
 978-1-4577-0557-1/12/$26.00 ©2012 IEEE
 1

Analysis of Phoenix Anomalies and IV&V Findings
Applied to the GRAIL Mission

Steve Larson
Jet Propulsion Laboratory, California Institute of Technology

4800 Oak Grove Dr. Pasadena, CA 91109
818-354-0679 Steven.A.Larson@jpl.nasa.gov

This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space Administration

Abstract—NASA IV&V was established in 1993 to
improve safety and cost-effectiveness of mission critical
software. Since its inception the tools and strategies
employed by IV&V have evolved. This paper examines
how lessons learned from the Phoenix project were
developed and applied to the GRAIL project.

Shortly after selection, the GRAIL project initiated a
review of the issues documented by IV&V for Phoenix.
The motivation was twofold: the learn as much as
possible about the types of issues that arose from the
flight software product line slated for use on GRAIL,
and to identify opportunities for improving the
effectiveness of IV&V on GRAIL. The IV&V Facility
provided a database dump containing 893 issues. These
were categorized into 16 bins, and then analyzed
according to whether the project responded by changing
the affected artifacts or using as-is. The results of this
analysis were compared to a similar assessment of post-
launch anomalies documented by the project.

Results of the analysis were discussed with the IV&V
team assigned to GRAIL. These discussions led to
changes in the way both the project and IV&V
approached the IV&V task, and improved the efficiency
of the activity.

TABLE OF CONTENTS

1. INTRODUCTION ... 1
2. PHOENIX IV&V .. 2

3. ANALYSIS OF ANOMALY DATA 5
4. RELATIONSHIP BETWEEN IV&V FINDINGS
AND IN-FLIGHT ANOMALIES 9
5. APPLICATION TO GRAIL 10
6. POST LAUNCH ASSESSMENT........................... 10

7. CONCLUSION ... 12
REFERENCES ... 12
BIOGRAPHIES .. 12

1. INTRODUCTION

NASA instituted an independent verification and validation
(IV&V) organization in 1993 as a result of the findings of
the Challenger accident investigation. The NASA IV&V

Facility now provides services for all manned, and most
unmanned flight projects. Although NASA provides
independent funding to IV&V, projects bear the cost
associated with interacting with the Facility. This paper
describes the work performed by the Gravity Recovery and
Interior Laboratory (GRAIL) mission to maximize the
cost/benefit ratio of those interactions.

Project Background

GRAIL is a NASA Discovery Program mission designed to
map the moon’s gravity field to high precision, and thus
shed light on its current state, the processes governing its
formation, and by extrapolation, processes of planetary
formation in general. The measurement strategy is to use
ranging data from two spacecraft orbiting the moon in
formation, and infer the lunar gravity field from variations
in their separation distance. The project is led by Dr. Maria
Zuber of MIT, and managed by JPL. Lockheed Martin (LM)
Sensing & Exploration Systems (SES) in Denver, CO,
provided the spacecraft, and JPL provided the ranging
measurement payload. The GRAIL spacecraft were
launched on September 10, 2011 from the Kennedy Space
Center in Florida.

Heritage Missions

The core flight software is derived from a product line that
has been used on JPL-Lockheed partnerships for over a
decade. Both the product and processes used to adapt it to
new missions are regarded as mature. The recently
concluded (and successful) Phoenix project is the most
recent instantiation of this product line. The still-operating
Mars Reconnaissance Orbiter (MRO) project provided the
starting baseline for GRAIL due to avionics heritage from
MRO.

The MRO mission has been the subject of extensive
analysis, lead principally by Todd Bayer, the former MRO
Chief Engineer. A summary of the most significant MRO
anomalies [1] was published in the proceedings of the 2009
IEEE Aerospace Conference. Additional information was
obtained informally from Ken Starr [3], who was
responsible for investigating the details of flight software
problems. The picture that emerges from these analyses is
well described by Gerard Holzmann: “the types of
anomalies encountered with MRO are considered to be hard

 2

[software] design problems that are very difficult to develop
thorough tests for."[2]

The fact that software anomalies occurred in flight on MRO
shows that the combined efforts of JPL, Lockheed Martin,
and NASA IV&V failed in one way or another to find and
fix software vulnerabilities before they caused problems.
Given the relatively short GRAIL mission duration (three
month cruise, three months to establish science formation,
and a three month science mission), and the length of time
needed to resolve the more vexing software bugs on MRO
(the side swap anomaly took roughly two years to finally
resolve), it was important for GRAIL to maximize the
chance of catching serious software bugs before launch.
Lockheed SES has a mature process for capturing lessons
learned and applying them to future missions. However, the
IV&V Facility faces greater challenges in this area, as they
generally do not have direct access to the source data (e.g.,
problem reports, in-flight anomaly data) available to the
developers. With IV&V hampered in the area of developing
post-launch lessons learned, the project set out to answer the
following questions concerning the conduct of IV&V:

• Did the pre-launch IV&V analysis accurately
predict problem areas post-launch?

• Did the project respond appropriately to issues
raised by IV&V?

• What could the GRAIL project and IV&V do
differently to improve the effectiveness of IV&V?

Analysis Approach

The MRO report investigation was complete and thorough,
but did not delve into the details of software development
and IV&V to the extent needed to provide specific
suggestions on ways to improve the process. To accomplish
that, a complete set of anomaly data and IV&V issues were
obtained and analyzed. IV&V issue data described the work
of IV&V and their findings. Anomaly data was used to
identify areas where IV&V could be strengthened, or where
the project response to IV&V contributed to an in-flight
problem.

2. PHOENIX IV&V
Methodology

The assessment of IV&V was based on a copy of the
Phoenix Technical Issue Memorandum (TIM) database
obtained from the IV&V Facility.

All data provided by IV&V were included in the overall
analysis. For some analyses the data were filtered (e.g., to
exclude withdrawn issues, or to focus on payload issues
only). When this was done it is indicated in the
accompanying text.

The TIM database has a rich set of metadata, though as will
be explained in the discussion of findings, some effort was
required to make use of it. The database was imported into

Microsoft Access to facilitate querying and filtering. Each
TIM record was augmented with two additional columns:
the first indicating how the project responded (either
“Fixed” or “Use as-is”), and the second a finer-grained
description of the problem type.

Various sources of data within each record were used in
choosing whether to categorize an issue as having been
fixed or left as-is. In most cases the resolution chronology
contained an explicit statement from the project or from the
IV&V analyst. However, this wasn’t always the case. When
the resolution chronology was not clear, other fields were
searched for indications that later versions of the work
products were received (interpreted as a “fix”), that IV&V
did additional work to resolve the matter internally
(interpreted as “Use as-is”), or some other salient indication.

It must be made clear that an issue identified as “fixed”
means only that a change in one or more work products
resolved the issue. In many cases this meant that one side of
a conflicting or misleading association was simply deleted,
or that discrepancies between various work products were
resolved as they matured, with lack of synchronization
becoming less of a problem as launch neared. In fact, it
appears that the majority of issues were resolved as a natural
side effect of the development life cycle, with defect
corrections driven by IV&V findings being in the minority.

The “Use as-is” resolution likewise should not be uniformly
interpreted as meaning the project decided not to fix a
problem. In many cases the project’s explanation of why a
particular finding was not a real concern was accepted by
the Facility, and the TIM closed without any changes to
work products.

Type Classification—The IV&V methodology, whether by
design or accident, tended to identify certain very precise
issue types (e.g., uninitialized variables, requirements not
verified by test), whereas other types of issues found in the
work products were more heterogeneous (e.g., discrepancies
between and within documents, code errors). The
categorization used largely follows the patterns found in the
TIM data, with correspondingly narrow and broad
categories used to analyze the data. Although no effort was
made to create an orthogonal type classification, instances
of TIMs that potentially fit more than one type were
infrequent. When a choice needed to be made, the most
significant problem type was selected.

TIM Resolution— Roughly three quarters of the TIMs
generated for Phoenix were reported as closed, either
through action of the project or Facility decision. Roughly
10% were either withdrawn or determined to be a non-issue
by the facility, usually after consultation with the project. A
small number of low-severity issues were closed as “Not to
be Verified” by the facility.

 3

TABLE 1. TIM TERMINAL STATES

State Percent
Closed 76.5%
Closed Before Submitted 0.3%
Not an Issue 4.5%
Not To Be Verified 1.9%
Project Accepts Risk 11.9%
Withdrawn 4.9%
 100.0%

Perhaps the most interesting resolution was “Project
Accepts Risk”, which indicated a TIM that was accepted by
the project as a legitimate issue, but for which no corrective
action was taken. The use of the “Project Accepts Risk” and
“Closed” states was not always consistent. Nearly half the
closed issues concerned matters that the project decided to
use as-is. Notes in the record often indicate that the issue
will be marked as “Project Accepts Risk”, but the state was
found to be “Closed” instead.

TIM Severities—Each TIM is given a severity,
corresponding to mission or development risk. The scale is
from one (highest risk) to five (lowest). Distribution of
TIMs by severity is given in Table 2.

TABLE 2. TIM SEVERITIES AND DISTRIBUTION

Severity/Interpretation Percent
1 Partial or complete mission failure 0%
2 Adverse effect with no
workaround 3.2%
3 Adverse effect with a workaround 61.9%
4 An inconvenience 29.9%
5 Anything else 5.0%
 100.0%

Phoenix did not have any severity 1 TIMs, and only a small
number of severity 2 issues. The majority were severity 3,
with a significant number of severity 4’s, and a handful of
severity 5’s. During the analysis it became apparent that the
severity scheme is best suited to describe the impact of
issues found in code. Instances of issues with requirements,
design, and test plans are difficult to associate with actual
operational impact, and it is difficult for a third party to
determine whether a work around exists. These types of
issues are best understood in terms of the likelihood that
significant problems will appear in the deployed product.

In an effort to reduce the overhead of responding to TIMs,
the Phoenix project manager issued a directive in May 2006
to ignore low severity TIMs (Severity 4 & 5).

TABLE 3. CATEGORIES USED TO CLASSIFY IV&V TIMS
Description Notes
Coding Error Many possibilities, from not adhering to coding standards, use of obsolete

functions, use of GOTO, lack of a switch default case, or just plain wrong.
NULL Pointer Pointer may be assigned a NULL value, which isn't checked
Type Mismatch Assignments and comparisons of differing types
Memory Leak Failure to release memory, or unbounded memory allocation
Array Bounds violation Possible reading or writing from/to an array or string beyond declared length
Dead Code Code is never used or can't be reached
Document Discrepancy Documents disagree with each other, or contain internal inconsistencies
Design/Requirements
Discrepancy

Design and corresponding requirements spec not in agreement; possible
missing or incorrect implementation

Uninitialized Variable Variable possibly not initialized before use
Loss of Precision Variant of type mismatch, where significant bits can be lost
Conflicting Code Statements One part of the code contradicts, or repeats what is found elsewhere in the

code
Requirement Not Verified Test design does not test an assigned requirement
Design/Code Discrepancy Code and design do not agree
Missing Requirement Requirements specs do not appear to contain everything that would be

expected based on contents of other reference documents
Requirements quality Broad category encompassing clarity, completeness, use of language, etc.
Requirements trace Broader than simple problems with traceability, includes general flow-down

issues

 4

Severity 1 and 2 TIMS would still be addressed, and
Severity 3 issues would be handled on a case-by-case basis.
As launch neared, the project was directed to reverse that
policy and close all TIMs regardless of severity. This had
the effect of adding considerable effort to an already
stressed team late in the development cycle.

Issue Types–As discussed in the methodology section, the
TIMs were classified according to type (see definitions in
Table 3.

TABLE 4. ISSUE TYPE FREQUENCIES
Description Fix UAI %Total

Array Bounds violation 55% 45% 1.4%
Conflicting Code
Statements

20% 80% 1.9%

Coding Error 17% 83% 8.2%
Dead Code 30% 70% 5.5%
Design/Code
Discrepancy

57% 43% 2.9%

Document Discrepancy 53% 47% 16.5%
Design/Requirements
Discrepancy

71% 29% 9.8%

Loss of Precision 20% 80% 0.6%
Memory Leak 0% 100% 0.1%
Missing Requirement 72% 28% 5.8%
NULL Pointer 0% 100% 0.9%
Requirement Not
Verified

93% 7% 13.0%

Requirements Quality 63% 37% 19.9%
Requirements Trace 59% 41% 7.6%
Type Mismatch 25% 75% 2.0%
Uninitialized Variable 41% 59% 4.0%
 100.0%

Of the TIMs that were not either withdrawn or determined
by IV&V to be not an issue, over half were classified in one
of three groups: “Requirements Quality”, Document
Discrepancy”, or Requirement Not Verified”.

The largest group is the “Requirements Quality” category.
The range of issues included in this category is as broad as
the name suggests, and there seemed to be no value in
further breaking it down into specific issue types. It is worth
noting that a majority of requirements quality issues were
fixed. For those that were not, it was typically a matter of
the project determining that all developers shared the correct
understanding of the intent, and opting not to go through the
change process to fix something that in their view was not
broken.

A close second is the group “Document Discrepancy”.
Again, as the name suggests, this is a fairly heterogeneous
group of issues. Like the requirements quality grouping,
there seemed to be little insight to be gained from
attempting a more fine-grained breakdown of issue type.
Discrepancies in documentation were fixed at a lower rate
than requirement-related issues. This can probably be
accounted for by the generation of issues based on
differences between CDR charts and design documents
(approximately 35 were generated for TEGA alone). These
TIMs were all closed with a project response along the lines
of, “the design document is the controlling document”. In
general, issues classified in this way were run-of-the-mill
problems associated with keeping a large collection of
documents in sync while all are undergoing change.

The third largest group concerned requirements verification,
specifically concerns that requirements were not fully
covered by test plans. The heavy hitter in this area was the
MECA instrument, with 60 instances. The spacecraft
accounted for only 9 suspected verification gaps. In the vast
majority of cases, suspected verification gaps were repaired
in subsequent releases of test plans.

Other Observations

Issues were often raised at a point in the life cycle where
most projects have code and documentation out of sync, as
most work products are in a state of flux. A snapshot at any
given time will reveal discrepancies between documents.
Most of these types of issues were fixed in the course of
normal development.

The project often rejected issues where IV&V sought
additional detail or clarification, on the grounds that the
S/W developers worked closely with the customer (usually
an instrument or HW subsystem developer), and would
thereby be assured of getting all the details right.

Things that were generally fixed:

• Code issues where behavior was determined to be
incorrect

• Test plans that didn’t fully cover requirements
(fixed in almost all cases)

• Requirements trace errors/ lack of trace
• Issues of any kind that were part of future planned

work
• Design documentation lacking description of

requirements implementation
• Hardware/Software ICD

Things that were generally not fixed:

• Code issues that could be shown to be benign
• Violation of coding standards (usually in heritage

code)
• Dead code of any sort
• Presentation packages

 5

• Absence of details in documentation where
collaboration was thought sufficient

• Issues the project determined to be “not in scope”
for IV&V (e.g., issues relating to Level 3
requirements and above)

Predictions Based on IV&V Findings

What can be predicted about post-launch mission
performance based on IV&V findings and the project
response? There appear to be two main types of predictions
one could make: first, specific issues raised by IV&V that
were not addressed by the project were subsequently found
to cause problems in flight; and second, IV&V findings
have a more general predictive power based on clustering of
issues around specific functionality or process areas.

If failures occurred in areas identified by IV&V, but which
the project decided not to repair, then a strong case could be
made for implementing fixes in response to all IV&V TIMs,
rather than selectively pick and choose. For example, IV&V
identified an error in the interface between the spacecraft
and the RAC. The project investigated the finding and
substantiated it. However, no changes were made to the
implementation in the grounds that the condition that would
trigger incorrect behavior could not occur. The TIM was
subsequently closed by IV&V. IV&V also found issues
relating to requirements flow down in the same interface.
Although two failure reports were generated relating to this
finding during system verification, the project elected to use
as-is, and the TIM was left in a “Project Accepts Risk” state.
If either issue had surfaced in operations, the message to
GRAIL would be that all IV&V findings should be repaired,
and that the project should encourage IV&V to be less
accepting of project rationales for use as-is decisions.

IV&V analysis could be broadly predictive of mission
performance if there were a large number of issues written
against a particular function or process area. This would
indicate to the project that additional scrutiny or process
improvement should be considered. On Phoenix
approximately 75% of all TIMs were written against
payload software. Based on that, one would expect to see
the preponderance of in-flight software issues be related to
payloads. In the process area, the top issues types were
requirements quality, documentation discrepancies,
requirements not verified, and code-related issues taken in
the aggregate. If these were accurate predictors of in-flight
anomalies, one would expect to see anomalies relating to
these process areas dominating.

3. ANALYSIS OF ANOMALY DATA
Determining the predictive value of IV&V findings required
an analysis of in-flight anomaly data. For this, the
Incident/Surprise/Anomaly (ISA) database for the Phoenix
project was used.

Since the objective of the exercise was to identify the kinds
of problems that elude the development process, only those
problems that appeared after launch were considered.

Identification and attribution of software-related mishaps

In order to narrow the focus of the analysis, an initial pass
through the ISA database was made. Each item was binned
using the following scheme:

• Hardware—the problem was principally (or
exclusively) a hardware failure

• Software—the problem was principally (or
exclusively) a software failure

• People—human error was the primary culprit
• Other—there were a handful of events that the

project chose to capture that either weren’t really
failures at all, or noteworthy events that didn’t fit
neatly into any other category.

To determine whether to categorize an anomaly as software-
related, events were assessed according to whether they
represented:

• Failure of software to operate as specified
• Failure of software to behave safely or correctly in

the presence of unexpected hardware behavior
• Failure of software to behave safely or correctly

under conditions imposed by operations activities,
whether planned before launch or otherwise

• Cases where the software was modified to solve
the original problem and/or to prevent its
recurrence

Conversely, the following kinds of incidents were not
considered software anomalies:

• Cases where the software behaved as specified, but
was given unsafe or incorrect commands or
operating parameters

• Cases where software was initially considered as a
means of resolving or preventing the recurrence of
a problem originating elsewhere in the system, but
where this strategy was abandoned.

• Cases where no behavior of the software could
have prevented or mitigated the mishap

In addition to the above categorization, each ISA was
annotated as to whether the failure event was located on the
ground or on the flight system. Note that it was entirely
possible to have software problems occurring in flight that
did not involve the flight software. For example, ground
tools that failed during the uplink process that eventually
caused a flight anomaly would be categorized as a flight
side event caused by software, but not involving flight
software.

Next, each software-related ISA was assigned to one or
more contributing cause categories (Table 5). The categories
were developed from standard life cycle phases, as might be

 6

done for an orthogonal defect classification scheme, and
from notes taken during the first step of the analysis.

The ISA database did not have as detailed a set of metadata
as the IV&V data, and determination of casual factors relied
on documentation and personal recollections of the people
directly involved in the original ISA close-out activity.
These data sources were uneven in their level of specificity
and detail. Thus, the categories used to identify contributing
causes were broader and fewer in number than those used in
thte IV&V analysis. In many cases it appeared that more
than one contributing cause was in play. Following the
general observation in Dismukes, et al, [4] that incidents are
the result of a complex web of causes, it was decided to
allow an anomaly to be assigned to more than one
contributing factor.

TABLE 5. ISA CONTRIBUTING FACTOR CATEGORIES

Category Description
Complexity The complexity of the problem or

solution played a role in the incident
Heritage Process A failure in the process of inheriting

the software resulted in inappropriate
features being retained

Missing
Requirement

If a requirement specifying the
desired behavior had been written, the
incident could have been averted

Design Some feature of the implementation
provided the conditions for
undesirable or incorrect behavior.
Similar to the Implementation
category, but focuses on higher-level
decisions of code design as opposed
to simple programming mistakes.

Inadequate Testing The scenario where the software flaw
appeared was not tested.

Implementation A programming error (using wrong
number for constant, typos, etc.)
caused to problem.

System
Engineering

System engineering within the project
(from project SE down to FSW SE,
and including science and mission
system SE) did not provide support in
the problem area, leading to
conditions where correct software
behavior was either not recognized or
not specified.

Insufficient
Information

The software developers did not have
access to key information that would
have guided them towards the correct
implementation.

Findings

General Discussion—From Launch through end of mission
there were 369 unique ISAs. The team is to be commended
for their diligence in reporting all types of incidents large
and small; not only does it provide a wealth of data for later

analysis, but it undoubtedly played a positive role in making
sure problems got solved in a timely manner. As previously
noted, the flight software (FSW) was remarkably free from
error: less than 10% of ISAs involved flight software. Most
FSW problems were relatively benign, and operations
worked around known defects rather than attempt to correct
them.

There were no reported problems with:

• The launch phase
• Maneuvers
• Deployments
• EDL
• Fault protection
• Software architecture

Details on the categorization findings are provided in Table
6 below. Because each anomaly was assigned to one or
more contributing factor, neither the rows nor columns
(except for the total number of incidents column) is
constrained to sum to 100%. For example, the heritage
process played a role in 29% of spacecraft-related
anomalies, while it was a factor in only 4% of payload-
related anomalies. Looking at the payload and spacecraft
combined, heritage played a part in 10% of all anomalies.
The percentages give a means of expressing relative
frequency of causal factors between the categories and
between the spacecraft and payload.

The most obvious result is that three quarters of all incidents
involved the payload FSW developed by JPL and other
instrument providers. There are also significant differences
between the error category distributions between the
spacecraft and payload. All but one spacecraft software
error was found while operating on the flight vehicle (as
opposed to being discovered on a ground test bed), whereas
only half of the payload errors manifested on the flight
vehicle. In hindsight, this seems to be a reasonable result,
given that spacecraft functions are exercised from the
beginning, while payload functions (apart from some in-
transit checkout activities) do not get exercised until surface
operations commence. The payload flight software errors
discovered on the ground were incidental to ground
exercises, typically operational readiness tests (ORTs) or
preparations for ORTs.

The other striking difference between payload and
spacecraft FSW errors is the development activity
associated with each error. Spacecraft software anomalies
were associated with higher-level development activities
(requirements, system engineering and design), whereas
payload software anomalies clustered around
implementation problems and testing. Inadequate testing
appears in almost half the cases for both the spacecraft and
payloads.

 7

TABLE 6. CONTRIBUTING FACTOR DISTRIBUTION

Contributing Factors

Co

mp
lex

ity

He
rit

ag
e P

roc
es

s

Mi
ssi

ng

Re
qu

ire
me

nt

De
sig

n

Ina
de

qu
ate

Te

sti
ng

Im
ple

me
nta

tio
n

Sy
ste

m
En

gin
ee

rin
g

Ins
uff

ici
en

t
Inf

or
ma

tio
n

To
tal

 #
 In

cid
en

ts
Oc

cu
rre

d i
n

Fli
gh

t?

Spacecraft-
related 0% 29% 43% 57% 43% 29% 57% 14% 23% 86%
Payload-
related 13% 4% 38% 17% 46% 58% 29% 13% 77% 50%
Combined 10% 10% 39% 26% 45% 52% 35% 13% 100% 58%

Complexity—Robotic space flight is fairly high on the scale
of complexity as far as human enterprise goes, though
certainly not the highest. Despite this fact, complexity
played a surprisingly small role in Phoenix software
problems. Not only that, where complexity seemed like a
strong candidate as a contributing factor, it was fairly
localized. For example, the design of over current fault
monitoring in the robotic arm interface employed
overlapping hardware and software strategies. This created a
complicated set of potential interactions which were not
fully appreciated by systems or software engineers.

Heritage Process—Problems with inherited code played a
relatively small part in the Phoenix mission. The robotic
arm software was inherited from a previous mission, and,
not surprisingly, contributed the one example of heritage
problems (stale mass properties left in the code) in the
payloads.

On the spacecraft, an inherited battery state-of-charge
(SOC) algorithm was not appropriate for the Phoenix flight
temperature regime, and was not modified to correct the
shortcoming. Also on the spacecraft, a packet sequence
rollover bug was triggered by the daily shut down and
startup operations on the surface.

The spacecraft cases are similar, in that both involve using
code in a different situation than originally designed, but
differ in how the new application diverged from the old. The
battery SOC situation was a case of using an algorithm
beyond its original design boundaries, whereas the rollover
problem was related to deeper issues. The heritage software
architecture had been developed for use on orbiter
spacecraft. The development team did not have significant
experience with landed operations, and may have naively
believed that applying their software to a landed situation
was easier than it really was. Power management required
that Phoenix enter a quiescent state each night, and restart
the next morning. In orbiter operations, the spacecraft never
“sleeps”, and this type of on/off behavior is associated with

spacecraft anomalies rather than routine operations. The
expectation in the heritage mindset is that restarts are an off-
nominal situation; routine activities are interrupted, the
spacecraft’s responsibility is to get into a safe configuration,
and ground intervention is required to recover. This
background may have biased the development team into
seeing features of the heritage code that confirmed their
belief that applying it to surface operations was not a
complex matter, and prevented them from recognizing
subtle differences.

Missing Requirement—Missing requirements were
implicated in roughly 40% of all anomalies. However, it
should be noted that “missing requirement” means that it
was feasible to prevent the mishap if an additional
requirement had been written. It should not be interpreted as
faulting the system engineers for not having written the
requirement, as there was insufficient information in the
ISA database to draw such a conclusion. Another aspect of
missing requirements is that they do not get tested. Thus,
missing requirements are also related to inadequate testing.

Examples of missing requirements include:

• Robotic arm autonomous recovery from a motion-
impeded event faulted because the accommodation
algorithm engaged when it should not have.
Requirements coverage was incomplete.

• The flight software could not delete files as fast as
the ground could send them, which led to hundreds
of EVRs when spacer files were sent one after the
other. This operational scenario was never
analyzed and requirements to support it were not
written.

• The Robotic Arm Camera (RAC) rejected
commands under certain circumstances partly
because the operational needs were not specified,

 8

and thus there was a mismatch between command
processing capability and operations.

Design—An incident was binned in this category when
some feature of the implementation appeared to be
incorrect, and the problem was more than just a few lines of
code. Examples of design problems are:

• The design of the Surface Stereo Imager (SSI)
filter wheel temperature measurement and the use
of that data in control processing did not
adequately account for the complexity of the
requirements.

• A race condition in the Meteorological Station
(MET) FSW can occasionally cause a false “fatal
discreet” event report to be issued.

• An attempt to do too much inside an interrupt
service routine within the TEGA FSW created a
vulnerability for inadvertent safing under certain
circumstances

Inadequate Testing—None of the cases where inadequate
testing was cited as a contributing factor involve failure to
test requirements. The typical case is one where a more
robust set of stress cases or more realistic scenario could
have flushed out the vulnerability before going into
operations. Examples are:

• A coding error in the SSI control software affected
the sun-find algorithm by counting only half the
image lines. A parameter set by the ground controls
the number of lines the FSW looks for. The
parameter value used in test appears to have
compensated for the logic error during ground
testing, but when changed for flight the problem
emerged. It should be noted that this might not
have been found had another parameter value
specifying the SNR not been set incorrectly as
well.

• Improper handling of the CCSDS packet counter
over sleep/wake cycles resulted in duplicate packet
IDs. The test cases did not include a scenario
where the rollover would occur, even though it was
certain to occur during the mission.

• Ground operations would send “spacer files” to
initiate communication during the landed portion
of the mission. They were intended to be deleted
immediately, but owing to a collision between
FSW task priorities and file naming, the scheme
generated hundreds of spurious event reports. The
planned usage was known ahead of time, but a
realistic test scenario to validate the FSW was
never implemented.

Implementation—Implementation errors include subtle
features that allow the software to meet requirements, but

fail under certain conditions that were not imposed during
test. Thus, virtually all incidents attributed to
implementation were also attributed to inadequate testing.
Here are some examples:

• In the acquisition and use of SSI filter wheel
temperature data, software logic was vulnerable to
a relatively rare combination of events that allowed
it to use inappropriate thermal data to determine if
preheating was needed. This case was also cited as
an example where complexity was a factor.

• Under certain conditions spacecraft telemetry
packet generation could get stuck in an infinite
loop

It should be noted that there were relatively few coding
errors in the spacecraft FSW as compared to the payload
FSW. The approximate ratio between spacecraft and
payload code size is 2:1, whereas the ratio of
implementation errors was 1:7.

System Engineering—System engineering was implicated
wherever the genesis of an anomaly appeared rooted in a
failure to appreciate how two or more parts of the system
would interact, particularly in fault scenarios. Examples
include:

• The MET FSW behavior on safe mode entry was
not adequately analyzed and specified. This lead to
a data loss incident.

• The spacer file issue previously described.

• The TEGA instrument behavior upon receipt of an
invalid command opcode was not adequately
analyzed for system-level robustness. Lack of
requirements in this area lead to loss of data.

Insufficient Information—The software engineering
literature does not often treat lack of information as a cause
of software errors. But there were some glaring examples in
the data that made it seem worthwhile to place this factor on
an equal footing.

• A number of problems with the battery state of
charge algorithm were discovered incidental to an
effort to correct the parameters that control it.
Among other things the FSW team did not have
access to accurate battery performance and range
data, and thus was (unwittingly) unable to develop
the algorithm correctly.

• Documentation on the MECA instrument was
found to be in error, leading the flight software
developers to use the wrong command to set the
conductivity frequency.

• Under certain conditions the RAC rejected
commands. It appeared that certain operations

 9

required more time to complete that either ops or
FSW development believed, leading both to
develop incorrect products

4. RELATIONSHIP BETWEEN IV&V FINDINGS
AND IN-FLIGHT ANOMALIES

Assessment of Predictive Skill of IV&V

How well did the predictions based on IV&V findings (see
end of section 2) hold up compared to actual flight
experience? The results were mixed.

With respect to individual IV&V issues translating directly
into in-flight anomalies, review of the anomaly reports did
not show any anomalies predicted by the IV&V work. This
includes those IV&V issues that were dispositioned without
remediation by the project. However, it is difficult to draw
conclusions about the effect that IV&V had on mission
reliability in those cases where TIMS were addressed by
some form of remediation. Problems that are fixed by
definition do not emerge as problems downstream. By the
same token, one has to consider any fixed problem to have
contributed to mission reliability, even if it is impossible to
quantify.

IV&V was found to have more predictive skill when the
findings were looked at broadly. The prediction that
payloads would account for the majority of in-flight
anomalies was borne out in almost the exact 3:1 ratio found
in the IV&V data. Likewise, implementation issues were
among the top contributing factors identified in analysis of
the anomaly data, though this was markedly truer of the
payload FSW than the spacecraft FSW. Insufficient testing
was also a strong contributor to in-flight issues, which
corresponds to its ranking in the IV&V analysis. If
requirements quality can be considered a proxy for system
engineering, then this prediction could be considered
confirmed. However, the types of requirements problems
(missing requirements) that contributed most strongly to in-
flight anomalies were not dominant among the issues
identified by IV&V. Overall, IV&V was a reasonable
predictor of broadly defined problem areas. However, the
analysis led only to general process improvement
suggestions. Without a “smoking gun” it was difficult to
build an argument for specific process changes on GRAIL
that the parties involved would agree to.

Assessment of Anomalies vs. IV&V Methodology

In this section I will consider some of the anomalies with an
eye towards what IV&V could, at least theoretically, have
done to identify the problem before launch. These
observations formed the basis for discussions with IV&V
concerning improvements in the way GRAIL and IV&V
could work together to improve the effectiveness of the
process.

Battery Charging—Development of the fault recovery and
response to a certain battery charging condition failed to
completely specify all desired behavior. As a result, there

was a potential for battery overcharge and overheating to
occur.

Theoretically, there is at least the possibility that IV&V
could have caught this problem. One of the perennial
challenges to IV&V is lack of mission-specific knowledge
and access to data. Without detailed information or prior
knowledge of hardware behavior it would have been
extremely difficult for IV&V to spot the flaws in the work
products available to them. The Facility has recently
instituted the practice of performing model-based
requirements validation. This approach seems more likely to
lead to questions about the reliability of fault protection
schemes. However, it is uncertain whether current practice
would systematically lead an IV&V team towards the level
of detail that would make finding this problem anything
better than a “lucky break”.

Spacer Files—Complete requirements on the uplink and file
management software to handle the planned surface relay
communications operations were not written. This lead to a
minor incident where the use of spacer files to optimize the
time utilization of the link generated a large number of
warnings. A workaround was quickly implemented.

Model-based validation work could conceivably uncover
this type of requirements gap. IV&V does consult relevant
operations concept material wherever possible in
constructing behavioral models. Using a model-based
approach, IV&V would have a reasonable chance of finding
this sort of error, provided they have access to sufficient
operations scenarios.

Packet Sequence Rollover—A flaw in the handling of the
packet sequence count rollover under certain conditions led
to generation of duplicate packets. The problem occurred in
conjunction with the logic implementing sleep/wake cycles
for surface operations. Had it not been caught by alert
operations staff, the problem could have become mission-
threatening. It was not revealed in system-level test due to
the amount of time it would have taken to force a rollover.
Unit tests of the packet count mechanism were performed,
and confirmed the rollover behavior in isolation, but it is not
clear that a unit test could include enough of the
environment to force this problem out in the open.

This case presents a problem both for developers and
IV&V. With limited test resource available, developers must
be judicious in their choice of stress test cases (as this would
have been). One developer familiar with the problem
doubted that the rollover behavior would have been selected
for limited risk reduction test resources, even if it had been
identified as a stress test case.

Assuming that IV&V identified counter rollover as an
important behavior to verify, it would have been a simple
matter of examining the test design. If that were unavailable,
reading the relevant code to determine what would happen
at rollover would also be an option, though much more
time-consuming. The IV&V Facility has recently

 10

implemented a software simulation environment capable of
running flight software. If its capabilities were extended to
include FSW developed by Lockheed SES, IV&V staff
could implement independent tests of functions such as this.

5. APPLICATION TO GRAIL
The MRO and Phoenix analysis described above was
undertaken in parallel with GRAIL startup activities at
NASA IV&V. As results emerged they were discussed with
the IV&V leads, and possible ways to improve the
effectiveness of the IV&V process were discussed. Changes
implemented include:

• GRAIL provided as much information to IV&V as
possible. Data were withheld only in cases where
intellectual property issues created insurmountable
barriers to information sharing.

• The project and IV&V collaborated early in the
process to identify capabilities that were new (i.e.,
not contained in the MRO baseline). These
functions were treated as high priority when
allocating resources for IV&V services.

• To the extent allowed by resources, “difficult”
problems such as subtle logic errors and low-level
hardware/software interfaces received additional
manual attention. For example, a special on-site
review session for newly-added boot software
capabilities was organized. That review improved
both project and IV&V confidence in the software.
The manual analysis approach was responsible for
the single most significant IV&V finding of the
program: an omitted software reset function
associated with fuel tank repressurization.

• The project and IV&V agreed to find ways to
exploit the strengths of the heritage artifacts. Issues
such as potential requirements misinterpretation or
perceived design or implementation shortcomings
tended to be set aside after a brief discussion of
heritage.

• A deliberate effort to reduce the number of false
positives generated by immature work products
was implemented. Where early versions of work
products needed to be furnished to maintain
schedule, the parties discussed the nature of the
uncertainties in the product, and agreed upon an
approach to discussing potential issues before
formally identifying them as problems.

• Frequent and regular communications were
established from the outset. One of the most
effective strategies employed in the GRAIL IV&V
effort was the use of semi-formal working
meetings to vet potential issues before formally
documenting them. In some cases, several hundred
items would be systematically processed

simultaneously. Most would be resolved without
formal documentation. The process was very
productive in terms of improving mutual
understanding on both technical and non-technical
matters.

6. POST LAUNCH ASSESSMENT
Spacecraft Performance

Performance of the GRAIL spacecraft and FSW has been
excellent to date, but there have been a small number of
minor anomalies relating to flight software. This section
describes the issues discovered, and discusses the potential
for IV&V to find such problems on future missions.

Shortly before launch, risk reduction testing performed by
the project uncovered a subtle logic error in the thruster
system pressurization code. In a double fault scenario where
both pressure transducers failed, a subtle error in the way
the control algorithm was coded could cause the system to
behave incorrectly. The code was patched post launch to
correct the problem.

The repressurization function was new for GRAIL, but it
relied on code that was heritage. The requirement for the
open loop control function did not take the cyclic nature of
the thruster firing data updates into account, in particular the
fact that it was zeroed out at the start of every cycle. The
programmer implemented the function in a reasonable
manner, but was apparently not aware of the underlying
problem. IV&V performed a thorough requirements
implementation audit of the code, but did not find the error.
The function was tested by the developer, but only at a unit
level, where the operations of the other ACS tasks were
replaced with dummy outputs. The ordering of operations in
the rate group was not replicated. Thus, unit-level testing
did not reveal the problem. IV&V review of the unit test
also did not detect the missing fidelity issue.

A memory addressing issue was discovered during code
review by another project. GRAIL FSW developers
analyzed the problem, and it was determined to have a
benign effect on GRAIL. No changes to the software or
operations were implemented as a result. However,
considerable effort was expended to ensure that the
upcoming lunar orbit insertion activity was not affected by a
similar error elsewhere in the code.

Changes in IV&V Findings from Phoenix to GRAIL

A portion of the analysis described in section 2 was repeated
once all TIMs were given final disposition for GRAIL.
IV&V did not analyze the payload flight software. In order
to make a fair comparison, payload-related data were
removed from consideration. The results are summarized in
Table 7.

Overall, there was roughly a 10% drop in number of issues
written. There are several potential explanations for the
difference. It could simply be due to differences in the work

 11

TABLE 7. COMPARISON OF PHOENIX AND GRAIL IV&V RESULTS

GRAIL Phoenix Spacecraft

Description Fix UAI % Total Fix UAI % Total
Array Bounds violation 75% 25% 2% 33% 67% 3%
Conflicting Code Statements 0% 0% 0% 11% 89% 4%
Coding Error 57% 43% 7% 14% 86% 17%
Code/Requirements Discrepancy 47% 53% 17% 0% 0% 0%
Dead Code 14% 86% 4% 24% 76% 12%
Design/Code Discrepancy 0% 0% 0% 67% 33% 7%
Document Discrepancy 33% 67% 3% 56% 44% 16%
Design/Requirements Discrepancy 0% 0% 0% 0% 0% 0%
Loss of Precision 0% 100% 1% 0% 0% 0%
Memory Leak 0% 0% 0% 0% 100% 0%
Missing Requirement 47% 53% 10% 64% 36% 7%
NULL Pointer 33% 67% 2% 0% 100% 2%
Requirement Not Verified 44% 56% 9% 100% 0% 4%
Requirements Quality 43% 57% 32% 13% 87% 14%
Requirements Trace 45% 55% 11% 100% 0% 0%
Type Mismatch 0% 0% 0% 15% 85% 6%
Uninitialized Variable 17% 83% 3% 64% 36% 7%

44% 56% 100% 36% 64% 100%

habits of individual IV&V analysts. The use of informal
discussion prior to IV&V formalizing an issue undoubtedly
reduced the number of formal issues, but it is uncertain to
what extent IV&V’s internal process may have
accomplished at least part of the reduction. Finally, the
GRAIL work products may have been relatively freer of the
types of issues IV&V tends to find. This was certainly true
of certain code issues generated by static analysis.

There was an overall increase in the frequency with which
formally documented issues were fixed. Again, there are at
least two potential explanations. First, previous IV&V work
on the code base likely reduced number of false positives in
code. And second, better communication eliminated more
false positives in all categories.

Large decreases were observed in the Dead Code,
Design/Code Discrepancy, Document Discrepancy
categories. Better communication helped eliminate many
false positives. The project went to lengths to avoid
providing IV&V with immature work products, and when it
was unavoidable, considerable effort went into discussing
the limitations of the artifacts provided. Reduction in dead
code findings may be due to prior IV&V work on the MRO
and Phoenix code bases.

A new category (Code/Requirements Discrepancy) was
introduced for the GRAIL analysis to better align the
analysis with the way IV&V does their work. On Phoenix,
these would have shown up in either Design/Code
Discrepancy or Coding Error. Taking the totals in those
categories for both projects does not appear to indicate a
significant difference.

Curiously, there was an increase in the Requirements
Quality, Requirements Trace, Missing Requirements
categories. This is likely due to a combination of personnel
differences, process differences, or the quality of the
underlying products. Personnel differences are impossible to
quantify, but anecdotal observation of differences between
the issue output of analysts assigned to GRAIL seem to
indicate that this was a likely contributor. Many of the
requirements-related issues on GRAIL were due to
problems found in higher level documents. IV&V placed a
greater emphasis on this level of analysis on GRIAL, and
thus one would expect a larger number of issues to be
generated based solely on the process change. Additionally,
many of the higher level requirements IV&V looked at were
relatively immature.

 12

7. CONCLUSION
A thorough analysis of IV&V findings and post-launch
anomalies has been presented. Although the analysis did not
uncover a predictive relationship between individual IV&V
TIMS and in-flight anomalies, their analysis was found to
have broad predictive skill. The most important result of the
analysis was insight into ways in which the GRAIL-IV&V
interaction could be more effective and efficient. In addition
to making the process more cost-effective, implementing
lessons learned improved the quality of interactions.
Although certain types of software problems remain
challenging for both developers and IV&V to discover
before launch, IV&V is making progress towards improved
tools and methods (in particular, a hardware-based test bed)
that should increase the likelihood that they will play a
greater role in discovering serious bugs before launch.

REFERENCES
[1] Bayer, T. et al Mars Reconnaissance Orbiter In-Flight

Anomalies and Lessons Learned: An Update, Proceedings
of the 2009 IEEE Aerospace Conference.

[2] Holzmann, G. Software Anomalies (and what we can do
about them) Undated presentation, ca. 2007

[3] Starr, K. personal communication, October 2008.

[4] Dismukes, R, Berman, B. and Loukopoulos, L. The Limits
of Expertise: Rethinking Pilot Error and the Causes of
Airline Accidents, 2007, Ashgate Publishing Company,
Burlington, VT

BIOGRAPHY
Steve Larson received an M.S. in Physics from
California State University, Northridge in 1989. He has
been with JPL for more than 20 years. He worked on the
development of a number of Earth orbiting and deep
space missions, including the Advanced Spaceborne
Thermal Emission and Reflection Radiometer, Thermal
Emission Spectrometer, Europa Orbiter, Space
Interferometry Mission, and the Gravity Recovery and
Interior Laboratory.

