
Toward a Model-Based Approach to Flight System Fault
Protection

John Day
Alex Murray
Peter Meakin

Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Dr.
Pasadena, CA 91109

John.Day,Alex.Murray,Peter.Meakin@jpl.nasa.gov

Abstract—Fault Protection (FP) is a distinct and separate sys-
tems engineering sub-discipline that is concerned with the off-
nominal behavior of a system. Flight system fault protection
is an important part of the overall flight system systems engi-
neering effort, with its own products and processes. As with
other aspects of systems engineering, the FP domain is highly
amenable to expression and management in models. However,
while there are standards and guidelines for performing FP-
related analyses, there are not standards or guidelines for for-
mally relating the FP analyses to each other or to the sys-
tem hardware and software design. As a result, the material
generated for these analyses are effectively creating separate
models that are only loosely-related to the system being de-
signed. Development of approaches that enable modeling of
FP concerns in the same model as the system hardware and
software design enables establishment of formal relationships
that has great potential for improving the efficiency, correctness,
and verification of the implementation of flight system FP. This
paper begins with an overview of the FP domain, and then
continues with a presentation of a SysML/UML model of the
FP domain and the particular analyses that it contains, by way
of showing a potential model-based approach to flight system
fault protection, and an exposition of the use of the FP models in
FSW engineering. The analyses are small examples, inspired by
current real-project examples of FP analyses.

TABLE OF CONTENTS

1 INTRODUCTION . 1
2 FAULT PROTECTION DOMAIN DESCRIPTION . . . 1
3 THE SYSTEM USED FOR OUR ANALYSIS 2
4 FAULT PROTECTION ARTIFACTS AS MODELS . . 4
5 FUTURE WORK . 16
6 SUMMARY . 17

ACKNOWLEDGMENTS . 17
REFERENCES . 17
BIOGRAPHY . 17

1. INTRODUCTION
Development of modeling approaches for flight system FP
first requires reviewing the analyses and products typically
used in flight system FP development and how they are
related. Typical analyses and products developed as part of a
flight systems fault protection development effort include: 1)
a Failure Mode, Effects, and Criticality Analysis (FMECA),
whose objective is to comprehensively identify all of the
ways in which system components can fail, and identify the
consequences and severity of each failure mode; 2) a Fault

978-1-4577-0557-1/12/$26.00 c©2012 IEEE.
1 IEEEAC Paper #1307, Version 15, Updated 12/22/2011.

Tree Analysis (FTA), which is a top-down identification of
system or subsystem failures, and a decomposition of each
failure into a logic tree showing all possible combinations of
sub-failures that could have resulted in the top-level failure;
3) a Monitor and Response Dictionary (MRD) that specifies
conditions that must be monitored at runtime, and responses
at various levels to the occurrence of those failures; and 4)
a set of mitigation matrices that bookkeep how all of the
failures modes identified in the FMECA are detected and/or
corrected at runtime, or shown through testing or analysis to
be unlikely to occur.

In and of itself, this FP domain is highly amenable to ex-
pression and management in models. In addition, both the
FMECA and the FTA rely heavily on system descriptions
such as block diagrams to define the components and sub-
systems to which they refer. Thus, the systems engineering
activities of the FP domain could be well served with the use
of integrated systems models, shared with the larger systems
engineering team, upon which to base their analyses.

Though there are industrial and government standards for
performing FMECAs, and others for FTAs, there is not a
unified standard that links the two, or that relates either the
FMECA or the FTA to the MRD, or to other general system
models. Current practice tends to rely on spreadsheets to
develop and contain all of the major products of FP engi-
neering: the FMECA, the FTA, the MRD, and the mitigation
matrices. This approach is lacking for several reasons: since
the FMECA is a model of the flight system, it effectively
creates a second baseline of the system design, separate from
that used by the systems engineering team at large; it provides
no or limited ways to describe behaviors, such as failure
modes or failure effects; and it provides only brittle and
limited support for managing relationships among elements,
e.g. from a failure mode to a mitigating fault response.

Flight system FP is also tightly coupled with flight soft-
ware (FSW), because of the need to exhaustively specify
the runtime detection and mitigation of failures. This is
another advantage of a model-based approach for FP: FSW
engineering is highly amenable to model-based approaches,
and the sharing of models between the two domains has
great potential for improving the efficiency, correctness, and
verification of the implementation of runtime FP.

2. FAULT PROTECTION DOMAIN
DESCRIPTION

Fault protection is the aspect of systems engineering that
is responsible for the design of the off-nominal behavior
of a system. As used and applied at JPL, Fault Protection

1

(FP) is both a specific systems engineering discipline (similar
to End-to-End Information System (EEIS) engineering or
mission planning), and the functions and elements of a system
that address off-nominal behavior. While Fault Protection
(FP) is the historical term for this field at JPL, it is also known
by a variety of other names, including Vehicle Health Mon-
itoring, Vehicle Health Management, Integrated Diagnostics,
Prognostics and Health Management, Fault Detection, Iso-
lation, and Recovery (FDIR), and Redundancy Management
(RM). Recently within NASA, Fault Management (FM) is
gaining popularity as the primary term to refer to the field.

Fault protection systems engineers develop requirements and
architecture, perform trades, analyze and characterize the
system, verify and validate the system, and operate the
system. This is done in concert with other systems and
subsystem engineers, reliability engineers, system architects,
test engineers and operations engineers. The FP engineer
makes use of various techniques to determine the failure
space, assess threats against the mission objectives, and
define functionality to mitigate threats with some desired
coverage over the failure space (both identified and un-
identified). Engineers working NASA robotic and human
spaceflight programs have developed a variety of methods for
fault mitigation, fault analysis, and contingency operations
over the course of several decades. These include fault tree
and failure modes and effects analyses (FMEAs), redundancy
management, fault detection, isolation and recovery (FDIR),
vehicle health management, troubleshooting, fault tolerance,
integrated diagnostics, and contingency planning, among oth-
ers. The variety of terms and methods is a symptom of the ad
hoc nature of the activity, which is one of the major barriers to
making significant improvements to the reliability and safety
of NASA’s systems. Overcoming these institutional barriers
is one of the primary challenges to implementing a com-
prehensive approach to FM that will significantly improve
system reliability, availability and safety (see [2]).

FP functions to detect, diagnose, decide and respond to
off-nominal conditions are deployed at various levels, with
system, subsystem, and component level detections and mit-
igations. Determination of the fault protection functions to
apply and where to apply them in done by both top-down and
bottoms-up analytical approaches. For each system function
to be protected, failures can either be prevented or mitigated.
FP is deployed when failures are to be operationally miti-
gated, but is not necessary when the function is preserved by
prevention. If the function cannot be preserved, then alternate
goals may be selected.

A key factor to determine where in the function tree one
must deploy FM mechanisms is the race condition of failure
effect propagation times versus failure mitigations. For a
FM mechanism to be effective, the mitigations must “win
the race” against the corresponding failure effects. If the
mitigation loses the race, then the failure mitigations must be
implemented at a location in the design that is closer to the
originating failure mode, thus reducing the detection time,
and/or with a response mechanism that is faster than some
higher-level mechanism. Analysis of these race conditions
implies the need to model failure effect propagation and
identify all FM control loops.

Assessment of the FM design also entails bottom-up analysis
of the failure effects that result from the multitude of system
failure modes. Bottom-up analyses draw from failure modes
and effects analyses (FMEA), which provide information
regarding the ways in which the system’s components fail,

and the effects that result. These effects are the behaviors that
FP detects and to which it responds. Precise representations
of these failure effects are required, so as to better understand
and analyze them.

In general, FMEAs are quite accurate in their description
of the failure modes (mechanisms) of the component, and
in the immediate failure effect or failure symptom caused
locally at the interface of that component to the rest of the
system. There are usually further fields that describe down-
stream effects, but these often become progressively more
inaccurate the further away the effect is from the originating
component. This is because the methods used to determine
the downstream effects can vary depending on the FMEA
analyst or designer that contributes to the writing the English-
language text descriptors.

The FM design process interoperates with existing systems
engineering (nominal) design processes and with failure anal-
ysis (off-nominal) design processes. For systems engineer-
ing, the primary links will be to the function tree representa-
tion of system functional decomposition and to the nominal
event sequences that are tied to concepts of operation. For
failure analysis, the primary links are to bottom up FMEAs
and top down fault tree analyses and representations. The
result of the analysis and design work is the set of fault
protection monitors and responses that have been developed
to adequate cover the failure space (within the defined risk
and performance objectives). Many different architectures
are possible for deploying FP functionality, but in this pa-
per we focus on the typical monitor/response pattern. The
connection between the failure space and the FP monitors
and responses is not always formally captured, but when it
is, it is typically captured in a mitigation matrix. Capturing
monitors/responses, FMECA results and FTA results in a
SysML model provides a way to represent these elements and
their relationships in a formal and consistent way.

While FP has been successfully applied to many flight sys-
tems, the approaches are generally ad hoc and result in gaps
and inefficiencies in the overall FP design (and is espe-
cially problematic for system-of-systems programs). These
methods are also unable to answer, or only partially address
important questions relating to characteristics such as the
completeness and effectiveness of the FP design. There is
significant benefit to be gleaned from applying greater rigor
and a more systematic approach to FP development, and that
the burgeoning field of Model-Based Systems Engineering
can provide useful techniques and tools to help us in this
endeavour.

3. THE SYSTEM USED FOR OUR ANALYSIS
This section first describes our hypothetical flight system.
Our model is loosely based on a typical Earth orbiter flight
system design, and presents a high-level sketch of a flight
system, with more detail filled in only where necessary to
illustrate our approach to modeling flight system fault pro-
tection. It bears emphasizing here that we assume that the
sort of system model we are showing here would be produced
by the larger flight system systems engineering team, and FP
engineers would add attributes to this model as necessary.
Thus, this model would be a well-reviewed product of a
collaborative process. Indeed, one of the key advantages
of this approach is reducing the duplication of effort that is
typical in a more traditional process, in which FP engineers
essentially make their own system model.

2

Figure 1. Top-level flight system decomposition

Figure 2. The Structures and mechanisms subsystem components

3

Figure 3. The structure of the guidance, navigation and control subsystem

The System Model

Figure 1 shows a high-level decomposition of the compo-
nents of the flight system. This structural decomposition
view is just one view of a model made for general systems
engineering usage, but it is the view most relevant to this
paper, because, in our approach, failure modes are described
as attributes of the physical (or, in the case of software, logical
but none the less concrete) components of the system.

The flight system we model is composed of the key, typical
subsystems. We show a further level of decomposition for
a couple of the subsystems. Shown in Figure 2 is a partial
decomposition of some of the mechanical and structural
components of the system, with the Launch Vehicle Interface
component decomposed into some of its key parts. The
lowest level of this decomposition involves mechanical as-
semblies and components, given generic names in our figure,
and these components will be involved in the discussion of
failure modes and fault trees, below.

Turning to the Guidance, Navigation and Control component,
we present a decomposition of it in Figure 3. The software
part of GNC is depicted as shared between this and the
FSW component. The decomposition of the GNC part of
FSW is done functionally, e.g. GncDevManagement, and
represented in the model as behaviors, and represented here as
boxes with the activity stereotype (a SysML/UML activity is a
behavior, represented in detailed views, not shown here, with
flow chart-like notation). We chose a component involving
software to illustrate its treatment in the FMECA, which we’ll
describe below.

4. FAULT PROTECTION ARTIFACTS AS
MODELS

In this section we begin with a discussion of the SysML and
UML modeling languages in order to explain how we extend
them to express the concepts of the FP domain. We then show
examples of using our extensions to express the FP analyses
in our UML/SysML model.

The Profile

First, a little background: the UML is made to be extensible,
and so it provides an extension mechanism in the form of
a metamodel construct called Profile (SysML extends UML
using this profiling construct). A good concise description of
the profiling mechanism is given in [5]. UML is based on a
metamodel, which, in a nutshell, is a model of how models
are made. The metamodel consists of metaclasses, which
embody the concept of modeling a particular type of thing.

So for example, our SysML model contains a class called
GNC Device 1. This “device” might represent some common
GN&C device, let’s say a star tracker. This class is a type
that expresses the idea of a set of things that share a set
of attributes which all start tracker devices have: tracking
performance, size, power usage, electrical connection types,
digital communication interface, etc. The very concept of
expressing such an idea in a model is embodied in the UML
metamodel as the metaclass class.

In the profiling mechanism, a metaclass can be extended:
have additional attributes given to it, or additional constraints
placed upon it, by defining a special kind of metaclass called
a stereotype. A stereotype is attached to one or more meta-
classes (those which it extends). In a UML or SysML model,
when an instance of a metaclass is created (e.g. defining the

4

class GNC Device 1 instantiates - creates an instance of -
the metaclass class), the stereotype can be applied to that
instance. In fact, the SysML metaclass block is actually a
stereotype on the UML metaclass class, and that stereotype
has been applied to the GNC Device 1 class, as shown by the
word <<block>> on the GNC Device 1 shape in Figure 3.

To extend SysML and UML for our purposes, we defined
a set of stereotypes. It’s convenient to describe these as
grouped into stereotypes that describe things, and those that
describe relationships between things. The key stereotypes
of the first group are shown in Figure 4. In UML/SysML,
classifiers of any kind - blocks, classes, or metaclasses among
others - are can be represented as boxes, with selectable
levels of detail (e.g. whether to show a class’ attributes or
not). The stereotype FailureMode is shown in red (we assign
colors to the stereotypes and use the colors consistently when
applying them). Stereotypes extend one or more metaclasses,
and in this diagram, the extended metaclass is shown in
square brackets. The metaclass extended by FailureMode is
BehavioredClassifier, which is the base metaclass of all of the
behavior kinds in UML/SysML: state machines, activities,
sequences, and other kinds of behavioral models. Thus,
by choosing BehavioredClassifier as the metaclass for our
FailureMode stereotype, we embody a concept of failure
modes as behaviors: a given component behaves in certain
ways, some of them nominal, some of them not.

The FailureMode stereotype has four attributes (attributes
of stereotypes are called tag definitions, or simply tags, in
UML/SysML). These identify the likelihood of the occur-
rence of a failure mode, the severity of the mission impact,
as well as a list of SystemModes in which the failure mode
presents a risk to the mission.

For example, a spring normally continually applies force in
a given direction; this is the nominal behavior. However, the
spring can break, and stop applying force. This is another
behavior, and it is a failure mode. It could be equally well
described in an activity or in a state machine.

A failure mode has one or more causes, which we tag in our
model with the Cause stereotype, as well as effects, either
local (SubsystemEffect), or system-level: SystemEffect. The
metaclass for the Cause and Effect stereotypes is Classifier:
in UML this is the abstract metatype of not only regular class-
like metaclasses such as class and block, but also of behaviors
such as state machines, etc. This allows the application of
our Cause, SubsystemEffect and SystemEffect stereotypes to
regular classes or blocks, or to behaviors. Modeling effects
as behaviors can be advantageous because it allows them to
appear in fault trees, as we’ll show later.

A FaultTree maps to the fault tree analysis concept described
in the introduction. The metaclass BehavioredClassifier al-
lows us to model fault trees as any kind of UML/SysML
behavior. In the examples we give below, we use activities
to model them, though a state machine might be just as apt a
model for them.

The Monitor is another key stereotype in our FP profile. It
embodies the concept of behavior in the system that actively
monitors some particular aspect of the system, and may take
some action based on the state of the monitored feature.
These behaviors are best modeled as UML/SysML behaviors;
thus the choise of BehavioredClassifier as the metaclass for
the Monitor stereotype. The monitored aspect might be
something physical, such as a temperature or voltage, or

something logical, such as the error in attitude estimation.
Typical constraints and requirements on fault monitors are
represented by the following characteristics we have built into
the model-a unique ID (for use in commanding and teleme-
try), a minimum frequency of detection of the monitored
feature (e.g. a certain temperature is required to be checked
for being in range at least once every 20 seconds), and a
specification of whether the monitor, once having detected
an symptom, can revert to a state of not having detected it
without ground intervention.

Responses, both local and system-level, are also best de-
scribed as behaviors. Indeed, system responses tend to be
complex behaviors that really benefit from being modeled in
order to be well understood and specified. System responses
consist of an ordered set of sub-behaviors called tiers; this
embodies the notion of taking successively more aggressive
measures in the face of a fault that has not been repaired.
System responses also have a priority, used to decide among
competing responses which one to execute.

Verification activities include test scenarios, run against the
system, and also analyses, which can be used to verify some
functionality that’s difficult to test, or to argue that a failure
mode is unlikely enough to not need handling. Examples
of these items, including their representations and how they
relate to other elements of the model are described later.

There are key relations in the FP domain. The metaclasses
upon which the stereotypes shown in Figure 5 are relation-
ships. An Association in UML/SysML is a relation between
two classifiers, and tends to be used to describe a close
relationship, including a sense of ownership or part-to-whole
relationship. A failure mode is an intrinsic property of a
component, and so this close association metaclass seems
appropriate to model the relationsip of a component to its
failure mode(s). Thus the failsIn relation, used to mark an
association between a component (block) and its failure mode
or modes, is based on Association.

The metaclass Dependency represents a looser relationship,
more appropriate for expressing the other relations in our
domain, such as causedBy - the relation from a Cause to a
FailureMode, and produces - the relation from a FailureMode
to the effect(s) it produces. The detects relation connects
a Monitor to a FailureMode, while tolerates maps a Re-
sponse (Local or System) to a FailureMode against which
the Response protects the system. The tolerates relation is
a special kind of the mitigates relation (that’s the meaning of
the inheritance relation in the diagram - the lines with hollow
arrow head): tolerates means that the failure mode is actually
dealt with by the running system, whereas mitigation can also
mean a pre-fielding, design-time measure to protect against
the effects of a failure mode. The avoids relation, linking an
analysis to a failure mode, means that the analysis shows that
the failure mode cannot plausibly happen, or the resulting risk
if it did happen is acceptable.

The executes relationship maps a Monitor to a SystemRe-
sponse. This mapping is typically dependent upon the mode
of the system, and that is why the executes stereotype has
the two tags of type SystemModes, namely validInModes
and notValidInModes - these allow an executes relation to
be specified to be valid, or in force, only in certain system
modes, or in any modes except for a named set of modes.

With this description of the profile, we proceed to examples
of applying it.

5

Figure 4. The stereotypes that express things in the FP domain

Figure 5. The stereotypes that express relationships in the FP domain

6

The FMECA

For our first example, we present a small section of the
FMECA that handles some of the launch vehicle separation
components, as shown in Figure 6. The SepSysCompo-
nent3Failure mode describes scenarios in which the the com-
ponent breaks or bends during launch, causing a subsystem
effect of the spacecraft not being supported by the launch ve-
hicle, and a disastrous system effect of premature separation
and loss of vehicle (LOV).

This failure mode could be caused by unexpectedly high
loads on the component (in turn probably caused by an anal-
ysis or requirements error, not shown), or by workmanship.

The failure modes of the other parts of the launch vehicle
separation system are similarly depicted. Since all three of
the shown failure modes are disastrous, they are assigned
missionImpact 6. These failures can only occur during our
hypothetical mission phase 1, as reflected by the mission-
Phase tag value. Note that causes may be shared among
failure modes, as can effects (e.g. LOV: Failure to Separate is
produced by both Activation Failure and Mechanical Failure).

This example involves mechanical failures. The FMECA
must also treat functional failures, especially in software.
The next example, in Figure 7, shows some of these failures
modes that can occur with the functional parts of the GN&C
software. These modes are rather abstract and non-specific.

The failure mode Some Error might represent a failure on
the part of operations or commanding (i.e. giving invalid
or flawed commands to the spacecraft), or data transport
(corrupted data), and the GNC sequencing function of the
software’s failure to catch the errors. This failure mode could
cause the local GNC subsystem effect of erroneous com-
mands to GNC devices, or the system effects of anomalous
attitude, or worse, loss of vehicle.

Note that the produces relationship from the failure mode to
the LOV system effect has a constraint “FM occurs during
critical event” attached to it, signifying that this failure mode
can only produce this effect if a critical event is in process.

It’s important to mention that the components shown in the
FMECA examples, e.g. SepSysComponent or GncSequenc-
ing, are the same model elements as shown in previous
diagrams, except that in this view they are shown with their
failure modes: the same blocks are used in both diagrams.
Similarly, some of the same failure modes depicted in these
FMECA diagrams will also appear in fault tree diagrams,
shown in the next section.

Fault Propagation

We can also use our FMECA model to discuss the propaga-
tion of failures. We can map an effect - system or subsystem
- to another effect, using a produces relation, though we are
not showing that in the examples here. The effects involved
in these mappings would not necessarily be in the same
subsystem, in fact in many cases they would not be. We could
then discover a set of directed graphs in the model in which a
failure mode was the starting point, and the chain of produced
effects would be a possibly branching, possibly even cyclic,
network. This seems an area rich in possibilities for analysis
of the model to validate the physical model and the FMECA,
and fault trees.

Fault Trees

The top-level fault tree is shown in Figure 8. We represent
these fault trees as SysML/UML activities. Activities repre-
sent a behavior; there is no concept involved of whether the
behavior is expected to actually occur in the fielded system or
not. Thus activities can be used to represent scenarios that we
hope will never occur.

We could also use state machines to represent fault trees, but
activity diagrams, with their flow chart-like style, provide a
better mechanism for representing the structure of fault trees.
The choice of state machines versus activities to represent
fault modes is a matter of style: some people think more
naturally in terms of modes of behavior, reacting to events,
and state machines naturally capture this style of conception.
Activities, on the other hand, lend themselves to a more
procedural, step-by-step view of a behavior. One or the other
may be a better fit for a particular failure mode. In terms of
the modeled relations of a failure mode to other aspects of
the FM model, it doesn’t matter: either a state machine or an
activity can participate in a fault tree (modeled as an activity).
Moreover, failure mode behaviors are not generally modeled
in any detail, so they need not be fleshed out with any internal
detail: a state machine or activity can be void of internal states
or actions, as are all of the examples we’ve shown.

In the top-level fault tree, the end action is that the system
fails, meaning the entire mission is lost. We attempt to list
all of the ways in which that could have happened. As the
figure shows, we identified six possibilities: one of these six
behaviors must have happened if System Fails was reached.

Each of these six requisite behaviors is in turn modeled as
an activity, which allows us to decompose the fault tree into
more and more detail, at each level of decomposition finding
more specific and detailed behaviors leading to the result
at that level. The behavior 1.1 Launch or Commissioning
Failure is further decomposed in Figure 9, into two possible
sub-behaviors: Fail to Establish Orbit and Fail to Get Oper-
ational. We give our theoretical system a spinning reflector,
and so one way of failing to become operational is to have a
Spinup Failure.

The first of these is in turn decomposed into the more detailed
behavior shown in Figure 10, and at this level of detail,
elements from the FMECA - failure modes and system effects
of failure modes, begin to come into play: of the four possible
behaviors that lead to failing to establish orbit, three of them
are made possible by the occurrence of failure modes, and
their produced system effects.

Ideally, every fault mode would appear in some part of
the fault tree, and every part of the fault tree could be
decomposed down to identified failure modes. With the
representations that we have defined here, it is then possible
to query the model to check that all failure modes for a given
effect are represented in the fault tree. This is one way in
which the use of models can ensure completeness between
these analyses.

Another section of the fault tree, the decomposition of Fail
to Get Operational, appears in Figure 11. In our theoretical
mission design, the reflector has to spin at a given rate in
order to obtain science data, and GNC would be required to
maintain vehicle stability during spin-up and also when the
science spin rate is achieved.

The failure to spin up the reflector (and maintain control of

7

Figure 6. The failure modes of some parts of the launch vehicle interface

Figure 7. GN&C failure modes

8

Figure 8. The highest levels of a fault tree

Figure 9. Launch or commissioning fault scenarios

the spacecraft) is depicted in Figure 12. In this scenario,
GN&C software errors and ground commanding errors play
a role. Again, failure modes and effects identified in the
FMECA come into play.

Fault Monitors and their Mappings

Fault monitors detect errors caused by faults at runtime. Fault
monitors are related to the failure modes that they can detect.
They are also related to responses that they may cause to be
executed. Fault responses are related to the failure modes that
they protect against or handle. Figure 13 shows a notional set

of GN&C fault monitors. The diagram shows, for example,
that the monitor of Excess Attitude Estimation Error can
detect the failure mode Incorrect SW Behavior, which was
identified in the FMECA.

That monitor is also shown to execute the system fault re-
sponse SYS MODE 1 (which causes entry into a the defined
system mode of Safe Mode with Reaction Wheels). However,
note that the constraints shown indicate that this monitor can
only cause SYS MODE 1 to be executed in system modes
other than SAFE RWA or PREMISSION PHASE 1.

9

Figure 10. Failure to attain orbit

Figure 11. The ways in which the system can fail to transition from launch to operational mode

The monitor Device Overflow monitors a mode in which
some GNC device’s data is collected at higher-than-normal
resolution - a not atypical feature of flight systems. If the
GNC software did not compute timings properly for man-
aging the data (the Incorrect Phasing failure mode), then
this mode could cause a buffer overflow. There is a local
response to reset the device. The local response is represented
to mitigate the failure mode.

System Fault Responses

The definitions of system fault responses, and also the spec-
ification of the management of the execution of responses,
including the logic of responding to monitors reporting fail-
ures, are key pieces of a the fault protection architecture of a
system.

Figure 14 describes some of these key aspects of the FP

architecture, showing a concept of a FP engine that manages
reacting to symptom reports from monitors, and executing
system responses. Recall that system responses consist of an
ordered set of one or more sub-behaviors called tiers, and that
executing a response means executing each of its tiers, in or-
der. The association from the engine to the system responses,
called textitExecutes A Tier Of, is marked with a constraint
called eligibleForExecution, which would be defined in great
detail in any FP architecture. A typical constraint that might
be part of the definition of eligibleForExecution would be
whether or not the mapping from monitor to response is
applicable in the current system mode.

Establishing these key properties of fault management is
essential. Models can be used to simulate the response
behaviors and their interactions, leading to an improved un-
derstanding of the implications of these architectural choices.

10

Figure 12. Failure to spin up the reflector

Figure 13. Three GN&C fault monitors

Verification and Validation

The fault protection aspects of the system must be verified
and validated just as any other aspects of the design must
be. The goals of FP validation include: 1) establishing
the completeness of the FMECA - have all plausible failure
modes been identified?, 2) validating the completeness of the
fault tree analyses - have all paths to failure scenarios been
identified?, 3) establishing the completeness of mitigation of
known failure modes.

The goals of verification in FP include: 1) verifying the
detection logic of all monitors, 2) verifying the execution re-
lationships between all monitors and responses, 3) verifying
the correctness of the logic of all responses.

The key elements of a V&V effort are test cases and analyses,
and their relationships to failures modes, fault monitors, and
fault responses.

Figure 15 shows a few examples of test cases and analyses,
and their mappings. For example, the test case textitGnc-

11

Figure 14. The logic of system fault response execution

Figure 15. Verification and validation activities, mapped to verified or mitigated elements

StressTest is shown to avoid the failure mode Phasing Error.
The test would be designed to show that no plausible stress of
the GNC device management software could cause it to issue
ill-timed commands or miss readings, thus arguing that the
failure mode is not plausible.

With a complete set of test scenarios and analyses, the model
can be used to find out:

(1) which monitors, if any, do not have a test
(2) which failure modes, if any, are neither avoided nor
tolerated

(3) which system fault responses are not tested
(4) for a given system fault response, how is it tested (by
what scenarios, analyses)

The answers give some measure of how well the verification
goals are being met, as well as evaluating the completeness of
mitigation of known failure modes (validation goal #3). All
of these questions can be answered by generating matrices
with appropriate parameters, and this is a built-in capability
of MagicDraw (our UML/SysML tool).

For validation goals, the model can be used to find out which

12

Figure 16. Fault monitor failure mode detection matrix

failure modes are both unmitigated and do not appear in any
fault tree, which could signify a missing scenario or branch
in the fault tree analysis.

Completeness of the FMECA is more likely to be achieved if
the FMECA is based on the complete an authoritative base-
line of the system. Avoiding the FP team effectively creating
its own system model by having a FMECA that is separate
from the systems engineering baseline model improves the
likelihood of achieving a comprehensive FMECA. This is one
benefit of this model-based approach.

In our example, we’ve integrated the FMECA tightly with
the general flight system model: as we’ve shown, the failure
modes are directly associated with the components whose
failures they describe. It would be possible to keep the
general system model and the FMECA in separate models,
which might be more convenient for a team in which the FP
team was separate and distinct from the flight system systems
engineering team. The FP team would still be using the
general system model as the basis of the FMECA, only the
general model would be used as an external model library.
But that would not change the applicability of this profile.

Matrices

It is important to know which failure modes are detected
by fault monitors, and which failure modes are mitigated by
responses. This information is in the relations between moni-
tors and failure modes, between responses and failure modes,
and between monitors and responses. These relationships are
summarized in matrices which are generated automatically
from the model. The detection matrix, showing a mapping
from monitors to failures modes with the detects relationship,
is shown in Figure 16. The rows are failure modes, the
columns monitors, and each cell is marked with an arrow if
the relationship is present. The matrix has totals of mappings,
by package, for each monitor.

This matrix can be used to analyze how well failure modes
are isolated. Each row can be thought of as a detection vector
of 0’s and 1’s, with 1 corresponding to there being an arrow.
If there is a unique vector value for a failure mode, then that
mode can be clearly isolated. This corresponds to the isolated
set concept of [1]. On the other hand, the pair of monitors
Excess Attitude Estimation Error and Excess Rate Control
Error both detect an overlapping set of failure modes, so this
set of monitors is not sufficient to unambiguously identify the
failure modes. It is not difficult to automate the analysis of the
matrix to report on failure modes that are well isolated versus
those that are not.

In the mitigation matrix shown in Figure 17, the rows contain
failure modes, and the columns contain local and system-
level responses as well as verification activities, because
this variant of the mitigation matrix contains both types of
mitigation: tolerates (at runtime), and avoids (design time).
Arrows mark pairs where there’s a tolerates relation from
the response to the failure mode, or where these’s a avoids
relation to a test case or analysis.

It’s also easy to generate matrices with only one or the other
kind of mitigation.

In our example, we’ve integrated the FMECA tightly with the
general flight system model: as we’ll show, the failure modes
are directly associated with the components whose failures
they describe. It would be possible to keep the general system
model and the FMECA in separate models, which might be
more convenient for a team in which the FP team was separate
and distinct from the flight system systems engineering team.

Model Relationships

Typically, the identification and modeling of the sets of
monitors and local responses for each subsystem are assigned
to different engineers. For this reason it is helpful to partition
the monitor and response dictionary models by subsystem, as
shown in Figure 18. In that diagram, each of the blue boxes
represents a separate model, contained in a separate file,
and owned by a different engineer. In many UML/SysML
modeling tools, one model can “use” another model as a read-
only library. This kind of usage is represented in the diagram
as a dependency marked with the use stereotype.

So for example, the model “GNC Mon & Rsp Dict” would
be owned by the systems engineer responsible for the GNC
FP area, and it would contain all of the monitors and local
response definitions for the GNC subsystem. All of the
subsystem monitor and response models must use the Sys-
temResponses model, because monitors must be mapped to
system responses with the executes relation. Partitioning
models like this can significantly enhance efficiency.

13

Figure 18. The network of fault protection models

The model entitled “Consolidated Monitor & Response Dic-
tionary” pulls in all of the individual subsystem monitor and
response models in order to generate a comprehensive system
monitor and response dictionary. This product is needed
as a source of definitions of FP commands and telemetry:
there are commands to configure monitors (thresholds, etc),
and to enable or disable monitors and responses. There are
typically telemetry definitions for reporting monitor states,
FP response actions, threshold values, and many more aspects
of the FP implementation.

At the bottom of the tree is the FP Verification model, which
contains the verification scenarios and the matrices. The ma-
trices are derived from relationships distributed throughout
the subsystem monitor and response models, the FMECA,
fault trees, and system responses model. The verification
model pulls all of this information together. (Note that the
“use” relationship is transitive).

Integration with Flight Software Engineering

Flight software is responsible for implementing the lion’s
share of fault protection. Fault monitors are almost always
implemented by software. And while many local responses
are built into the hardware, FSW typically implements many
of them as well. System responses are normally entirely
software based. Moreover, there is usually some sort of
overall fault management executive function in the FSW that
manages repair behaviors.

All of these tasks represent detailed requirements on FSW,
and as for any other requirements on FSW, there must be
auditable traces of the requirements to the design, and to
tests. For FP, this means that all monitors must be mapped
to their implementations and to tests, and all responses (local
and system) must be mapped to design and tests.

As usual, we achieve these mappings using relations in the

14

Figure 19. FSW models and usage of FP systems models

model, tagged with stereotypes, and in this case the key one is
implements. Figure 19 shows the use of this stereotype on de-
pendencies from implementations of monitors and responses
in the design to the definitions of these elements in the FP
system models. For example, the SystemResponses model
contains the definitions and specifications of the system fault
responses, and SYS MODE 1 response is shown residing in
that model. The FSW FP Component Model is a software
model of the specification and design of the FP component
of the FSW, and therein reside the specification and design
of the implementations of the system response behaviors, in
particular a software component called SYS MODE 1Impl,
which is mapped to the SYS MODE 1 response.

The figure shows another software model, the FSW GNC
Model. It contains the specification and design of the FSW
GNC component, and in particular the design of the imple-
mentation of the two fault monitors Device Overflow and
Excess Rate Control Error (which we have seen previously in
Figure 13). These fault monitor implementations are mapped
to the monitor definitions in the GNC Mon & Rsp Dict model.

Part of FSW verification will involve generating matrices
similar to those shown in Figures 15 & 16 that list the
implements mappings to fault monitors in the FP subsystem
models, and to system and local responses as well. These
matrices make it easy to find monitors that have no imple-
mentation associated with them, for example. This kind of
verification will help ensure that all monitors and responses

have been implemented, and it will help in understanding
the FSW design regarding where specific fault monitors and
responses are implemented.

Figure 19 also shows the definitions of patterns and interfaces
used in the implementation of fault monitors, system re-
sponses, and communications between monitors and the fault
management function (that is the purpose of the FaultListener
interface). These kind architectural features of the FSW will
be influenced and informed by the system FP models, and this
decreases the likelihood of errors in the implementation of FP
in the FSW.

As we’ve mentioned, fault monitors have ground commands
associated with them, commands such as setting thresholds of
fault detection, setting frequency of checking, and enabling
or disabling the ability of the monitor to cause a system fault
response to be executed. All of these commands result in
FSW interfaces. If these are expressed in the model, the
code for their implementations can be generated partially
automatically. I wouldn’t be difficult to make an auto-model
generation capability that took the monitor definitions and
generated the UML model for the design of the related com-
mand handlers. This could lead to significant improvements
in accuracy and efficiency of producing the FSW.

Similar strategies could be employed for telemetry: fault
monitors have telemetry associated with them: current value
of the monitored variable, high and low water marks, no-

15

Figure 17. Fault monitor failure mode mitigation matrix

tifications of thresholds being exceeded, reports of settings
of thresholds, etc. The design of elements to collect and
report these telemetry items could be generated from the fault
protection models.

5. FUTURE WORK
We have only begun to scratch the surface of the potential of
using modeling for the flight system fault protection. There
are a great many possibilities in the representation, design and
analysis of fault protection functionality using models.

The representational approach described in this paper is
only one possible way to capture and reason about fault
management functionality and off-nominal behavior. As we
develop our ideas further, we intend to review and assess
work that other researchers have been performing in this area.
Development of representational patterns to describe off-
nominal behavior is a non-trivial and difficult problem, and
the expression of essential patterns will take the community
of researchers to adequately resolve and apply.

One of the advantages of model-based techniques is the
enhanced ability to analyze the problem at hand by analyzing
the models of it. In addition to some of the simple model
analyses we’ve shown (such as finding failure modes that
are not detected by a fault monitor), there are a number of

potential topics for analysis:

(1) Finding failure modes that are not in a fault tree. If a
failure mode appears in no fault tree scenario, it might be a
reason to suspect that the set of fault scenarios, or the paths
within them, are not complete.
(2) Reporting propagation paths: where one effect causes
another one or another failure mode. One of the difficult tasks
of fault protection systems engineering is getting a complete
picture of the propagation of faults throughout the system.
The ability to search a model for chains of related effects
could help make this task more tractable.
(3) Validating propagation paths by mapping them to the
physical model of the system, which should include electri-
cal, mechanical, and data connections and pathways. This
could serve both to ground the propagation paths in reality,
and also to find missing propagation paths, based on physical
paths that we not mapped to by any path identified in the
analysis of the FMECA.
(4) Likelihood of a failure mode could be determined/calculated
from the likelihood of the set of associated causes. This
information could be used to refine earlier estimates of failure
mode likelihood as information about the design matures.

Expanding the modeling techniques and scope introduces still
more possibilities. There is a systems modeling methodol-
ogy called State Analysis, developed by R. Rasmussen and
others (see [4]). This methodology involves building a State
Effects model, a directed graph of the effects of states in the
system on others. These models can be used to enable auto-
generation of FMECAs and FTAs, and act as a cross-check
on previously-generated FMECAs and FTAs (or alternatively,
generate a failure propagation model by generating a set of
directed graphs in the model in which a failure mode was
the starting point, and the chain of produced effects would
be a possibly branching, possibly even cyclic, network. This
seems an area rich in possibilities for analysis of the model to
validate the physical model, the FMECA, and the fault trees).
This kind of automated generation not only reduces error, but
also can be a check on the model itself. In addition, there
are improvements to the representations described earlier
that take into account some of the subtle aspects of system
modeling and the relationships being captured. For example,
we envision slightly more complex relations being used, that
map monitors to effects, instead of failure modes, and also
that map responses to causes instead of failure modes. We
recognize that the current relations are simplified, but they
represent current practice in the use of mitigation matrices.
These new relations will be more precise and richer, but they
will complicate the matrices described in this paper.

There are great potential benefits also in generating more
software design artifacts from the fault protection models.
For example, a fault monitor definition implies a set of related
commands, as well as a set of related telemetry items. The
implementation of the execution of these commands, and
the production of these telemetry items, in FSW requires a
considerable amount of software design and implementation,
most of it following quite regular patterns. It would be very
efficient, and reduce error considerably, if detailed design
models, and indeed code, could be generated from the FP
models. This is certainly doable.

Finally, we intend to apply some of the methodology we’ve
describe here in more detail to an ongoing effort to describe
and analyze behaviors and other aspects of an Earth-orbiter
flight system currently under design at JPL. The exercise of
generating a real model and the Fault Management artifacts

16

could provide valuable insights into how best to take advan-
tage of this kind of approach.

6. SUMMARY
We hope this paper has given the reader a sense of the
possibilities for these modeling techniques to improve the
Fault Management systems engineering discipline. We have
demonstrated how to realize the key fault management prod-
ucts - Failure Modes and Criticality Analyses, Fault Tree
Analyses, Monitor & Response dictionaries, and FP archi-
tecture descriptions, using SysML and UML, and described
some of the advantages to be gained by so doing. We believe
these kinds of techniques have clear and significant potential
for improving the precision, efficiency, and rigor of fault
management.

ACKNOWLEDGMENTS
The work described in this paper was carried out at the Jet
Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space
Administration.

REFERENCES
[1] W. A. Maul, K. J. Melcher, A. Chicatelli, S. B. Johnson,

Application of Diagnostic Analysis Tools to the Ares I
Thrust Vector Control System, AIAA InfoTech, 2010

[2] S. B. Johnson, J. C. Day, System Health Management
Theory and Design Strategies, AIAA InfoTech, 2011

[3] E. Benowitz; K. Clark.; G. Watney, Auto-coding UML
statecharts for flight software, Space Mission Challenges
for Information Technology, 2006. SMC-IT 2006. Sec-
ond IEEE International Conference on (0-7695-2644-6)

[4] M. Ingham, R. Rasmussen, M. Bennett, A. Moncada,
Engineering Complex Embedded Systems with State
Analysis and the Mission Data System, AIAA Intelligent
Systems Technical Conference, Chicago, IL, September
2004; AIAA Journal of Aerospace Computing, Informa-
tion and Communication, Vol. 2, No. 12, December 2005,
pp-507-536.

[5] S. Friedenthal, A. Moore, R. Steiner, A Practical Guide
to SysML, Second Edition: The Systems Modeling Lan-
guage, The MK/OMG Press, Oct. 31, 2011, 2nd Edition

BIOGRAPHY[

Alex Murray Alex Murray is a senior
software engineer with the Jet Propul-
sion Laboratory, California Institute of
Technology. He has led and done soft-
ware development for flight, ground, and
simulation software for missions and
for technology development projects at
JPL. Previously he led and developed
software for a variety of projects at
TRW (now Northrop-Grumman), and he

served as a system engineer for the European weather satellite
agency, Eumetsat, as well as software engineer for the Dres-
dner Bank in Frankfurt, Germany. His experience includes
embedded and flight software development, prototype and

research development, OS development, AI, analysis and
simulation tools, science and image processing applications,
business and GUI applications, and databases. He holds
BS and MS degrees in mathematics from The Ohio State
University.

John Day John Day has over 20 years of
systems engineering experience work-
ing on a variety of NASA projects.
He has provided key technical exper-
tise to a variety of human, deep-space
and robotic observatory projects and
programs (Constellation, Mars Science
Lander, Mars Reconnaissance Orbiter,
Deep Impact, Kepler, SIM, Spitzer,
Cassini and Galileo). He has worked

extensively in fault protection, and is actively involved in
developing, extending and integrating the theory behind the
practice of fault protection. The theoretical work that he
has been developing has been captured in two recent papers.
John’s experience includes working at his own systems en-
gineering consulting company, at Lockheed Martin Missiles
and Space, and at JPL.

Peter Meakin Peter Meakin is the fault
protection lead for the proposed Soil
Moisture Active Passive (SMAP) mis-
sion, and has worked on a variety of
projects at JPL. He has contributed to
the fault protection design for SMAP,
Cassini and Constellation as well as sup-
port for Mars Exploration Rover Pan
Cam image calibration. In addition to
his interest in fault protection he has

worked in the area of attitude control systems (ACS) engi-
neering, supporting the development of ACS architectures
for over 50 mission concepts. He was the ACS engineer
for JPLs Titan Saturn System Mission and Jupiter Europa
Mission studies and supported SMAP and Cassini attitude
control teams.

17

