dependent shift estimate error of the APC algorithm.  
Therefore, no any additional noise has been introduced to 

the above half-real, half-synthesized extended-scene sub-
image arrays. 

Assume the locations of spot-images in Figure 8 are given 
by 

 
actact

actact

yYy

xXx




∆+=

∆+=
 (3) 

were [ ]Y ,X


 are integers and [ ]actact y ,x


∆∆  are fractional-
numbers ranging from -0.5 to 0.5 pixels.  The subscript 
“act” means “actual”.  When extracting 32x32 pixels cells 
from the image in Figure 8, the [ ]Y ,X


 are used as their 

centers because no SHC sub-pixel images are available.  
Therefore, the reference cell has [ ] ]0 ,0[y ,x actact =∆∆


 

pixels and all of the other cells in a single image have 
intrinsic offsets relative to the reference cell.  The vector 
pairs of [ ]actact y ,x


∆∆  thus represent those intrinsic offsets 

or actual shifts.   

Now assume the analysis of the extended-scene image in 
Figure 9 with the APC algorithm yields [ ]estest y ,x


∆∆ , 

where the subscript “est” means “estimated”.  These shifts 
are different from the actual shifts and we refer to their 
differences as “shift estimate errors”.  That is, the shift 
estimate errors are defined as 

  
actestuc

actestuc

yyε
xxε




∆−∆=
∆−∆=

y

x  (4) 

where the subscript “uc” means “un-corrected”.   

Figure 10 shows the shift estimate errors ]ε ,ε[ ucuc yx


 
obtained for the image shown in Figure 9 as a function of 
[ ]actact y ,x


∆∆ .  The red-circle and the blue-square markers 

show the raw values of ]ε ,ε[ ucuc yx


, and the red and the blue 
solid-lines are their linear-fit lines.  The green-line indicates 
where ]ε ,ε[ ucuc yx


 should be in an ideal case.  It must be 

emphasized that the shift estimate errors ]ε ,ε[ ucuc yx


 are 
purely the result of changing the SHC image from spot-
images in Figure 8 to an extended-scene image in Figure 9.  
That is why we called them “scene-content-dependent shift 
estimate errors”.  One can see that each of the two scene-
content-dependent shift estimate errors, ]ε ,ε[ ucuc yx


, has the 

following three components: (1) Slope-error specified by the 
slope of the linear-fit line.  (2) Mean error or bias.  (3) 
Scattered-error.  As we can see from Figure 10, the 
scattered-error is the dominant one. It is also the one built-in 
in the APC algorithm and we cannot do anything about it 
without changing the algorithm.  As is well-known, the shift 
estimate biases give rise to a global tip-tilt of the wavefront 
error to be measured, and can easily be eliminated by 
subtracting them out from the corresponding shift estimate 
data.  We propose to correct the shift estimate slope errors 
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in the following way:  Assume the linear-fit lines of the 

]ε ,ε[ oo yx


 pair are expressed by )]y(ε ),x(ε[ actfitactfit


∆∆ yx .  

Then the corrected shift estimates [ ]corcor y ,x


∆∆  become as  

 
)y(εyy
)x(εxx

actfitestcor

actfitestcor




∆−∆=∆
∆−∆=∆

y

x  (5) 

where the subscript “cor” means “corrected.  It should be 
pointed out that the above procedure also corrects the shift 
estimate bias errors.  The after-correction shift estimate 
errors become as 

 
actcorc

actcorc

yyε
xxε




∆−∆=
∆−∆=

y

x  (6) 

where the subscript “c” in ]ε ,ε[ cc yx


 means “corrected”. 

 

Figure 11 –Histograms of the ]ε ,ε[ oo yx


 slopes. 
 

 

Figure 12 –Histograms of the ]ε ,ε[ oo yx


 slopes. 
 

The shift estimates as well as their slopes and biases are all 
different for the 180 different scenes.  Figure 11 shows the 

root-mean-square (RMS) values of the un-corrected and the 
corrected radial shift estimate errors, Figure 12 shows the 
histograms of the )]y(ε ),x(ε[ actfitactfit


∆∆ yx  slopes, and 

Figure 13 shows the bias values of the ]ε ,ε[ oo yx


, 
respectively.  The radial shift estimate error is defined as 

 22
r εεε ysxss


+=  (7) 

with subscript s = o or c, respectively.  In Figure 11, the 
mean values of the two sets of data are ] ,[ rcσσ ro  =[0.108, 
0.076] pixels.  That is, overall, the shift estimate slope error 
correction procedure described above reduces the RMS-
error by approximately 30%.  As we can see, the tails of the 
negative slopes of the )]y(ε ),x(ε[ actfitactfit


∆∆ yx  are longer 

than the positive ones (Figure 12), meaning the estimated 
shifts lag the actual ones.  The reason of this phenomenon 
has yet to be understood.  The distributions of the shift 
estimate biases are relatively symmetric (Figure 13).  

 

Figure 13 –Histograms of the mean values (biases) of the 
]ε ,ε[ oo yx


. 

 

We have also tried another five sets of extended-scene sub-
images extracted from the sub-image arrays measured on 
our AWCT testbed.  That is, we replaced the sub-image in 
Figure 7 with five sub-images that are part of the ES-SHS 
images measured with different scenes on our testbed.  They 
had scene contents completely different from one another, 
and yielded ] ,[ rcσσ ro  =[0.052, 0.031], respectively.  That 
is, the mean values of the shift estimate error standard 
deviations turned out to be much smaller in this case than 
the previous one.  Also, we achieved an RMS-error 
reduction of ~40% this time.  We expect the APC algorithm 
will yield results similar to that of the latter case, especially 
with the help of an image-content selection criterion to be 
implemented in the APC algorithm in the near future.  
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5. CONCLUSION  

We presented a study about the dependence of the Adaptive 
Periodic-Correlation (APC) algorithm performance on the 
image content of extended scenes. We have divided the 
scene-content-dependent shift estimate errors into the 
following three components: Slope-error, mean-error (or 
bias), and scattered-error.  The scattered-error component is 
the result of an intrinsic property of the APC algorithm itself 
in its current form, and dominates the whole shift estimate 
error.  The mean-error can be eliminated completely by a 
simple subtraction.  We have shown that the slope-error can 
be reduced by 30-40%, and proposed a procedure for that 
purpose.  The material presented in this paper enables one to 
better understand the APC algorithm and its more robust 
implementation in adaptive-optics (AO) systems that 
conduct Shack-Hartmann-based wavefront sensing and 
control using either a point source or arbitrary extended 
scenes. 
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