
Getting a Cohesive Answer from a Common Start:
Scalable Multidisciplinary Analysis through

Transformation of a System Model
Bjorn Cole

Jet Propulsion Laboratory,
California Institute of Technology

4800 Oak Grove Drive
Pasadena, CA 91109

Bjorn.Cole@jpl.nasa.gov

Seung H. Chung
Jet Propulsion Laboratory,

California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109

Seung.H.Chung@jpl.nasa.gov

Abstract— One of the challenges of systems engineering is
in working multidisciplinary problems in a cohesive manner.
When planning analysis of these problems, system engineers
must tradeoff time and cost for analysis quality and quantity.
The quality is associated with the fidelity of the multidisciplinary
models and the quantity is associated with the design space
that can be analyzed. The tradeoff is due to the resource
intensive process of creating a cohesive multidisciplinary system
model and analysis. Furthermore, reuse or extension of the
models used in one stage of a product life cycle for another is
a major challenge. Recent developments have enabled a much
less resource-intensive and more rigorous approach than hand-
written translation scripts or codes of multidisciplinary models
and their analyses. The key is to work from a core system
model defined in a MOF-based language such as SysML and
in leveraging the emerging tool ecosystem, such as Query-View-
Transform (QVT), from the OMG community. SysML was
designed to model multidisciplinary systems and analyses. The
QVT standard was designed to transform SysML models. The
Europa Hability Mission (EHM) team has begun to exploit these
capabilities. In one case, a Matlab/Simulink model is gener-
ated on the fly from a system description for power analysis
written in SysML. In a more general case, a symbolic math-
ematical framework (supported by Wolfram Mathematica) is
coordinated by data objects transformed from the system model,
enabling extremely flexible and powerful tradespace exploration
and analytical investigations of expected system performance.

TABLE OF CONTENTS

1 BACKGROUND . 1
2 QUERY-VIEW-TRANSFORM (QVT) TOOLS 2
3 EXAMPLE TRANSFORMATION: POWER MODEL 3
4 IMPACTS OF MODELING WORK ON COLLAB-

ORATION . 6
5 OTHER USES OF QVT . 6
6 LESSONS LEARNED . 7
7 CONCLUSIONS . 8

ACKNOWLEDGMENTS . 9
REFERENCES . 9
BIOGRAPHY . 9

1. BACKGROUND
Introduction to the Problem

One of the challenges of systems engineering is in working
multidisciplinary problems in a cohesive manner. When

978-1-4577-0557-1/12/$26.00 c©2012 IEEE

planning analysis of these problems, system engineers must
tradeoff time and cost for analysis quality and quantity. The
quality is associated with the fidelity of the multidisciplinary
models and number of disciplines simultaneously considered,
while the quantity is associated with the design space that can
be analyzed. The tradeoff is due to the resource-intensive pro-
cess of creating a cohesive multidisciplinary system model
and analysis. Furthermore, reuse or extension of the models
used in one stage of a product life cycle for another is a major
challenge.

In the early stages of design, termed pre-Phase A or Phase A
by the standard NASA lifecycle [1], the problem is designing
a system that has sufficient technical margins for achieving
the system’s objectives. The system must respond rapidly
enough to perform desired behavior, provide sufficient power,
allow sufficient telecommunications with the ground, and be
light enough to be launched into its target orbit, to name
a few must-haves. The design problem also incorporates
constraints on cost and schedule, which must be evaluated,
preferably on a basis that is strongly correlated to technical
design characteristics.

The greatest challenge of this kind of design problem is in
harmonizing the visions of many contributors. Discipline
expertise must be incorporated in a consistent way but must
also be conveyed to give stakeholders in a project the ”big
picture.” Getting to a unity of vision has spawned an industry
interest [2] in concurrent engineering teams such as JPL’s
Team X as well as a variety of software tools to build a
unified analysis capability. The “Collaborative Engineering
Environment” has been a topic of multiple research projects
[3], [4] under multiple names.

Another problem in the early phases of design is achieving a
persistence of vision. Competitive acquisition by both NASA
and the DoD is common, and requires time for a decision
board to award the winning team with the right to move
forward. This often leads to a gap between internal support
of the design team to develop the proposal and funding by the
solicited agency. During this time, there are often changes
in personnel; at the least, those involved rotate to other
projects and begin to forget their earlier efforts. Ineffective
capture of the knowledge generated in the proposal process
leads to a distrust of proposal information, leading teams
to redo the work “for real this time” and start from scratch.
The ability to investigate deeply or rerun analyses performed
for the proposal will potentially save time and money and
help maintain the architectural integrity of the concept as
proposed.

1

Dealing with all of these problems has driven the develop-
ment of an increasingly sophisticated set of computer tools
and information technology approaches (coupled with math-
ematical concepts from the optimization field) for integrated
design. The rest of this paper will lay out a set of tools
to maintain the gains achieved thus far in working multi-
disciplinary problems while enhancing the persistence and
coherence of a design from the concept formulation phase
deeper into implementation.

Previous Iterations on the Problem

Getting to a unified analysis of a systems problem, such as
sizing and synthesis for aircraft or spacecraft, has often been
couched as a programming problem in the era of computer-
aided design. A primary question has been that of centraliza-
tion (a monolithic systems code) or decentralization (modules
orchestrated by ”middleware”) of analysis.

The monolithic (or ”integrated” for a more positively-valued
name) solution is seen in a variety of older system sizing tools
such as Langley Research Center’s Flight Optimization Sys-
tem (FLOPS) [5] and Ames Research Center’s Hypersonic
Vehicle Optimization Code (HAVOC) [6]. These tools house
a series of aerodynamic, weights and structures, stability, and
propulsion estimation modules. These analyses can also be
driven by optimizers integrated into the codes. They also
provide for the override of these analyses by outside data
tables or ”decks” for engine performance or aerodynamic
characteristics. Some builds of FLOPS have been enhanced
with calls to an economic analysis tool in order to estimate
the business performance of a potential commercial aircraft
as well as its technical performance.

The above integrated tools are currently curated by teams at
NASA centers with occasional updates for new information
or performance improvements. They also take contributions
from universities that use them and there are often a variety
of custom builds along with the official releases. This implies
an interest of various organizations in either injecting their
”secret sauce” into the codes or to extend them for specialized
capabilities.

The monolithic approach has some strengths. Since mono-
liths are single programs, they are easy for users to install
and use and follow the traditional experience users have with
commercial software. They also present a unified mainte-
nance and support authority for users. The development of
an integrated package also provides opportunities for perfor-
mance enhancements for the software, and bringing every-
thing together encourages a white box approach to analysis
integration, which allows for developers to be mindful of the
interplay between different discipline analyses. There are
also opportunities for global optimizations of the code for
speed.

The weaknesses of the monolithic approach are those of
coordination and centralized authority. Changes to any part
must be approved by the maintainer of the code or kept within
branched versions that must have their changes reimple-
mented with each new release of the core software. Discipline
experts may program in their changes, but are more likely to
go to a separate programming team to implement changes,
and in either case must be careful not to induce side effects
that could hamper other parts of the program. This can
greatly limit the pool of productive developers. A modern
preference for decentralization and flexibility for a given
problem has made monolithic programs much less common
in recent years.

Another family of solutions is the so-called ”glueware” or
”middleware” approach, where an orchestration program fer-
ries data directly between analysis software. Commercial
frameworks such as ModelCenter (written by Phoenix In-
tegration) and iSight (acquired by Dassault Systems) have
been used by multiple industrial and academic institutions
to coordinate aerospace analysis tools that represent multiple
discipline points of view. There have also been standards
developed for interchange used by aerospace firms, such
as the OMG Common Object Request Broker Architecture
(CORBA). These software packages treat the analyses as
black boxes, with a variety of inputs and outputs. There are
three main roles these inputs and outputs can take:

• Intermediate parameters that are constrained to have the
same value or are ”passed” between analyses
• Design variables that the analyst can vary to specify the
particular analysis case
• Results from the analysis that are collected and presented
with a variety of visualizations or reports to help the analyst
more fully understand the problem at hand

The roles above can be reinterpreted slightly in the case of
sensitivity analyses, robust design methods, or other situta-
tions aside from traditional design or trade-off problems, but
the workflow is often very similar.

This type of software has typically been focused on synchro-
nizing inputs and outputs between analysis programs, and
different programs have varying levels of support for data
warehousing or standards-based interchange [7].

The middleware approach has a variety of strengths. It
overcomes the problem of scaling up the integrated analysis
by allowing for modularity between analyses and allowing
codes to be in the hands of discipline experts. The approach
also conveys the benefits both of customization of the inte-
grated analysis for a given problem and standardization of
individual modules for both flexibility and reuse. It also
enables the developers of the middleware to focus on system-
level concerns, such as developing optimization routines and
visualizations of large vectors of results. Meanwhile, the
contributors of individual modules can focus on the fidelity
of representing relevant phenomena and computational per-
formance.

The middleware approach also has weaknesses. The middle-
ware tools are often sold on the premise of reusing legacy
codes, which are typically not well-optimized for working in
an orchestrated environment. In fact, a common experience is
that the first few integrated runs will easily break the legacy
codes, because they will specify input vectors that the codes
do not expect. The input vectors also expose hardcoded limits
within the analyses or other limitations to their flexibility.

The middleware also represents a software integration ap-
proach, focusing on the ability for programs to interchange
data. This reduces the system-level view into a series of para-
metric hand-offs and gives final results in the form of a (often
quite long or very abridged) set of parameters that can be
informative but certainly not a complete system specification.

2. QUERY-VIEW-TRANSFORM (QVT) TOOLS
Introduction to QVT platform and provided tools

A new approach to constructing multidisciplinary analyses
is taking shape from the area of systems modeling. It is

2

being investigated by the Europa Habitability Mission (EHM)
team. As discussed in previous sections, analysis programs
concern themselves mostly with solving a series of equations
or computing upon rules of thumb that are the basis for
discipline approaches to engineering problems. While this
serves as a very direct attack on the immediate problem, it
risks losing useful context that can serve as a platform of
discussion between disciplines or between systems engineers
and discipline practitioners unless auxilliary documentation
is used. The new approach to analysis instead starts from
the context and generates analyses from it. The key to this
is model transformation. Model transformation is an area of
active research, with multiple experimental languages under
development.

One of these languages, Query-View-Transformation, is
specified as an open standard by the Open Modeling Group
[8]. There are multiple implementations of different parts
of the standard. The tools used for EHM are the Eclipse
Modeling Frameworks (EMF) QVTo, which implements the
imperative style of QVT, meaning that the style of code is
akin to a typical Java or Python program with special methods
and syntax. The main difference is that the program has a
very heavy emphasis on collections and automated iterators,
including an ability to perform many functions in the same
line of code by processing a given collection and then its
results. An example of this is:

var resultCollection := startCollection -¿ select(i —
i.interestingProperty) -¿ map typeAtoTypeB();

Within the single line of code above, a starter collection
is screened for all elements with a true interestingProperty
which are then converted from type A to some other type B
model elements.

The base EMF implementation of QVTo has been extended
and enhanced at JPL by the internal Integrated Model-Centric
Engineering (IMCE) initiative to operate with the MagicDraw
SysML authoring tool. The Eclipse environment provides
a QVT interpreter for source codes that includes a debug-
ger, authoring tools for MOF-compliant metamodels (Ecore),
text file generation from templates, and XML parsing and
serializing tools. The XML tools work in the background,
and so a QVT developer does not have to consider XML.
The focus in the tooling is on the metamodel and modeling
elements, so that transformation authors can focus on the
problems of traversing a source model and matching source
model elements to desired target elements.

The QVT language requires some skill with computer lan-
guages and code development, but is not so arcane that
a systems engineer or modeler cannot be cross-trained to
create transformations. That said, the language is probably
best employed by the more advanced modelers on a given
team. Those readers more interested in the teaming aspects
of systems modeling and associated tool support should refer
to the EHM approach [9].

Comparison Between QVT and Previous Code Bases

As discussed earlier, previous approaches have focused on
treating model connection problems as a parameter / data
passing issue, either by connecting code (in monolithic de-
velopments or CORBA) or parameter values (middleware
such as ModelCenter). The transformation approach is to
reformulate parts of the systems model into elements of
models native to the target analysis. This does not merely
pass parameters to the target analysis, but also conveys the

behavior that is expected to accompany those parameters.
This represents a new category of approach, apart from the
integrated and middleware styles.

Using target discipline native models is powerful. Rather than
asking about parameter connections between a given imple-
mentation of a model, which implies a potentially cumber-
some manual effort of synchronization, this approach regen-
erates new analysis components on the fly. These components
are then synchronized with the analysis by construction. This
approach also invites the system modeler or transformation
developer to think in the terms of a given analytical discipline.

The transformation approach also allows for a richer, more
compact transfer of information. For example, the middle-
ware approach may create two parameters, power use step
height and power use step start that describe a Simulink step
functions shape and imply its use within the analysis. The
transformation creates the Simulink step function and a link
to calculations that will use it as input.

It is worth noting that model transformation is not unique to
the QVT language. MagicDraw includes an API that allows
programmers to develop model transformation algorithms by
hand in Java or Python using a direct connection. But a major
difference in this approach is the use of a proprietary API and
its function calls as opposed to dealing directly with standard
model elements. There are several questions in deciding on
whether to ultimately use the special application language
or more standard languages adopted to model transformation
purposes. The efficiency of these code bases for their specific
task, potential for vendor lock-in, robustness of the user
community for QVT, and tool support are all dimensions
of consideration. Since the use of QVT is new, this is a
less a question of an option to purchase and more one of a
technology to invest in.

In the following sections, a series of example uses of trans-
formation on the EHM team will be presented.

3. EXAMPLE TRANSFORMATION: POWER
MODEL

Base power system SysML model

The first experiment with transformation between a system
model and discipline analysis was for a basic power and
energy balance model. This was conducted as a long-duration
experiment for feasibility, but resources were too constrained
for full implementation since the team was already using a
spreadsheet-based power model. The original power balance
was maintained in an Excel spreadsheet with manual integra-
tion over a one minute time step. The goal of an enhanced
analysis in Simulink was to provide flexibility in adding detail
for short time events or to swap out higher-fidelity power
consumption events (e.g., increased power use when the solid
state recorder was in heavy use or reaction wheels were being
desaturated) for the average power consumption that was
modeled in the spreadsheet.

Developing the SysML systems model was just as experi-
mental as the transformation work. Early on, it became clear
that there was a need for decoupling (if desired) between the
power engineer projections for component power use and the
uses currently declared by other discipline engineers. This
would allow for scenario exploration as well as some predic-
tions based on the power engineers experience between first
and eventual estimates for component power use. Another

3

Figure 1. State Machine diagram for a radar instrument

key concern with the model was to allow the power load
profile to be composed very simply and to allow for new
loads to be added or subtracted very easily from the total
consumption estimate. Finally, there was an interest in having
direct traceability between powered component functions and
consumed power.

After considering this problem, several principles were con-
ceived for the power model design. Most of these are good
general practice, but the transformation apparatus was well-
suited to achieving them. The first of these principles was
to arrange the model to conceptual simplification rather than
computational simplification. Highlighting the states and
functions of a system would be important rather than abstract-
ing for the rather constraining computing environment of a
spreadsheet. Another principle was that the model should
scale naturally with detail, again meaning that some sense of
how the system would eventually operate should be encoded
in the model. Another principle invoked the need for the
power engineer to be able to alternatively work independently
and then assure access to authoritative estimates from other
engineers of power consumption.

In this case study, a SysML model was developed to represent
the EHM power system with enough detail to be simulated.
The SysML model was implemented across multiple model
element types for the behavior of the system. At the most ba-
sic level, electronic components were assigned power states,
such as off, on, warmup, etc. The SysML State Machine set
of elements was used to capture these states and to specify
transition constraints, such as that a given piece of hardware
had to warm up for 10 minutes before reaching the full
operational state. An example diagram is shown in Figure 1.
Within many of these states is a Do activity, which is meant
to be a stub for defining the operations of the component as
more detailed behaviors are defined. Above the state level,
a set of coordinating activities served as a very high-level
abstraction of eventual switching logic. The coordinating
activities produced signals to be sent to various components
telling them to turn on or off. The component state diagrams
then dictated whether the component would turn directly
off or require some kind of cooldown first. The switching
diagram can be seen in Figure 2, and is inspired by the way
the Cameo Simulation Toolkit approaches mixed state and
activity modeling.

The structural side of the problem was handled primarily with
Block modeling. A series of Power Load components were
developed. These are linked to the various states (by way of

Figure 2. Example activity diagram for an instrument power
load, showing connection between object, signal, and time

Do activities representing operational functions) to describe
power consumption as a function of time or other independent
parameters. These Power Loads were intended to aggregate
the power consumption characteristics of many pieces of
flight hardware (e.g., a base load for the bus avionics, variable
loads for momentum wheels). These Power Loads served to
abstract the hardware to the level of interest for power anal-
ysis and also provide mechanisms for the systems engineer
to play ”what if” games. These elements also allowed the
systems modeler to import data on the power loads estimated
by other engineers on the team. The SysML Block Definition
Diagram that corresponds to this assignment is shown in
Figure 3.

In addition to the modeling of the loads on the power system,
source and storage components were also included in the
model. The source models had SysML Parametrics that
described the output of the power supplies of the spacecraft
over the life of the mission. Storage models were similarly
parameterized on performance.

With the basic SysML model in hand, it was time to look
at how to transform it from a descriptive into an analytical
model, and use what was learned to refine the SysML model.

Conversion from SysML

Transformation of a system model to an analysis follows a
different style than connecting two pieces of software. Rather
than transporting values, the approach is to translate the
meaning of relevant parts of the original model. Relevant is

Figure 3. Example BDD for a telecom power load, showing
connection between component, function, and power con-
sumption.

4

a very key consideration. It determines which SysML ele-
ments in which contexts will be ported over to the analytical
discipline of interest, and whether intermediary concepts are
useful to introduce to make the translation more natural.

In this case, the driving interest was to explore the con-
sumption, production, and storage of power as the EHM
flight system performed its mission. This implied an op-
erational point of view. The modeling teams experience
with flight operations is that operators tend to plan and work
from timelines that lay out desired activities. At the same
time, a timeline approach can be expressed in very precise
mathematical terms as a series of analytical constraints[10].
This further implied an interest in couching the terms of the
transformation between SysML and Simulink in terms of this
timeline metamodel rather than matching SysML metamodel
elements directly to Simulink elements.

The timeline metamodel works with the fact that what is
common in almost all analyses is that they involve parameters
that are time-varying, e.g position, attitude, power, energy,
temperature, etc. Under certain circumstances, system mass
is analyzed as if it were a time-invariant static property,
however, it is actually time-varying. A system may have
propellants that are depleted over time and parts may be
jettisoned throughout the mission. As such, we must be able
to represent parameters in SysML as time-varying properties.
While SysML does not provide an explicit way of represent-
ing such time-varying properties, representations can be built
from its library of model elements. Using this capability, the
Tiimeline has been developed which can explicitly represent
time-varying properties in SysML.

A simple and common example of a time-varying information
to be represented as a Timeline is a position of some object
x(t). While the domain of a time varying position is a
three dimensional vector, i.e. D(x) ∈ R3, a Timeline
may be associated with more complex and less conventional
domain, e.g. a set of all spacecraft configurations. As a
simple example, consider a Timeline for a position x in one
dimension. Let us assume that the position is initially 0 with 0
velocity at time t0 = 0 from some reference point associated
with x and a reference time t (note that while we recognize
the criticality of specifying units, we have omitted the units
here to simply the discussion). Then, at time t1 = t0, the
position accelerates at a rate of 0.5 for the time duration of
t2 − t1 = 10. Subsequently, the position decelerates at a
rate of 1 for the duration of t4 − t3 = 5. Then, the position
maintains at 25 until time t6 = 30. Furthermore, let us also
constrain that the position is never negative. This sequence of
events and the constraint can be represented explicitly as a set
of contraints involving a parameterized piecewise continuous
function, shown in Equation 1 and illustrated in Figure 4.

x(t) =

0, if t = t0
0.5(t− t1)

2, if t1 < t ≤ t2
50− (t− t3)

2, if t3 < t ≤ t4
25, if t5 < t ≤ t6

,

t0 = 0,
t1 = t0,
t2 − t1 = 10,
t3 = t2,
t4 − t3 = 5,
t5 = t4,
t6 = 30,
t∞ < +∞,
∀t0≤t≤t∞x(t) ≥ 0

(1)

0 5 10 15 20 25 30
t

0

25

50
x

Figure 4. Position as a piecewise function of time.

Equation 1 has multiple parts: a function x that varies over
time, a reference time t, time variables t0, t1, . . . , t∞, pairs
of a value and its time range (e.g. x(t) = 0.5(t− t1)

2, if t1 <
t ≤ t2) and temporal constraints (e.g. t1 = t0). Similarly,
a Timeline T L is composed of a set of variables X (e.g. x,
t and t0), a set of events E (e.g. x(t) = 0.5(t − t1)

2, if
t1 < t ≤ t2) and a set of constraints C (e.g. t1 = t0). For
detailed description of Timeline and the mapping to SysML,
see [10].

One benefit of this approach is that it freed the model con-
ceptually from the need to describe (implicitly centralized)
switching logic with a more appropriate abstraction. This
abstraction focuses on desired behavior and concept of op-
erations rather than a controller.

The implementation of this approach was to develop a QVTo
transformation between SysML elements (in a certain con-
text) and an Event metamodel that made an approach similar
to the more formal timeline metamodel (which had not been
fully developed at the time the transformations described here
were written). After this model transformation had been
performed, an Xpand template was used to surround model
elements with strings of Matlab code that would build an
appropriate Simulink model. In the jargon of the Eclipse
Modeling Framework, the first step was to perform a model-
to-model transformation from SysML into a custom Event
model, and the second step was to perform a model-to-text
transformation to write build instructions for Matlab, since
Simulink models are not stored in an XML format.

The mechanics of the transformation of the power loads
are described in the remainder of this section. The QVTo
transformation looked for specific elements. One example is
how a power consumption Event is generated. To do this, first
an Activity model describing an operational scenario with
the Baseline stereotype is found. Next, Send Signal Actions
within the activity are found and traced back to Activity
Parameter Nodes were the nodes are stereotyped with Power
Load. Another trace back from the Send Signal Actions looks
for Time Delays that are added together to learn when each
signal should be sent. These Power Loads are then examined
for State Machines, and transitions are matched against the
signals from the Send Signal Action. This establishes which
of the Do functions should be performed at any given time.
Another thread of model traversal started at Blocks with the
Power Model stereotype to get the mathematical function that
describes the power consumption state for the Do function
over time. Finally, the Power Model is searched for Depen-
dencies to the Activities within the Do function of Power
Load State Machines. This matches the timing of the function
to the variation of the state variable while it is performed.

The QVTo code to do a total conversion of the power model
in SysML to Simulink is very small; it is under 1000 lines
of source code. The template to make custom Matlab scripts
is also rather short, containing a few 10s of directives. In

5

this case, there is then a corresponding Simulink construct.
The construct is a custom m-function block that calculates
the mathematical expression from the Power Model, and is
constrained to be in effect only during the start and end times
discovered by traversing the signals of the Activity model.
This m-function block is then added to the results of other
custom m-functions and exported as a vector to form the
consumption side of a consumption-production balance in the
Simulink model.

4. IMPACTS OF MODELING WORK ON
COLLABORATION

While working with new modeling approaches was a major
focus of this effort, it was also interesting to note how inter-
actions between the discipline expert and systems engineer
changed as the transformation apparatus matured. The inter-
est of the discipline expert in participating in this experiement
was to reduce the number of uninteresting questions from the
systems engineers, such as what would happen if a given
power load would be reduced or increased by some small
amount. A more realistic and interoperable systems-level
model would also enable faster entry into the dynamic and
nonlinear details of actual power system operation than would
be possible if each transfer of new configuration details was
manual.

Another motivation for the power engineer was to improve
the connection between the different levels of discpline know-
how could be brought to bear on a given problem. The
approach that he took with the lead author is that the system-
level model would be an abstraction of more detailed models
that had been developed in PSPICE. The initial model was
of a power source for the Mars Science Laboratory that was
being considered for reuse in EHM. This had been abstracted
into a simple system-level trade study based in Excel. For
the work presented in this paper, the power source model
was developed into a new version using SysML Parametrics.
Also, as the SysML / Simulink system model was further
developed, it served as a basis for technical exchange about
the behavior of batteries from different vendors.

An early controlling document for the EHM design was the
Power Equipment List, or PEL, a bookkeeping approach
to balance consumption and production. A desire of the
power engineer was to make this product a by-product of
engineering effort rather than a major compilation effort of
its own. Eventually, it was envisioned that the information
in the PEL would be directly linked to assumptions and
analyses made by other designers. This would be a major
improvement over the current system of emailing information
to-and-fro with the degradation of exchange implied by a
game of telephone. The preferred state of affairs was brought
home recently with an engineering team meeting where it
was revealed that the data link performance was determined
assuming that several components were in operation that the
PEL had documented as being turned off, invalidating the
work of at least one of the two discipline engineers. Luckily,
this was a simple calculation to correct, but similar errors in
later design phases or shorter concept development schedules
can easily be imagined to have more harmful impacts.

At first, the PEL seems a natural language of interaction
how much power is consumed, how much is produced, and
how much is lost during conversion, distribution, and storage.
However, while power is a major system level concern, it
is not an entirely natural basis for understanding the per-

formance of a power distribution system. So the ability to
jump quickly from power to voltage, current, impedence,
and other analog electrical quantities is important even at
the system level to properly understand potential losses and
inefficiencies. Having these physical quantities at hand is also
key to capturing the rationale of system-level choices such as
the centralization or decentralization of voltage conversion.

There are two immediate modeling implications. The first is
that a bookkeeping approach can often lock in improper levels
of abstraction to keep it simple. The second is that working
with a discipline expert to develop a cohesive system model
leads to a natural need to discuss physical details and talk
about real design issues. Understanding naturally becomes
far deeper when someone must develop simulation results on
his or her own and then connect them back to the real world.
Further, the results of these discussions can then live within
an integrated record of the current state of design.

It can be tempting to regard systems engineering products
like the PEL as all we need to know to see that a design
closes and that the appropriate resources are available in
eventual operation. But, these products are not imbued with
an understanding of the core concepts and design philosophy
of a given discipline lead in the same way that a system model
is.

Another result of working with the power system lead in this
modeling effort was to gain an appreciation of a variety of
artifacts that were desired for eventual production. Examples
of these were end-circuit diagrams to inform the constraints
on component electrical properties and function lists describ-
ing what the power system itself had to do. While these were
products for a much later part of the lifecycle than was in
scope for this modeling effort, it was worthwhile to consider
where the seeds should be placed even in the formulation
phase to assure consistency and smooth development.

5. OTHER USES OF QVT
Exports to Mathematica

Another avenue that was explored for a limited time was the
transformation from SysML objects to Wolfram Research’s
Mathematica. Since Mathematica is a very powerful sym-
bolic language, this was seen as a gateway to developing large
systems of equations and then solving them to explore the
design. Being able to flexibly leave some variables in these
equations as variables would then imply a very flexible trade
space exploration capability, allowing designers to ”hold the
design up to the light” from a wide variety of angles and
scenarios.

The first approach tried was to export a shadow of the SysML
object into Mathematica. A lightweight object-oriented set of
custom commands were developed:

• Create New Object
• Get Property Value
• Set Property Value

The idea of these objects was simply to provide a place for
Mathematica functions to find data in a convenient package
and then manipulate it to generate equations. A prime
example is the development of a library to calculate moments
of inertia for the flight system. In the SysML model, various
hardware components were pointed to geometric abstractions
(e.g., cylinder, sphere, cone) to declare the designer’s intent

6

In[3]:= e1 = 80, t == t0<

Out[3]= 80, t ã t0<

In[47]:= e2 = 80.5 Ht - t1L^2, t1 < t <= t2<

Out[47]= 90.5 Ht - t1L2, t1 < t § t2=

In[48]:= e3 = 8-Ht - t3L^2 + 50, t3 < t <= t4<

Out[48]= 950 - Ht - t3L2, t3 < t § t4=

In[27]:= e4 = 825, t5 < t § t6<

Out[27]= 825, t5 < t § t6<

In[49]:= ConstraintsT = 8t0 == 0, t1 == t0, t2 - t1 == 10, t3 == t2, t4 - t3 == 5, t5 == t4, t6 == 30<

Out[49]= 8t0 ã 0, t1 ã t0, -t1 + t2 ã 10, t3 ã t2, -t3 + t4 ã 5, t5 ã t4, t6 ã 30<

In[50]:= ConstraintsD = 8x ¥ 0<

Out[50]= 8x ¥ 0<

In[51]:= Events = 8x == Piecewise@8e1, e2, e3, e4<, UndefinedD<

Out[51]= :ConditionalExpressionBx ã

0 t ã t0

0.5 Ht - t1L2 t1 < t § t2

50 - Ht - t3L2 t3 < t § t4

25 True

,

! Ht ! t0 && ! t1 < t § t2 && ! t3 < t § t4 && ! t5 < t § t6LF>

In[55]:= Timeline = Union@Events, ConstraintsD, ConstraintsTD

Out[55]= :ConditionalExpressionBx ã

0 t ã t0

0.5 Ht - t1L2 t1 < t § t2

50 - Ht - t3L2 t3 < t § t4

25 True

,

! Ht ! t0 && ! t1 < t § t2 && ! t3 < t § t4 && ! t5 < t § t6LF, t0 ã 0,

t1 ã t0, -t1 + t2 ã 10, t3 ã t2, -t3 + t4 ã 5, t5 ã t4, t6 ã 30, x ¥ 0>

Figure 5. Mathematica representation of Equation 1.

to abstract them for analysis. These are then transformed
by model-to-model and then model-to-text transforms into
Mathematica commands that create the basic objects. Math-
ematica functions then examine these objects and produce
appropriate equations, in this case the solutions for moments
of inertia about simple bodies’ centers. Other equations can
then be formulated to convert this intermediate result into a
combined spacecraft center of mass and moments of inertia.

A similar approach without the need to create the object-
orient model in Mathematica is to use a simple key-value
pair table. In this approach, the MagicDraw Report Wizard
or similar tools can be used to export a simple table of value
properties by name, MagicDraw internal id, and value. The
internal id is the key to bringing results from the Mathematica
calculations back into the SysML model and thus influence
the design. This approach has been shown to be effective also
in dealing with bulk data entry, such as updating mass values
for a large number of hardware components.

Another good reason for employing a symbolic math tool
is the use of the timeline metamodel as described earlier.
Disjoint equations are cumbersome to write in procedural
computer languages since a list of switch or if-then-else
statements are required to scope when a given function is
applicable. In addition, technqiues for solving disjoint equa-
tions must make a number of logical steps that continuous
ones do not. In contrast, the Mathematica tool has a built-
in object called Piecewise that can be directly handed to its
solving apparatus just like any other equation. Some basic
tests for working with these functions were conducted to
satisfy the authors that Piecewise could be used to solve
temporal constraint problems according to the principles of
the timeline model. For example, consider Equation 1 that
mathematically represents a Timeline. This can be directly
represented in Mathematica as shown in Figure 5. Note that
Figure 4 was generated by using Mathematica to solve for the
set of relations shown in Figure 5.

QVT Mass rollup

A somewhat impromptu use of QVT was to develop a mass
rollup script for the EHM design effort. Previous attempts at
using commercial tools for MagicDraw to do this calculation
had failed for various reasons. Since the author had been
experimenting with QVT, a mass rollup validation (”do the
masses add up properly?”) and correction script was written.
This script worked with the fact that the team was using a
pattern of Blocks to store mass information over time rather
than simply having Value Properties within a given Block.

There were two steps in the script - first, to render the full
pattern of Blocks into a simplified graph that had only nodes
and mass properties. The second step was to traverse the
simplified graph and sum up masses at each step. It turned out
that the first step added undue computing time to the script,
and so eventually this approach was abandoned. However, for
a period of time, the lower performance was excepted due to

a lack of alternatives.

A faster version of the script was co-developed by the authors
as an experiment to compare performance of QVT against
that of the MagicDraw Jython API. The new roll-up script
in QVT is far faster. It executes on a model with roughly
300 parts in roughly 3 seconds. Meanwhile, the MagicDraw
API version executes in roughly 2.5 seconds. The timing
experiment was not conducted rigorously (also the codes
operate in slightly different ways), so an exact comparison
cannot be claimed in this paper. However, it does not appear
that QVTo is inherently slower than working directly in the
tool API.

The results of this experiment indicate to the authors that the
use of QVTo does not appear to come with a major drawback
in speed. One caveat to this statement is that the standard
QVTo interpreter causes a long (10’s of seconds to a few
minutes) wait before the QVTo script executes in its standard
configuration. A compiler has been developed at JPL to
eliminate this wait and improves the performance of QVTo
execution greatly.

6. LESSONS LEARNED
There were a number of lessons learned from this effort.
The most trivial of these is that this effort served for the
training of the team in the techniques of model transformation
and illuminated the possibilities for integrated modeling and
analysis.

A major lesson is that developing the structure of a good
system model for analysis is inherently a multidisciplinary
effort. It requires a strong generalist with a background in the
general problems of engineering design, such as component
sizing, optimization, trade exploration, and numerical analy-
sis. Another important player in the effort while transforma-
tion for system models remains experimental is a computer
scientist with an understanding of the kinds of data structures
that support flexible analysis and straightforward algorithms.
And of course the discipline expert contributes perspective
on how the information in the model will eventually be
elaborated into a detailed design.

The transformation approach provides guidance to the system
modeler in how models should be constructed. The thought-
ful inclusion of an analysis discipline gives the systems
engineer a hands-on appreciation for the needs of discipline
experts that may not be conveyed through written reports or
verbal communication. The need to make the descriptive
model operable in the language of the target discipline pro-
vides a useful focus for the systems engineer to ask more
probing questions than if he or she merely aimed to capture
the work of another engineer.

On the other hand, this ready ability to encode a great deal
of information into a system model opens a major potential
pitfall. In the interest in capturing the perspective of a
given discipline expert, it can be too tempting to include
all discipline detail. When managers and systems engineers
speak of the major effort of developing a system model, this
temptation is a big source of that concern.

Once the synchronization between discpline expert and sys-
tems engineer occurs, the system model can become an ex-
tremely powerful artifact. Again, the need to compute in the
terms of a given discipline naturally leads parts of the model

7

to be expressed in the terms of the discipline expert. Resultant
models, when constructed with care, can serve as a repository
for the visions of multiple discipline engineers. Having all
of these different views directly in front of him or her, the
systems engineer can use multidisciplinary knowledge and
insights to balance and harmonize the different aspects of a
design.

A basic human factors aspect of this effort should not be
overlooked. Synchronizing between different visions of a
design, even in the simple data transfer sense, is a difficult
and often error-prone enterprise when conducted by informal
or even formal communication. It can be easy to mistran-
scribe a number or to misunderstand a given procedure or
initial condition. By using the transformation approach, the
information only has to be corrected once. If something is
wrong in a given scenario or analysis, the system model is
corrected and a new, entirely consistent by construction anal-
ysis configuration is generated. More traditionally, a specifi-
cation document would be updated (or not), transmitted to an
analyst, and then manually used to reconfigure the analysis
to match. As the number of alternative scenarios or designs
to analyse increases, the chances of basic transcription errors
increases rapidly. It was noted during these experiments that
juggling multiple alternative concepts was in fact as simple as
checking boxes to select appropriate versions of the system
model.

It has also become particularly clear through this effort that
models are products that require skilled and focused effort.
Poor models obfuscate and confuse, and make analysis ad
hoc and littered with special rules and exceptions. Good
models clarify and often are much simpler to manipulate with
streamlined approaches. This of course implies that there is
a product added to the engineering lifecycle that did not exist
before, or at least did not exist at this breadth or at earlier
stages. It is the belief of the authors that this artifact relieves
more effort than it requires, in the same way that an assembly
jig or workbench with pre-positioned tools are investments
that make fabrication efforts far more productive.

It is worth considering design documents in this context.
They are also the products of human design, and can be
fashioned with high art or in a lackluster way. It is also worth
considering who the systems engineer is often in contact
with. The engineer is often in contact with other engineers,
mathematicians, or programmers. It is much less likely
that the engineer works in close concert with the graphic
designer or the technical communications expert. The need
to execute for an analytical model may drive the system
model naturally to higher levels of quality than the system
description document. The results of queries and execution
can drive to more consistency than the results of reading and
re-reading information passively.

With all of that said, it was found in this work to be difficult
to get up the curve from experimentation to production mode.
A major hurdle has been the computational sophistication of
the approach on the whole. Even within the EHM modeling
group, it has been hard to get acceptance for ”we employ a
tree traversal where each node is the sum of its children” in
the same way that a spreadsheet with ”sum these ten numbers
directly below me” is accepted.

Transformation requires a different approach to verification
than systems engineers are typically used to. The ability
to visually inspect a mathematical expression for quality is
not to be overlooked. Great care must be taken to keep the

mathematical computations clear and separated from traver-
sal logic - ”where is the plus sign?” was an oft-repeated
refrain during the use of the QVTo-based mass rollup. The
typical verification is ”provide these input values and see
that the results are calculated correctly.” Since transformation
involves one model becoming another, the verification of a
good transformation will have to be more like a software
unit test. Analyses based on transformation from a system
model will require this software-styled unit test but also
a very transparent rendering of the appropriate numerical
calculations.

Another hurdle to production has been the fact that there is a
limited number of modelers, and even more limited number
of modelers proficient in QVT. In these experiements, the
authors have developed the conceptual basis for the system
models, the system models themselves, the conceptual basis
for the target analysis models, and then the transformation
between all of these. This leads to a severe bottleneck
and organizational brittleness that will have to be addressed
before these techniques are employed in an operational way.
That said, it is entirely reasonable to expect that as system
modeling becomes better understood, the system modeler
community will grow to a much larger portion of the sys-
tems engineering community, and transformation developers
will have numbers more like those of the current modeling
community. The system modeling community is currently
robust enough to entrust with concept development efforts,
and so transformation should also be able to reach this level
of organizational trust.

The QVTo community has been found in this work to not
be nearly of the size or stability of established middleware
firms, and possibly not sufficient to be convinced of its long-
term viability. However, it has so far provided a stable suite of
tooling that handles many low-level chores such as registering
and parsing metamodels and handling XML reading and
authoring. An open risk for employers of this technology to
consider is that this community requires sustanance in order
for this infrastructure to remain available. Hopefully this
work has shown the power of model transformation and the
need to nuture this community.

7. CONCLUSIONS
A number of experiements on transforming system models
into discipline analyses have been conducted. In addition to
exploring the computation aspects of making this happen, the
experiements also facilitated interesting exchanges between a
system engineer and a power system expert. These exchanges
were richer and more engaged in technical details than would
have been facilitated simply by asking for reports or estimates
on power subsystem parameters. The exchanges also cast
the system engineer less into the role of bookkeeper and
more into the role of integrator of discipline perspective and
concerns about the overall design.

The experiements provide a vision of a more rigorous and
repeatible path between systems specification and analysis.
This path was exercised in multiple scenarios, and was found
to enable the authors to produce an arbitrary analysis con-
figuration for any tool (provided an ASCII file interface was
available to do so) from a system model.

While very promising as an experiment, the use of system
model transformation has a series of issues to tackle while
maturing into a production capability. Much of this has to do

8

with introducing a sophisticated computational approach to a
field that has traditionally been more about pen and paper.
During the infusion of this techniques, systems engineers
will have to improve their technical understanding. The
transformation developers will also have to be flexible and
attentive to the desire to ”see the plus sign” and any numerical
calculations clearly.

While the infrastructure for transformation (including com-
munity size) of system models is immature, the current
capabilities as exercised are powerful. There is more than
enough potential to justify further maturation and expansion
of the transformation infrastructure to go hand-in-hand with
the maturation and expansion of the systems modeling infras-
tructure.

ACKNOWLEDGMENTS
This work was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the
National Aeronautics and Space Administration.

REFERENCES
[1] “NASA Program and Project Management Processes

and Requirements,” National Aeronautics and Space
Administration, Tech. Rep. NPR 7120.5D, 2007.

[2] R. Shishko, “The Proliferation of PDC-Type Environ-
ments in Industry and Universities,” Munich, Germany,
2000.

[3] L. F. Rowell and J. J. Korte, “Launch Vehicle Design
and Optimization Methods and Priority for the Ad-
vanced Engineering Environment,” National Aeronau-
tics and Space Administration, Tech. Rep. NASA/TM-
2003212654, 2003.

[4] J. S. Robinson, J. G. Martin, J. S. Robinson, and J. G.
Martin, “An Overview of NASA’s Integrated Design
and Engineering Analysis (IDEA) Environment,” Or-
lando, FL, 2008.

[5] L. A. McCullers, “Aircraft configuration optimization
including optimized flight profiles,” National Aeronau-
tics and Space Administration, Tech. Rep. NASA/N87-
11743, 1984.

[6] D. R. Sandlin and D. N. Pessin, “Aerodynamic Analysis
of Hypersonic Waverider Aircraft,” National Aeronau-
tics and Space Administration, Tech. Rep. NASA-CR-
192981, 1993.

[7] A. Bachmann, M. Kunde, M. Litz, and A. Schreiber,
“Advances in Generalization and Decoupling of Soft-
ware Parts in a Scientific Simulation Workflow Sys-
tem,” in ADVCOMP 2010: The Fourth International
Conference on Advanced Engineering Computing and
Applications in Sciences. Florence, Italy: International
Academy, Research, and Industry Association, 2010,
pp. 34–38.

[8] “Meta Object Facility (MOF) 2.0
Query/View/Transformation, V1.1,” Open Modeling
Group, Tech. Rep. formal/2011-01-01, 2011.

[9] T. Bayer, S. Chung, B. Cole, B. Cooke, F. Dekens,
C. Delp, I. Gontijo, K. Lewis, M. Moshir, B. Ras-
mussen, and D. Wagner, “Model Based Systems En-
gineering on Europa Mission Formulation,” in IEEE
Aerospace Conference, Big Sky, MT, March 3-10, 2012

2011.
[10] S. H. Chung, C. Delp, D. Bindschadler, E. Fosse, and

M. A. Sarrel, “Representing information using time-
lines for system design to system operations,” in IEEE
Aerospace Conference, Big Sky, Montana, March 3–10
2012.

BIOGRAPHY[

Bjorn Cole Bjorn Cole is a systems en-
gineer in the Mission Systems Concepts
section of the Jet Propulsion Laboratory.
His research interests are in the fields of
design space exploration, visualization,
multidisciplinary analysis and optimiza-
tion, concept formulation, architectural
design methods, technology planning,
and more recently, model-based systems
engineering. His most recent body of

work concerns the infusion of systems modeling as a data
structure into multidisciplinary analysis and architectural
characterization. He earned his Ph.D. and M.S. degrees
in Aerospace Engineering at the Georgia Institute of Tech-
nology and his B.S. in Aeronautics and Astronautics at the
University of Washington.

Seung H. Chung Seung Chung is a
software system engineer in the Flight
Software Systems Engineering and Ar-
chitecture Group at the Jet Propulsion
Laboratory. His past and current re-
search is centered around model-based
systems engineering and autonomy, with
the focus in the areas of model-based au-
tonomy architecture, model-based esti-
mation and diagnosis, and fault-tolerant

planning and execution. His expertise is in the formal
methods of Artificial Intelligence, including satisfiability,
constraint satisfaction, planning, symbolic model-checking
and probabilistic analysis and methods. More recently, he has
extended his research in the area of flight system architecture
and design, with a specific interest in formal analysis and de-
sign of flight system architecture, including software system
architecture. He received his Ph.D. in Autonomy and S.M. in
Aeronautics and Astronautics from MIT and his B.S. degree
magna cum laude in Aeronautics and Astronautics from the
University of Washington.

9

