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Abstract—NASA IV&V was established in 1993 to 
improve safety and cost-effectiveness of mission critical 
software. Since its inception the tools and strategies 
employed by IV&V have evolved. This paper examines 
how lessons learned from the Phoenix project were 
developed and applied to the GRAIL project. 

Shortly after selection, the GRAIL project initiated a 
review of the issues documented by IV&V for Phoenix. 
The motivation was twofold: the learn as much as 
possible about the types of issues that arose from the 
flight software product line slated for use on GRAIL, 
and to identify opportunities for improving the 
effectiveness of IV&V on GRAIL. The IV&V Facility 
provided a database dump containing 893 issues. These 
were categorized into 16 bins, and then analyzed 
according to whether the project responded by changing 
the affected artifacts or using as-is. The results of this 
analysis were compared to a similar assessment of post-
launch anomalies documented by the project.  

Results of the analysis were discussed with the IV&V 
team assigned to GRAIL. These discussions led to 
changes in the way both the project and IV&V 
approached the IV&V task, and improved the efficiency 
of the activity.  
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1. INTRODUCTION 

NASA instituted an independent verification and validation 
(IV&V) organization in 1993 as a result of the findings of 
the Challenger accident investigation. The NASA IV&V 

Facility now provides services for all manned, and most 
unmanned flight projects. Although NASA provides 
independent funding to IV&V, projects bear the cost 
associated with interacting with the Facility. This paper 
describes the work performed by the Gravity Recovery and 
Interior Laboratory (GRAIL) mission to maximize the 
cost/benefit ratio of those interactions. 

Project Background 

GRAIL is a NASA Discovery Program mission designed to 
map the moon’s gravity field to high precision, and thus 
shed light on its current state, the processes governing its 
formation, and by extrapolation, processes of planetary 
formation in general. The measurement strategy is to use 
ranging data from two spacecraft orbiting the moon in 
formation, and infer the lunar gravity field from variations 
in their separation distance. The project is led by Dr. Maria 
Zuber of MIT, and managed by JPL. Lockheed Martin (LM) 
Sensing & Exploration Systems (SES) in Denver, CO, 
provided the spacecraft, and JPL provided the ranging 
measurement payload. The GRAIL spacecraft were 
launched on September 10, 2011 from the Kennedy Space 
Center in Florida. 

Heritage Missions 

The core flight software is derived from a product line that 
has been used on JPL-Lockheed partnerships for over a 
decade. Both the product and processes used to adapt it to 
new missions are regarded as mature. The recently 
concluded (and successful) Phoenix project is the most 
recent instantiation of this product line. The still-operating 
Mars Reconnaissance Orbiter (MRO) project provided the 
starting baseline for GRAIL due to avionics heritage from 
MRO. 

The MRO mission has been the subject of extensive 
analysis, lead principally by Todd Bayer, the former MRO 
Chief Engineer. A summary of the most significant MRO 
anomalies [1] was published in the proceedings of the 2009 
IEEE Aerospace Conference. Additional information was 
obtained informally from Ken Starr [3], who was 
responsible for investigating the details of flight software 
problems. The picture that emerges from these analyses is 
well described by Gerard Holzmann: “the types of 
anomalies encountered with MRO are considered to be hard 
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[software] design problems that are very difficult to develop 
thorough tests for."[2]  

The fact that software anomalies occurred in flight on MRO 
shows that the combined efforts of JPL, Lockheed Martin, 
and NASA IV&V failed in one way or another to find and 
fix software vulnerabilities before they caused problems. 
Given the relatively short GRAIL mission duration (three 
month cruise, three months to establish science formation, 
and a three month science mission), and the length of time 
needed to resolve the more vexing software bugs on MRO 
(the side swap anomaly took roughly two years to finally 
resolve), it was important for GRAIL to maximize the 
chance of catching serious software bugs before launch. 
Lockheed SES has a mature process for capturing lessons 
learned and applying them to future missions. However, the 
IV&V Facility faces greater challenges in this area, as they 
generally do not have direct access to the source data (e.g., 
problem reports, in-flight anomaly data) available to the 
developers. With IV&V hampered in the area of developing 
post-launch lessons learned, the project set out to answer the 
following questions concerning the conduct of IV&V: 

• Did the pre-launch IV&V analysis accurately 
predict problem areas post-launch? 

• Did the project respond appropriately to issues 
raised by IV&V? 

• What could the GRAIL project and IV&V do 
differently to improve the effectiveness of IV&V? 

Analysis Approach 

The MRO report investigation was complete and thorough, 
but did not delve into the details of software development 
and IV&V to the extent needed to provide specific 
suggestions on ways to improve the process. To accomplish 
that, a complete set of anomaly data and IV&V issues were 
obtained and analyzed. IV&V issue data described the work 
of IV&V and their findings. Anomaly data was used to 
identify areas where IV&V could be strengthened, or where 
the project response to IV&V contributed to an in-flight 
problem. 

2. PHOENIX IV&V 
Methodology 

The assessment of IV&V was based on a copy of the 
Phoenix Technical Issue Memorandum (TIM) database 
obtained from the IV&V Facility.  

All data provided by IV&V were included in the overall 
analysis. For some analyses the data were filtered (e.g., to 
exclude withdrawn issues, or to focus on payload issues 
only). When this was done it is indicated in the 
accompanying text. 

The TIM database has a rich set of metadata, though as will 
be explained in the discussion of findings, some effort was 
required to make use of it. The database was imported into 

Microsoft Access to facilitate querying and filtering. Each 
TIM record was augmented with two additional columns: 
the first indicating how the project responded (either 
“Fixed” or “Use as-is”), and the second a finer-grained 
description of the problem type.  

Various sources of data within each record were used in 
choosing whether to categorize an issue as having been 
fixed or left as-is. In most cases the resolution chronology 
contained an explicit statement from the project or from the 
IV&V analyst. However, this wasn’t always the case. When 
the resolution chronology was not clear, other fields were 
searched for indications that later versions of the work 
products were received (interpreted as a “fix”), that IV&V 
did additional work to resolve the matter internally 
(interpreted as “Use as-is”), or some other salient indication.  

It must be made clear that an issue identified as “fixed” 
means only that a change in one or more work products 
resolved the issue. In many cases this meant that one side of 
a conflicting or misleading association was simply deleted, 
or that discrepancies between various work products were 
resolved as they matured, with lack of synchronization 
becoming less of a problem as launch neared. In fact, it 
appears that the majority of issues were resolved as a natural 
side effect of the development life cycle, with defect 
corrections driven by IV&V findings being in the minority. 

The “Use as-is” resolution likewise should not be uniformly 
interpreted as meaning the project decided not to fix a 
problem. In many cases the project’s explanation of why a 
particular finding was not a real concern was accepted by 
the Facility, and the TIM closed without any changes to 
work products. 

Type Classification—The IV&V methodology, whether by 
design or accident, tended to identify certain very precise 
issue types (e.g., uninitialized variables, requirements not 
verified by test), whereas other types of issues found in the 
work products were more heterogeneous (e.g., discrepancies 
between and within documents, code errors). The 
categorization used largely follows the patterns found in the 
TIM data, with correspondingly narrow and broad 
categories used to analyze the data. Although no effort was 
made to create an orthogonal type classification, instances 
of TIMs that potentially fit more than one type were 
infrequent. When a choice needed to be made, the most 
significant problem type was selected.  

TIM Resolution— Roughly three quarters of the TIMs 
generated for Phoenix were reported as closed, either 
through action of the project or Facility decision. Roughly 
10% were either withdrawn or determined to be a non-issue 
by the facility, usually after consultation with the project. A 
small number of low-severity issues were closed as “Not to 
be Verified” by the facility.  
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TABLE 1. TIM TERMINAL STATES 

State Percent 
Closed 76.5% 
Closed Before Submitted 0.3% 
Not an Issue 4.5% 
Not To Be Verified 1.9% 
Project Accepts Risk 11.9% 
Withdrawn 4.9% 
 100.0% 

Perhaps the most interesting resolution was “Project 
Accepts Risk”, which indicated a TIM that was accepted by 
the project as a legitimate issue, but for which no corrective 
action was taken. The use of the “Project Accepts Risk” and 
“Closed” states was not always consistent. Nearly half the 
closed issues concerned matters that the project decided to 
use as-is. Notes in the record often indicate that the issue 
will be marked as “Project Accepts Risk”, but the state was 
found to be “Closed” instead.  

TIM Severities—Each TIM is given a severity, 
corresponding to mission or development risk. The scale is 
from one (highest risk) to five (lowest). Distribution of 
TIMs by severity is given in Table 2. 

TABLE 2. TIM SEVERITIES AND DISTRIBUTION 

Severity/Interpretation Percent 
1 Partial or complete mission failure 0% 
2 Adverse effect with no 
workaround 3.2% 
3 Adverse effect with a workaround 61.9% 
4 An inconvenience 29.9% 
5 Anything else 5.0% 
 100.0% 

Phoenix did not have any severity 1 TIMs, and only a small 
number of severity 2 issues. The majority were severity 3, 
with a significant number of severity 4’s, and a handful of 
severity 5’s. During the analysis it became apparent that the 
severity scheme is best suited to describe the impact of 
issues found in code. Instances of issues with requirements, 
design, and test plans are difficult to associate with actual 
operational impact, and it is difficult for a third party to 
determine whether a work around exists. These types of 
issues are best understood in terms of the likelihood that 
significant problems will appear in the deployed product. 

In an effort to reduce the overhead of responding to TIMs, 
the Phoenix project manager issued a directive in May 2006 
to ignore low severity TIMs (Severity 4 & 5).   

 

TABLE 3. CATEGORIES USED TO CLASSIFY IV&V TIMS 
Description Notes 
Coding Error Many possibilities, from not adhering to coding standards, use of obsolete 

functions, use of GOTO, lack of a switch default case, or just plain wrong. 
NULL Pointer Pointer may be assigned a NULL value, which isn't checked 
Type Mismatch Assignments and comparisons of differing types 
Memory Leak Failure to release memory, or unbounded memory allocation 
Array Bounds violation  Possible reading or writing from/to an array or string beyond declared length 
Dead Code Code is never used or can't be reached 
Document Discrepancy Documents disagree with each other, or contain internal inconsistencies 
Design/Requirements 
Discrepancy 

Design and corresponding requirements spec not in agreement; possible 
missing or incorrect implementation 

Uninitialized Variable  Variable possibly not initialized before use 
Loss of Precision Variant of type mismatch, where significant bits can be lost 
Conflicting Code Statements One part of the code contradicts, or repeats what is found elsewhere in the 

code 
Requirement Not Verified Test design does not test an assigned requirement 
Design/Code Discrepancy Code and design do not agree 
Missing Requirement Requirements specs do not appear to contain everything that would be 

expected based on contents of other reference documents 
Requirements quality Broad category encompassing clarity, completeness, use of language, etc. 
Requirements trace Broader than simple problems with traceability, includes general flow-down 

issues 
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Severity 1 and 2 TIMS would still be addressed, and 
Severity 3 issues would be handled on a case-by-case basis. 
As launch neared, the project was directed to reverse that 
policy and close all TIMs regardless of severity. This had 
the effect of adding considerable effort to an already 
stressed team late in the development cycle.  

Issue Types–As discussed in the methodology section, the 
TIMs were classified according to type (see definitions in 
Table 3. 

TABLE 4. ISSUE TYPE FREQUENCIES 
Description Fix UAI %Total 

Array Bounds violation 55% 45% 1.4% 
Conflicting Code 
Statements 

20% 80% 1.9% 

Coding Error 17% 83% 8.2% 
Dead Code 30% 70% 5.5% 
Design/Code 
Discrepancy 

57% 43% 2.9% 

Document Discrepancy 53% 47% 16.5% 
Design/Requirements 
Discrepancy 

71% 29% 9.8% 

Loss of Precision 20% 80% 0.6% 
Memory Leak 0% 100% 0.1% 
Missing Requirement 72% 28% 5.8% 
NULL Pointer 0% 100% 0.9% 
Requirement Not 
Verified 

93% 7% 13.0% 

Requirements Quality 63% 37% 19.9% 
Requirements Trace 59% 41% 7.6% 
Type Mismatch 25% 75% 2.0% 
Uninitialized Variable 41% 59% 4.0% 
   100.0% 

 

Of the TIMs that were not either withdrawn or determined 
by IV&V to be not an issue, over half were classified in one 
of three groups: “Requirements Quality”, Document 
Discrepancy”, or Requirement Not Verified”.  

The largest group is the “Requirements Quality” category. 
The range of issues included in this category is as broad as 
the name suggests, and there seemed to be no value in 
further breaking it down into specific issue types. It is worth 
noting that a majority of requirements quality issues were 
fixed. For those that were not, it was typically a matter of 
the project determining that all developers shared the correct 
understanding of the intent, and opting not to go through the 
change process to fix something that in their view was not 
broken. 

A close second is the group “Document Discrepancy”. 
Again, as the name suggests, this is a fairly heterogeneous 
group of issues. Like the requirements quality grouping, 
there seemed to be little insight to be gained from 
attempting a more fine-grained breakdown of issue type. 
Discrepancies in documentation were fixed at a lower rate 
than requirement-related issues. This can probably be 
accounted for by the generation of issues based on 
differences between CDR charts and design documents 
(approximately 35 were generated for TEGA alone). These 
TIMs were all closed with a project response along the lines 
of, “the design document is the controlling document”. In 
general, issues classified in this way were run-of-the-mill 
problems associated with keeping a large collection of 
documents in sync while all are undergoing change.  

The third largest group concerned requirements verification, 
specifically concerns that requirements were not fully 
covered by test plans. The heavy hitter in this area was the 
MECA instrument, with 60 instances. The spacecraft 
accounted for only 9 suspected verification gaps. In the vast 
majority of cases, suspected verification gaps were repaired 
in subsequent releases of test plans.  

Other Observations 

Issues were often raised at a point in the life cycle where 
most projects have code and documentation out of sync, as 
most work products are in a state of flux. A snapshot at any 
given time will reveal discrepancies between documents. 
Most of these types of issues were fixed in the course of 
normal development.  

The project often rejected issues where IV&V sought 
additional detail or clarification, on the grounds that the 
S/W developers worked closely with the customer (usually 
an instrument or HW subsystem developer), and would 
thereby be assured of getting all the details right. 

Things that were generally fixed: 

• Code issues where behavior was determined to be 
incorrect 

• Test plans that didn’t fully cover requirements 
(fixed in almost all cases) 

• Requirements trace errors/ lack of trace 
• Issues of any kind that were part of future planned 

work 
• Design documentation lacking description of 

requirements implementation 
• Hardware/Software ICD 

Things that were generally not fixed: 

• Code issues that could be shown to be benign 
• Violation of coding standards (usually in heritage 

code) 
• Dead code of any sort 
• Presentation packages 
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• Absence of details in documentation where 
collaboration was thought sufficient  

• Issues the project determined to be “not in scope” 
for IV&V (e.g., issues relating to Level 3 
requirements and above) 

Predictions Based on IV&V Findings 

What can be predicted about post-launch mission 
performance based on IV&V findings and the project 
response? There appear to be two main types of predictions 
one could make: first, specific issues raised by IV&V that 
were not addressed by the project were subsequently found 
to cause problems in flight; and second, IV&V findings 
have a more general predictive power based on clustering of 
issues around specific functionality or process areas. 

If failures occurred in areas identified by IV&V, but which 
the project decided not to repair, then a strong case could be 
made for implementing fixes in response to all IV&V TIMs, 
rather than selectively pick and choose. For example, IV&V 
identified an error in the interface between the spacecraft 
and the RAC. The project investigated the finding and 
substantiated it. However, no changes were made to the 
implementation in the grounds that the condition that would 
trigger incorrect behavior could not occur. The TIM was 
subsequently closed by IV&V. IV&V also found issues 
relating to requirements flow down in the same interface. 
Although two failure reports were generated relating to this 
finding during system verification, the project elected to use 
as-is, and the TIM was left in a “Project Accepts Risk” state. 
If either issue had surfaced in operations, the message to 
GRAIL would be that all IV&V findings should be repaired, 
and that the project should encourage IV&V to be less 
accepting of project rationales for use as-is decisions. 

IV&V analysis could be broadly predictive of mission 
performance if there were a large number of issues written 
against a particular function or process area. This would 
indicate to the project that additional scrutiny or process 
improvement should be considered. On Phoenix 
approximately 75% of all TIMs were written against 
payload software. Based on that, one would expect to see 
the preponderance of in-flight software issues be related to 
payloads. In the process area, the top issues types were 
requirements quality, documentation discrepancies, 
requirements not verified, and code-related issues taken in 
the aggregate. If these were accurate predictors of in-flight 
anomalies, one would expect to see anomalies relating to 
these process areas dominating.  

3. ANALYSIS OF ANOMALY DATA  
Determining the predictive value of IV&V findings required 
an analysis of in-flight anomaly data. For this, the 
Incident/Surprise/Anomaly (ISA) database for the Phoenix 
project was used.  

Since the objective of the exercise was to identify the kinds 
of problems that elude the development process, only those 
problems that appeared after launch were considered.  

Identification and attribution of software-related mishaps 

In order to narrow the focus of the analysis, an initial pass 
through the ISA database was made. Each item was binned 
using the following scheme: 

• Hardware—the problem was principally (or 
exclusively) a hardware failure 

• Software—the problem was principally (or 
exclusively) a software failure 

• People—human error was the primary culprit 
• Other—there were a handful of events that the 

project chose to capture that either weren’t really 
failures at all, or noteworthy events that didn’t fit 
neatly into any other category. 

To determine whether to categorize an anomaly as software-
related, events were assessed according to whether they 
represented: 

• Failure of software to operate as specified 
• Failure of software to behave safely or correctly in 

the presence of unexpected hardware behavior 
• Failure of software to behave safely or correctly 

under conditions imposed by operations activities, 
whether planned before launch or otherwise 

• Cases where the software was modified to solve 
the original problem and/or to prevent its 
recurrence 

Conversely, the following kinds of incidents were not 
considered software anomalies: 

• Cases where the software behaved as specified, but 
was given unsafe or incorrect commands or 
operating parameters 

• Cases where software was initially considered as a 
means of resolving or preventing the recurrence of 
a problem originating elsewhere in the system, but 
where this strategy was abandoned. 

• Cases where no behavior of the software could 
have prevented or mitigated the mishap 

In addition to the above categorization, each ISA was 
annotated as to whether the failure event was located on the 
ground or on the flight system. Note that it was entirely 
possible to have software problems occurring in flight that 
did not involve the flight software. For example, ground 
tools that failed during the uplink process that eventually 
caused a flight anomaly would be categorized as a flight 
side event caused by software, but not involving flight 
software.  

Next, each software-related ISA was assigned to one or 
more contributing cause categories (Table 5). The categories 
were developed from standard life cycle phases, as might be 
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done for an orthogonal defect classification scheme, and 
from notes taken during the first step of the analysis.  

The ISA database did not have as detailed a set of metadata 
as the IV&V data, and determination of casual factors relied 
on documentation and personal recollections of the people 
directly involved in the original ISA close-out activity. 
These data sources were uneven in their level of specificity 
and detail. Thus, the categories used to identify contributing 
causes were broader and fewer in number than those used in 
thte IV&V analysis. In many cases it appeared that more 
than one contributing cause was in play. Following the 
general observation in Dismukes, et al, [4] that incidents are 
the result of a complex web of causes, it was decided to 
allow an anomaly to be assigned to more than one 
contributing factor. 

TABLE 5.  ISA CONTRIBUTING FACTOR CATEGORIES 

Category Description 
Complexity The complexity of the problem or 

solution played a role in the incident 
Heritage Process A failure in the process of inheriting 

the software resulted in inappropriate 
features being retained 

Missing 
Requirement 

If a requirement specifying the 
desired behavior had been written, the 
incident could have been averted 

Design Some feature of the implementation 
provided the conditions for 
undesirable or incorrect behavior. 
Similar to the Implementation 
category, but focuses on higher-level 
decisions of code design as opposed 
to simple programming mistakes. 

Inadequate Testing The scenario where the software flaw 
appeared was not tested. 

Implementation A programming error (using wrong 
number for constant, typos, etc.) 
caused to problem. 

System 
Engineering 

System engineering within the project 
(from project SE down to FSW SE, 
and including science and mission 
system SE) did not provide support in 
the problem area, leading to 
conditions where correct software 
behavior was either not recognized or 
not specified. 

Insufficient 
Information 

The software developers did not have 
access to key information that would 
have guided them towards the correct 
implementation. 

 

Findings 

General Discussion—From Launch through end of mission 
there were 369 unique ISAs. The team is to be commended 
for their diligence in reporting all types of incidents large 
and small; not only does it provide a wealth of data for later 

analysis, but it undoubtedly played a positive role in making 
sure problems got solved in a timely manner. As previously 
noted, the flight software (FSW) was remarkably free from 
error: less than 10% of ISAs involved flight software. Most 
FSW problems were relatively benign, and operations 
worked around known defects rather than attempt to correct 
them.  

There were no reported problems with: 

• The launch phase 
• Maneuvers 
• Deployments 
• EDL 
• Fault protection 
• Software architecture 

Details on the categorization findings are provided in Table 
6 below. Because each anomaly was assigned to one or 
more contributing factor, neither the rows nor columns 
(except for the total number of incidents column) is 
constrained to sum to 100%. For example, the heritage 
process played a role in 29% of spacecraft-related 
anomalies, while it was a factor in only 4% of payload-
related anomalies. Looking at the payload and spacecraft 
combined, heritage played a part in 10% of all anomalies. 
The percentages give a means of expressing relative 
frequency of causal factors between the categories and 
between the spacecraft and payload. 

The most obvious result is that three quarters of all incidents 
involved the payload FSW developed by JPL and other 
instrument providers. There are also significant differences 
between the error category distributions between the 
spacecraft and payload. All but one spacecraft software 
error was found while operating on the flight vehicle (as 
opposed to being discovered on a ground test bed), whereas 
only half of the payload errors manifested on the flight 
vehicle. In hindsight, this seems to be a reasonable result, 
given that spacecraft functions are exercised from the 
beginning, while payload functions (apart from some in-
transit checkout activities) do not get exercised until surface 
operations commence. The payload flight software errors 
discovered on the ground were incidental to ground 
exercises, typically operational readiness tests (ORTs) or 
preparations for ORTs.   

The other striking difference between payload and 
spacecraft FSW errors is the development activity 
associated with each error. Spacecraft software anomalies 
were associated with higher-level development activities 
(requirements, system engineering and design), whereas 
payload software anomalies clustered around 
implementation problems and testing. Inadequate testing 
appears in almost half the cases for both the spacecraft and 
payloads. 
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TABLE 6. CONTRIBUTING FACTOR DISTRIBUTION 
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Spacecraft-
related 0% 29% 43% 57% 43% 29% 57% 14% 23% 86% 
Payload-
related  13% 4% 38% 17% 46% 58% 29% 13% 77% 50% 
Combined 10% 10% 39% 26% 45% 52% 35% 13% 100% 58% 

 

Complexity—Robotic space flight is fairly high on the scale 
of complexity as far as human enterprise goes, though 
certainly not the highest. Despite this fact, complexity 
played a surprisingly small role in Phoenix software 
problems. Not only that, where complexity seemed like a 
strong candidate as a contributing factor, it was fairly 
localized. For example, the design of over current fault 
monitoring in the robotic arm interface employed 
overlapping hardware and software strategies. This created a 
complicated set of potential interactions which were not 
fully appreciated by systems or software engineers.  

Heritage Process—Problems with inherited code played a 
relatively small part in the Phoenix mission. The robotic 
arm software was inherited from a previous mission, and, 
not surprisingly, contributed the one example of heritage 
problems (stale mass properties left in the code) in the 
payloads.  

On the spacecraft, an inherited battery state-of-charge 
(SOC) algorithm was not appropriate for the Phoenix flight 
temperature regime, and was not modified to correct the 
shortcoming. Also on the spacecraft, a packet sequence 
rollover bug was triggered by the daily shut down and 
startup operations on the surface.  

The spacecraft cases are similar, in that both involve using 
code in a different situation than originally designed, but 
differ in how the new application diverged from the old. The 
battery SOC situation was a case of using an algorithm 
beyond its original design boundaries, whereas the rollover 
problem was related to deeper issues. The heritage software 
architecture had been developed for use on orbiter 
spacecraft. The development team did not have significant 
experience with landed operations, and may have naively 
believed that applying their software to a landed situation 
was easier than it really was. Power management required 
that Phoenix enter a quiescent state each night, and restart 
the next morning. In orbiter operations, the spacecraft never 
“sleeps”, and this type of on/off behavior is associated with 

spacecraft anomalies rather than routine operations. The 
expectation in the heritage mindset is that restarts are an off-
nominal situation; routine activities are interrupted, the 
spacecraft’s responsibility is to get into a safe configuration, 
and ground intervention is required to recover. This 
background may have biased the development team into 
seeing features of the heritage code that confirmed their 
belief that applying it to surface operations was not a 
complex matter, and prevented them from recognizing 
subtle differences.  

Missing Requirement—Missing requirements were 
implicated in roughly 40% of all anomalies. However, it 
should be noted that “missing requirement” means that it 
was feasible to prevent the mishap if an additional 
requirement had been written. It should not be interpreted as 
faulting the system engineers for not having written the 
requirement, as there was insufficient information in the 
ISA database to draw such a conclusion. Another aspect of 
missing requirements is that they do not get tested. Thus, 
missing requirements are also related to inadequate testing.  

Examples of missing requirements include: 

• Robotic arm autonomous recovery from a motion-
impeded event faulted because the accommodation 
algorithm engaged when it should not have. 
Requirements coverage was incomplete. 

• The flight software could not delete files as fast as 
the ground could send them, which led to hundreds 
of EVRs when spacer files were sent one after the 
other. This operational scenario was never 
analyzed and requirements to support it were not 
written. 

• The Robotic Arm Camera (RAC) rejected 
commands under certain circumstances partly 
because the operational needs were not specified, 
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and thus there was a mismatch between command 
processing capability and operations. 

Design—An incident was binned in this category when 
some feature of the implementation appeared to be 
incorrect, and the problem was more than just a few lines of 
code. Examples of design problems are: 

• The design of the Surface Stereo Imager (SSI) 
filter wheel temperature measurement and the use 
of that data in control processing did not 
adequately account for the complexity of the 
requirements.  

• A race condition in the Meteorological Station 
(MET) FSW can occasionally cause a false “fatal 
discreet” event report to be issued. 

• An attempt to do too much inside an interrupt 
service routine within the TEGA FSW created a 
vulnerability for inadvertent safing under certain 
circumstances 

Inadequate Testing—None of the cases where inadequate 
testing was cited as a contributing factor involve failure to 
test requirements. The typical case is one where a more 
robust set of stress cases or more realistic scenario could 
have flushed out the vulnerability before going into 
operations. Examples are: 

• A coding error in the SSI control software affected 
the sun-find algorithm by counting only half the 
image lines. A parameter set by the ground controls 
the number of lines the FSW looks for. The 
parameter value used in test appears to have 
compensated for the logic error during ground 
testing, but when changed for flight the problem 
emerged. It should be noted that this might not 
have been found had another parameter value 
specifying the SNR not been set incorrectly as 
well.  

• Improper handling of the CCSDS packet counter 
over sleep/wake cycles resulted in duplicate packet 
IDs. The test cases did not include a scenario 
where the rollover would occur, even though it was 
certain to occur during the mission. 

• Ground operations would send “spacer files” to 
initiate communication during the landed portion 
of the mission. They were intended to be deleted 
immediately, but owing to a collision between 
FSW task priorities and file naming, the scheme 
generated hundreds of spurious event reports. The 
planned usage was known ahead of time, but a 
realistic test scenario to validate the FSW was 
never implemented. 

Implementation—Implementation errors include subtle 
features that allow the software to meet requirements, but 

fail under certain conditions that were not imposed during 
test. Thus, virtually all incidents attributed to 
implementation were also attributed to inadequate testing. 
Here are some examples: 

• In the acquisition and use of SSI filter wheel 
temperature data, software logic was vulnerable to 
a relatively rare combination of events that allowed 
it to use inappropriate thermal data to determine if 
preheating was needed. This case was also cited as 
an example where complexity was a factor.  

• Under certain conditions spacecraft telemetry 
packet generation could get stuck in an infinite 
loop 

It should be noted that there were relatively few coding 
errors in the spacecraft FSW as compared to the payload 
FSW. The approximate ratio between spacecraft and 
payload code size is 2:1, whereas the ratio of 
implementation errors was 1:7.  

System Engineering—System engineering was implicated 
wherever the genesis of an anomaly appeared rooted in a 
failure to appreciate how two or more parts of the system 
would interact, particularly in fault scenarios. Examples 
include: 

• The MET FSW behavior on safe mode entry was 
not adequately analyzed and specified. This lead to 
a data loss incident. 

• The spacer file issue previously described. 

• The TEGA instrument behavior upon receipt of an 
invalid command opcode was not adequately 
analyzed for system-level robustness. Lack of 
requirements in this area lead to loss of data. 

Insufficient Information—The software engineering 
literature does not often treat lack of information as a cause 
of software errors. But there were some glaring examples in 
the data that made it seem worthwhile to place this factor on 
an equal footing.  

• A number of problems with the battery state of 
charge algorithm were discovered incidental to an 
effort to correct the parameters that control it. 
Among other things the FSW team did not have 
access to accurate battery performance and range 
data, and thus was (unwittingly) unable to develop 
the algorithm correctly. 

• Documentation on the MECA instrument was 
found to be in error, leading the flight software 
developers to use the wrong command to set the 
conductivity frequency. 

• Under certain conditions the RAC rejected 
commands. It appeared that certain operations 
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required more time to complete that either ops or 
FSW development believed, leading both to 
develop incorrect products 

4. RELATIONSHIP BETWEEN IV&V FINDINGS 
AND IN-FLIGHT ANOMALIES 

Assessment of Predictive Skill of IV&V 

How well did the predictions based on IV&V findings (see 
end of section 2) hold up compared to actual flight 
experience? The results were mixed. 

With respect to individual IV&V issues translating directly 
into in-flight anomalies, review of the anomaly reports did 
not show any anomalies predicted by the IV&V work. This 
includes those IV&V issues that were dispositioned without 
remediation by the project. However, it is difficult to draw 
conclusions about the effect that IV&V had on mission 
reliability in those cases where TIMS were addressed by 
some form of remediation. Problems that are fixed by 
definition do not emerge as problems downstream. By the 
same token, one has to consider any fixed problem to have 
contributed to mission reliability, even if it is impossible to 
quantify.  

IV&V was found to have more predictive skill when the 
findings were looked at broadly. The prediction that 
payloads would account for the majority of in-flight 
anomalies was borne out in almost the exact 3:1 ratio found 
in the IV&V data. Likewise, implementation issues were 
among the top contributing factors identified in analysis of 
the anomaly data, though this was markedly truer of the 
payload FSW than the spacecraft FSW. Insufficient testing 
was also a strong contributor to in-flight issues, which 
corresponds to its ranking in the IV&V analysis. If 
requirements quality can be considered a proxy for system 
engineering, then this prediction could be considered 
confirmed. However, the types of requirements problems 
(missing requirements) that contributed most strongly to in-
flight anomalies were not dominant among the issues 
identified by IV&V. Overall, IV&V was a reasonable 
predictor of broadly defined problem areas. However, the 
analysis led only to general process improvement 
suggestions. Without a “smoking gun” it was difficult to 
build an argument for specific process changes on GRAIL 
that the parties involved would agree to. 

Assessment of Anomalies vs. IV&V Methodology 

In this section I will consider some of the anomalies with an 
eye towards what IV&V could, at least theoretically, have 
done to identify the problem before launch. These 
observations formed the basis for discussions with IV&V 
concerning improvements in the way GRAIL and IV&V 
could work together to improve the effectiveness of the 
process. 

Battery Charging—Development of the fault recovery and 
response to a certain battery charging condition failed to 
completely specify all desired behavior. As a result, there 

was a potential for battery overcharge and overheating to 
occur.  

Theoretically, there is at least the possibility that IV&V 
could have caught this problem. One of the perennial 
challenges to IV&V is lack of mission-specific knowledge 
and access to data. Without detailed information or prior 
knowledge of hardware behavior it would have been 
extremely difficult for IV&V to spot the flaws in the work 
products available to them. The Facility has recently 
instituted the practice of performing model-based 
requirements validation. This approach seems more likely to 
lead to questions about the reliability of fault protection 
schemes. However, it is uncertain whether current practice 
would systematically lead an IV&V team towards the level 
of detail that would make finding this problem anything 
better than a “lucky break”. 

Spacer Files—Complete requirements on the uplink and file 
management software to handle the planned surface relay 
communications operations were not written. This lead to a 
minor incident where the use of spacer files to optimize the 
time utilization of the link generated a large number of 
warnings. A workaround was quickly implemented.  

Model-based validation work could conceivably uncover 
this type of requirements gap. IV&V does consult relevant 
operations concept material wherever possible in 
constructing behavioral models. Using a model-based 
approach, IV&V would have a reasonable chance of finding 
this sort of error, provided they have access to sufficient 
operations scenarios.   

Packet Sequence Rollover—A flaw in the handling of the 
packet sequence count rollover under certain conditions led 
to generation of duplicate packets. The problem occurred in 
conjunction with the logic implementing sleep/wake cycles 
for surface operations. Had it not been caught by alert 
operations staff, the problem could have become mission-
threatening. It was not revealed in system-level test due to 
the amount of time it would have taken to force a rollover. 
Unit tests of the packet count mechanism were performed, 
and confirmed the rollover behavior in isolation, but it is not 
clear that a unit test could include enough of the 
environment to force this problem out in the open.  

This case presents a problem both for developers and 
IV&V. With limited test resource available, developers must 
be judicious in their choice of stress test cases (as this would 
have been). One developer familiar with the problem 
doubted that the rollover behavior would have been selected 
for limited risk reduction test resources, even if it had been 
identified as a stress test case.  

Assuming that IV&V identified counter rollover as an 
important behavior to verify, it would have been a simple 
matter of examining the test design. If that were unavailable, 
reading the relevant code to determine what would happen 
at rollover would also be an option, though much more 
time-consuming. The IV&V Facility has recently 
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implemented a software simulation environment capable of 
running flight software. If its capabilities were extended to 
include FSW developed by Lockheed SES, IV&V staff 
could implement independent tests of functions such as this. 

5. APPLICATION TO GRAIL 
The MRO and Phoenix analysis described above was 
undertaken in parallel with GRAIL startup activities at 
NASA IV&V. As results emerged they were discussed with 
the IV&V leads, and possible ways to improve the 
effectiveness of the IV&V process were discussed. Changes 
implemented include: 

• GRAIL provided as much information to IV&V as 
possible. Data were withheld only in cases where 
intellectual property issues created insurmountable 
barriers to information sharing. 

• The project and IV&V collaborated early in the 
process to identify capabilities that were new (i.e., 
not contained in the MRO baseline). These 
functions were treated as high priority when 
allocating resources for IV&V services. 

• To the extent allowed by resources, “difficult” 
problems such as subtle logic errors and low-level 
hardware/software interfaces received additional 
manual attention. For example, a special on-site 
review session for newly-added boot software 
capabilities was organized. That review improved 
both project and IV&V confidence in the software. 
The manual analysis approach was responsible for 
the single most significant IV&V finding of the 
program: an omitted software reset function 
associated with fuel tank repressurization. 

• The project and IV&V agreed to find ways to 
exploit the strengths of the heritage artifacts. Issues 
such as potential requirements misinterpretation or 
perceived design or implementation shortcomings 
tended to be set aside after a brief discussion of 
heritage. 

• A deliberate effort to reduce the number of false 
positives generated by immature work products 
was implemented. Where early versions of work 
products needed to be furnished to maintain 
schedule, the parties discussed the nature of the 
uncertainties in the product, and agreed upon an 
approach to discussing potential issues before 
formally identifying them as problems. 

• Frequent and regular communications were 
established from the outset. One of the most 
effective strategies employed in the GRAIL IV&V 
effort was the use of semi-formal working 
meetings to vet potential issues before formally 
documenting them. In some cases, several hundred 
items would be systematically processed 

simultaneously. Most would be resolved without 
formal documentation. The process was very 
productive in terms of improving mutual 
understanding on both technical and non-technical 
matters. 

6. POST LAUNCH ASSESSMENT  
Spacecraft Performance 

Performance of the GRAIL spacecraft and FSW has been 
excellent to date, but there have been a small number of 
minor anomalies relating to flight software. This section 
describes the issues discovered, and discusses the potential 
for IV&V to find such problems on future missions. 

Shortly before launch, risk reduction testing performed by 
the project uncovered a subtle logic error in the thruster 
system pressurization code. In a double fault scenario where 
both pressure transducers failed, a subtle error in the way 
the control algorithm was coded could cause the system to 
behave incorrectly. The code was patched post launch to 
correct the problem. 

The repressurization function was new for GRAIL, but it 
relied on code that was heritage. The requirement for the 
open loop control function did not take the cyclic nature of 
the thruster firing data updates into account, in particular the 
fact that it was zeroed out at the start of every cycle. The 
programmer implemented the function in a reasonable 
manner, but was apparently not aware of the underlying 
problem. IV&V performed a thorough requirements 
implementation audit of the code, but did not find the error. 
The function was tested by the developer, but only at a unit 
level, where the operations of the other ACS tasks were 
replaced with dummy outputs. The ordering of operations in 
the rate group was not replicated. Thus, unit-level testing 
did not reveal the problem. IV&V review of the unit test 
also did not detect the missing fidelity issue. 

A memory addressing issue was discovered during code 
review by another project. GRAIL FSW developers 
analyzed the problem, and it was determined to have a 
benign effect on GRAIL. No changes to the software or 
operations were implemented as a result. However, 
considerable effort was expended to ensure that the 
upcoming lunar orbit insertion activity was not affected by a 
similar error elsewhere in the code. 

Changes in IV&V Findings from Phoenix to GRAIL 

A portion of the analysis described in section 2 was repeated 
once all TIMs were given final disposition for GRAIL. 
IV&V did not analyze the payload flight software. In order 
to make a fair comparison, payload-related data were 
removed from consideration. The results are summarized in 
Table 7.  

Overall, there was roughly a 10% drop in number of issues 
written. There are several potential explanations for the 
difference. It could simply be due to differences in the work  
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TABLE 7. COMPARISON OF PHOENIX AND GRAIL IV&V RESULTS

  
GRAIL Phoenix Spacecraft 

Description Fix UAI % Total Fix UAI % Total 
Array Bounds violation 75% 25% 2% 33% 67% 3% 
Conflicting Code Statements 0% 0% 0% 11% 89% 4% 
Coding Error 57% 43% 7% 14% 86% 17% 
Code/Requirements Discrepancy 47% 53% 17% 0% 0% 0% 
Dead Code 14% 86% 4% 24% 76% 12% 
Design/Code Discrepancy 0% 0% 0% 67% 33% 7% 
Document Discrepancy 33% 67% 3% 56% 44% 16% 
Design/Requirements Discrepancy 0% 0% 0% 0% 0% 0% 
Loss of Precision 0% 100% 1% 0% 0% 0% 
Memory Leak 0% 0% 0% 0% 100% 0% 
Missing Requirement 47% 53% 10% 64% 36% 7% 
NULL Pointer 33% 67% 2% 0% 100% 2% 
Requirement Not Verified 44% 56% 9% 100% 0% 4% 
Requirements Quality 43% 57% 32% 13% 87% 14% 
Requirements Trace 45% 55% 11% 100% 0% 0% 
Type Mismatch 0% 0% 0% 15% 85% 6% 
Uninitialized Variable 17% 83% 3% 64% 36% 7% 

  
44% 56% 100% 36% 64% 100% 

 

habits of individual IV&V analysts. The use of informal 
discussion prior to IV&V formalizing an issue undoubtedly 
reduced the number of formal issues, but it is uncertain to 
what extent IV&V’s internal process may have 
accomplished at least part of the reduction. Finally, the 
GRAIL work products may have been relatively freer of the 
types of issues IV&V tends to find. This was certainly true 
of certain code issues generated by static analysis. 

There was an overall increase in the frequency with which 
formally documented issues were fixed. Again, there are at 
least two potential explanations. First, previous IV&V work 
on the code base likely reduced number of false positives in 
code. And second, better communication eliminated more 
false positives in all categories.  

Large decreases were observed in the Dead Code, 
Design/Code Discrepancy, Document Discrepancy 
categories. Better communication helped eliminate many 
false positives. The project went to lengths to avoid 
providing IV&V with immature work products, and when it 
was unavoidable, considerable effort went into discussing 
the limitations of the artifacts provided. Reduction in dead 
code findings may be due to prior IV&V work on the MRO 
and Phoenix code bases. 

A new category (Code/Requirements Discrepancy) was 
introduced for the GRAIL analysis to better align the 
analysis with the way IV&V does their work. On Phoenix, 
these would have shown up in either Design/Code 
Discrepancy or Coding Error. Taking the totals in those 
categories for both projects does not appear to indicate a 
significant difference. 

Curiously, there was an increase in the Requirements 
Quality, Requirements Trace, Missing Requirements 
categories. This is likely due to a combination of personnel 
differences, process differences, or the quality of the 
underlying products. Personnel differences are impossible to 
quantify, but anecdotal observation of differences between 
the issue output of analysts assigned to GRAIL seem to 
indicate that this was a likely contributor. Many of the 
requirements-related issues on GRAIL were due to 
problems found in higher level documents. IV&V placed a 
greater emphasis on this level of analysis on GRIAL, and 
thus one would expect a larger number of issues to be 
generated based solely on the process change. Additionally, 
many of the higher level requirements IV&V looked at were 
relatively immature. 
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7. CONCLUSION 
A thorough analysis of IV&V findings and post-launch 
anomalies has been presented. Although the analysis did not 
uncover a predictive relationship between individual IV&V 
TIMS and in-flight anomalies, their analysis was found to 
have broad predictive skill. The most important result of the 
analysis was insight into ways in which the GRAIL-IV&V 
interaction could be more effective and efficient. In addition 
to making the process more cost-effective, implementing 
lessons learned improved the quality of interactions. 
Although certain types of software problems remain 
challenging for both developers and IV&V to discover 
before launch, IV&V is making progress towards improved 
tools and methods (in particular, a hardware-based test bed) 
that should increase the likelihood that they will play a 
greater role in discovering serious bugs before launch.  
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