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One of the most challenging yet poorly defined aspects of engineering a complex 
aerospace system is behavior engineering, including definition, specification, design, 
implementation, and verification and validation of the system’s behaviors. This is especially 
true for behaviors of highly autonomous and intelligent systems. Behavior engineering is 
more of an art than a science. As a process it is generally ad-hoc, poorly specified, and 
inconsistently applied from one project to the next. It uses largely informal representations, 
and results in system behavior being documented in a wide variety of disparate documents. 
To address this problem, JPL has undertaken a pilot project to apply its institutional 
capabilities in Model-Based Systems Engineering to the challenge of specifying complex 
spacecraft system behavior. This paper describes the results of the work in progress on this 
project. In particular, we discuss our approach to modeling spacecraft behavior including 1) 
requirements and design flowdown from system-level to subsystem-level, 2) patterns for 
behavior decomposition, 3) allocation of behaviors to physical elements in the system, and 4) 
patterns for capturing V&V activities associated with behavioral requirements. We provide 
examples of interesting behavior specification patterns, and discuss findings from the pilot 
project. 

I. Introduction 
EHAVIOR engineering is the engineering discipline that works to define and describe the set of ways in which 
a system can act, including both nominal (intended) behavior and off-nominal (unintended) behavior. Behavior 

engineering processes are generally implemented differently from project to project, and furthermore, there is a lack 
of formalism in the specification of system behavior on most projects. Consequently, behavior-related information is 
presently captured in a variety of disparate source documents, including requirements documents, functional design 
descriptions (FDDs), mission plans, scenario descriptions, interface control documents (ICDs), software design 
descriptions, technical memoranda, verification and validation plans and test descriptions.  This multitude of sources 
is a problem because it introduces the potential for conflicting or outdated information. 

JPL is applying its institutional capabilities in model-based systems engineering (MBSE) to tackle the problems 
associated with current behavior engineering practices. We have initiated a pilot project to apply an MBSE approach 
to formalize behavior engineering, bringing consistency and rigor to this field.   The high-level goals of this project 
are to demonstrate (i) how to fold MBSE into JPL’s current systems engineering practice; and (ii) how to develop 
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better products and processes, and improve organizational and lifecycle handoffs, by leveraging MBSE for system 
behavior specification. MBSE provides a way to represent different behavioral elements and their relationships to 
one another, and through our exploration on this project, we have found patterns that are useful for capturing 
behavior. 
 For this pilot project, we are modeling a subset of the behavior of the Soil Moisture Active-Passive (SMAP) 
mission,1 an Earth-orbiting satellite mission that is currently under development at JPL. The purpose of the SMAP 
mission is to determine the moisture content of the Earth’s upper soil and its freeze/thaw state. This is accomplished 
using the Instrument, which is composed of a radar, radiometer, and a rotating reflector antenna. During launch the 
Instrument is folded up inside the launch vehicle. After separation from the launch vehicle, the Flight System, which 
is composed of the Instrument and the Spacecraft Bus, must deploy the Instrument and spin up the antenna to the 
correct spin rate. In order to limit the scope of this small pilot project, our work has focused on modeling the SMAP 
antenna spin-up behavior, which is one of the most interesting and complex behaviors executed in the mission.***2 
This spin-up behavior occurs in a sequence of steps that includes communication between the Flight System and the 
Ground System, changing the antenna spin rate and correcting the attitude of the Spacecraft Bus.  

Although the project is still a work in progress, this paper aims to capture our results to date. In particular, we 
discuss our approach to modeling spacecraft behavior which includes: 1) requirements and design flowdown from 
system level to subsystem level, 2) general patterns for behavioral decomposition and behavioral allocation to 
physical elements in the system, 3) an in-depth description of our proposed patterns for behavioral decomposition 
and behavioral allocation, and 4) principles on how to use models to capture test configurations, procedures and 
verification and validation (V&V) activities associated with behavioral requirements. We provide examples of 
interesting behavior specification patterns, and discuss findings from the project. 

II. System Modeling Approach 
 For our project, we have selected the System Modeling Language (SysML),3 which is an extension of the 
Unified Modeling Language (UML)4 targeting the needs of systems engineers. We are using NoMagic’s 
MagicDraw tool5 as our primary modeling environment. Our approach to modeling the SMAP antenna spin-up 
behavior leverages previous work, including: 

- the Object-Oriented Systems Engineering Method (OOSEM),3 a top-down, scenario-driven process to 
analyze, specify, design, and verify a system; 

- the State Analysis methodology,6 a JPL-developed MBSE methodology for state-based behavioral modeling, 
state-based control system design, and goal-directed operations engineering; and 

- the control system design for the European Southern Observatory’s Extremely Large Telescope (E-ELT),7,8 
which embeds concepts from State Analysis into SysML and defines a clear, intuitive structure for the system 
model. 

 In addition, we are building on JPL’s institutional capabilities and expertise in Integrated Model-Centric 
Engineering (IMCE).9,10 The IMCE framework includes JPL-developed tools that enable systems engineers to use 
SysML to develop system models, integrate them with discipline-specific models captured in other languages or 
tools (e.g., spacecraft dynamics models expressed in MATLAB), and then transform these system models into 
OWL2 ontological specifications in order to perform analyses and prove properties about the modeled systems. We 
are extending the set of core system modeling ontologies in the IMCE framework to include additional concepts and 
relationships pertaining to functional behavior and V&V.  

III. System Model 
Our system model is organized using SysML packages. The packages are where the system model elements 

reside, including blocks, connectors and diagrams. As a model increases in size and complexity it becomes more 
challenging to quickly traverse the model, so it becomes particularly important to define an appropriate package 
structure. For our project, we adopted a package structure hierarchy mimicking the structural decomposition of the 
SMAP system model. This package structure follows a pattern similar to that in Ref. 8. In addition to the package 
structure, we created hyperlinks between diagrams and their parent diagrams so that users could navigate easily 
throughout the model. Similarly, we created hyperlinks between blocks and their respective child diagrams. 

The structural decomposition that the package structure follows begins with the Mission at the topmost level. 
The Mission is an aggregation of every element that is of interest to the project; these structural elements are called 

***  Another concurrent pilot project is focusing on modeling the electrical interfaces of the SMAP spacecraft. This 
work is described in Ref. 2. 
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components. We decompose the Mission component into the following (sub-)components: Flight System, Ground 
System, Launch System, Science System and Environment. Each of these components is in turn decomposed to its 
immediate constituent components, and each of those components is further decomposed in a similar manner, and so 
on. For example, the Flight System is decomposed into the Spacecraft Bus and the Instrument. The Spacecraft Bus is 
further decomposed into “subsystem” components such as Propulsion, Command & Data Handling, and Thermal. 
This decomposition is shown in the SysML Block Definition Diagram (BDD) in Figure 1. 

 

 
In addition to structural elements, our system model also includes information about system functional behavior 

and requirements. These additional system model elements are also decomposed into increasing levels of specificity. 
For example, requirements are decomposed starting from Level 1 to Level 2, and so on. Each functional requirement 
is associated with one or more functional behavior elements in the model. Similarly, each functional behavior is 
allocated to the element in the structural decomposition that is responsible for performing this function. In our 
SMAP example, the behavior “Perform Spin-up And Orient” is allocated to the Flight System because it is 
completely realized by the Flight System and its sub-components but does not involve any of its peer components 
such as the Mission System. This allocation of behavior to components in the structural decomposition is shown in 
Figure 2, by placing the execution of each functional behavior in the appropriate “swimlane” in the Activity 
Diagram. The requirement and behavior elements are located in the package structure at the same level as the 
associated structural components. 
The following subsections describe patterns and views that we have developed for representing system structure 
(III.A), requirements (III.B), behavior (III.C) and V&V (III.D). 

 
Figure 1. SysML Block Definition Diagram showing the structural decomposition of the SMAP flight 
system. 
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A. Structural patterns and views 
The structural decomposition is structured such that each block represents a physical or logical component of the 

mission, as defined by the SMAP project in their system breakdown (discussion of the distinction between physical 
and logical components is deferred to Section V). For example, the block labeled as “Spacecraft Bus” represents the 
SMAP-specific component that is called the Spacecraft Bus. This block can have property information attributed to 
it that is specific to the SMAP Spacecraft Bus, such as its dry mass and its drawing number. Any other property of 
interest can be included in this manner. As shown in Figure 1, the structural decomposition of the system is captured 
in a set of SysML BDDs, with each diagram describing one or more layers of decomposition. 

One additional structural pattern that we found useful depicts how to represent multiples of components in our 
system, for example multiple similar Heaters.  Instead of using SysML’s built-in multiplicity feature, we found it 
more useful to represent components that appeared more than once using a generic template element with associated 
singleton elements.  This pattern is shown in Figure 3. Multiplicities in SysML are limiting because when using 
them it is impossible to allocate behavior to a specific Heater component (e.g. Heater2), and all Heaters must be 
exactly the same, having the same default values for each property.  Our template/singleton pattern fixes these 
issues.  For example, we create a single generic Heater component template and then create four specializations of 
Heater to generate our specific Heater1 through Heater4. The advantage of modeling this way is that we can give the 
Heater template a set of common properties (e.g., power rating, mass, dimensions, etc.) and have the specialized 
singleton Heater components inherit these common properties. Each specialized singleton Heater component can 
also define its own specific properties (e.g., part number). If each Heater were its own separate component and did 
not inherit from a common element, it would not be as easy to show the properties’ traceability.  We would also 
have to maintain four separate sets of properties on each Heater instead of just one single set on the generalized 
Heater. 
 Another structural pattern of note is how we incorporate software into the system.  In our model, each 
component that has software controlling its functionality has a reference relationship to this software.  Software, like 
hardware, follows a hierarchical decomposition.  Combining those two concepts, we end up with the lattice pattern 
shown in Figure 4.  This pattern is useful early in the system design process, because when we attempt to allocate 
behavior to a component we do not have to prescribe whether that behavior will be accomplished in software (the 
component’s referenced software) or in hardware (the component’s sub-components). Furthermore, early in the 
software design process (before we have completely fleshed out the software element decomposition) we can 
aggregate behaviors and associate them with higher-level software elements in the decomposition. Then as the 
software design matures and gets decomposed into a complete set of elements, this pattern enables us to allocate the 
behavior to the system, subsystem, assembly, or device level, as appropriate. 

 
Figure 2. Activity diagram showing the execution of SMAP’s “Complete Antenna Spinup” behavior. The 
“swimlanes” show the allocation of behaviors to physical elements in the model. 
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B. Requirement patterns and views 
 
Part of our effort was to capture requirements in our model and show how they were related not only to each 

other but also to other system model elements.  In our model ontology, a Requirement is related to other elements as 
follows: 

- A Requirement “specifies” a SpecifiedElement (e.g., a Component, Interface, or Function), where “specifies” 
means that the properties of the SpecifiedElement are bound (constrained) by the Requirement. 

- A Requirement “refines” (zero or one) Requirement, where “refines” means that satisfaction of the first 
Requirement implies partial satisfaction of the latter Requirement. 

 
Figure 4. Multiplicity Pattern – We create singletons for each of our components in the system instead of 
using SysML’s built in multiplicity feature to give us more flexibility 1) when assigning behaviors and 2) 
when differentiating parts (if properties are slightly different). 
 

 
Figure 3. Software Decomposition Pattern – Each component in the system has a reference to its software, 
creating this lattice pattern. 
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- A Requirement “isrefinedby” (zero or more) Requirements, where “isrefinedby” is the inverse of the 
“refines” relationship. 

- A VerificationActivity “verifies” (one or more) Requirements, where “verifies” means that the 
VerificationActivity performs a check that the Requirement(s) is(are) satisfied. 

A Requirement additionally has many properties, like an identifier, a text description, and other metadata. A 
VerificationActivity also has other properties, like an identifier, an overview, a venue, and other metadata. 

Using this ontology, we can create the various elements in our model and show their interrelations.  Figure 5 
shows an example application of the ontology. 

The SMAP project uses the Telelogic DOORS tool11 for requirements management. For our pilot project, we 
needed to import the requirements and verification activities for SMAP from the DOORS repository into our SysML 
system model.  We adapted an existing Jython script to use the ontological constructs discussed above.  The result of 
the import process was a system model that was synchronized with DOORS and that conformed to our ontologies. 

The next step was to represent relationships that are only implied textually in DOORS (e.g., the “specifies” 
relationship) and so we linked a set of the requirements to their specified elements.  This information can be 
displayed in two main views in SysML: Requirements Diagrams and Matrices.  Figure 5 shows a Requirements 
Diagram that indicates how Requirements are interrelated.  Figure 6 is an example of a SysML Table that captures 
the “specifies” relationship between Requirements and SpecifiedElements. 

C. Behavioral patterns and views 
In our system model, we have several different views that reflect Behavior.  In SysML, the views that are 

commonly considered for representing behavior are the Activity, State Machine, Sequence and Parametric 
Diagrams.  Because each of these diagrams can be used to represent behavior, it is necessary to have conventions for 
when to use which diagram and to explicitly state what each diagram represents. For the SMAP system model, the 
system behavior was represented via typical SysML diagrams in the following way: 

- Activity Diagram – We are using the Activity Diagram to represent an execution of a behavior, i.e., the 
Activity Diagram can represent either a nominal or off-nominal sequence of actions. An execution is a single 
flow through the behavior space.  Consequently, we are not using the conditional branching constructs that 
are available in SysML Activity Diagrams. As executions are not limited to behavior during Operations, we 
are also using the Activity Diagram to diagram the execution of various V&V tests on our system. An 
example of an Activity Diagram that represents the execution of the “Complete Antenna Spinup” behavior is 
given in Figure 2. As mentioned above, swimlanes are used to indicate which components have been 
allocated the specified behaviors.   

 
Figure 5. Application of the Requirement-related Ontology – Requirements can be linked together via 
“refines” relationships to create a Requirement Tree. Requirements can also be related to 
SpecifiedElements (e.g., Components) and VerificationActivities, via the “specifies” and “verifies” 
relationships, respectively. 
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- State Machine Diagram – We are using the State Machine Diagram to capture a behavior specification of a 
component.  A behavior specification is the set of all possible ways the component can act.  Consistent with 
the system decompositions defined previously, a system’s behavior specification may be captured as a set of 
many small State Machines that run in parallel. Figure 7 shows an example State Machine describing the 
behavior of a simple low-level switch component. Note that we may also use State Machine Diagrams to 
capture behavior of components at a higher level in the structural decomposition hierarchy. For example, we 
are also using State Machine Diagrams to capture the system modes for the Guidance, Navigation and 
Control Subsystem, and, at an even higher level, modes for the full Flight System. Using descriptions of 
behavior at different levels in the system decomposition suggests the existence of formal mappings between 
states at different levels of abstraction. However, developing such mappings is beyond the scope of our pilot 
project. 

- Sequence Diagram – In our work to date, we have not used Sequence Diagrams significantly, though they 
may be used as an alternative to Activity Diagrams for capturing executions of behaviors. They will likely 
become more useful as we progress into capturing complex software behavior. 

- Parametric Diagram – Parametrics allow the modeler to couple properties to create complete behavior 
specifications.  We use Parametric Diagrams to capture behavior of components that cannot be represented by 
discrete states in a State Machine Diagram, for example to describe the dynamic equations governing how the 

 
Figure 6: Requirement “Specifies” Matrix – This shows a snippet of the matrix that captures the “specifies” 
relationship between Requirements (rows) and SpecifiedElements (columns).  It can be used as-is or 
exported to other tools for analysis. 

 
Figure 7. Example State Machine Diagram – This diagram represents a Behavior Specification which 
shows all possible ways the component “Switch” can act. 
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of capturing both test domain and test context enables us to represent V&V system tests at all levels of detail. 
Examples of a test-context derived IBD and Activity Diagram are shown in Figures 10 and 11. 
 In an effort to keep model-based V&V practical and user-friendly, all elements in the V&Vframework and 
ontology (e.g., ontology profile, support equipment catalog, etc.) will be configuration controlled and provided to 
users as completely reusable elements. The only mission-specific V&V elements will be the individual VA, or test 
domain, definitions. These will be created using reusable elements from the support equipment catalog and the 
spacecraft system model. Relationships between the elements will be based on the V&V ontology. An example of a 
system V&V package within a model, which consists of mission-specific and reusable elements, is shown in Figure 

 
Figure 9. The test context BDD conveys all elements involved in a V&V test. The test context is an instance 
of a Verification Activity, or test domain. 

 
Figure 10. This example IBD, which depicts data flow, is derived from the test context BDD shown in Figure 
9. 

Comment [IMD3]: ??? 
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12. Even though each test domain and test context is mission-specific, the practical incorporation of this paradigm is 
greatly facilitated due to the encouraged utilization of reusable V&V-related elements.  

In addition to having static views of the system behavior and V&V tests, it is also highly desired to be able to 
execute the system model via simulation. This capability is beneficial since it would allow early design validation by 

 
Figure 11. Example test plan Activity Diagram that is derived from the test context BDD shown in Figure 9. 

 
Figure 12. The contents of a system V&V package. Mission specific elements leverage wherever possible the 
reusable elements. 
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demonstrating that systems and subsystems perform in their expected manner. Accurately validating the design early 
in development is crucial since it prevents problems when actual hardware is being tested (at which point correcting 
a design flaw may result in major project cost increase and schedule delays). Executable models have been 
researched and demonstrated to date,12 and we are applying this capability to our system model to perform 
operational procedure validation and spacecraft power analysis – this work is currently underway. 

IV. Options for Modeling System Behavior 
The primary decomposition used in our model was provided to us by the SMAP project.  Using that as our 

structural decomposition, we sought to find behavior allocation patterns that not only complemented that structural 
decomposition but also accurately conveyed the expected executed behavior of the system.  This proved to be a 
challenge for two reasons.  First, while SysML offers the language and means for expressing behaviors, there is little 
documentation on what the best practices are on how to express those behaviors.  Second, the structural 
decomposition given to us by the project contained not only physical components (like the Flight System, the 
Instrument, or the antenna), but also “logical”/“functional” components (like “Guidance, Navigation and Control”, 
and the other subsystems). To address the first issue, we decided to use a subset of the existing SysML language to 
capture behavior.  In this section, we describe three alternative patterns for capturing behaviors and allocating them 
to components in the structural decomposition. In each of the following three subsections, we describe one of these 
patterns and discuss the pros and cons of using it. The second issue could only be remedied by restructuring the 
model; this will be discussed in greater detail in the Section V. 

A. Cross-Cutting Allocation Option 
Figure 13 depicts the “Perform Low Rate Spin-Up” behavior that must be performed by the Flight System.  In 

this diagram, there are 4 swimlanes which are used to assert which component is responsible for performing specific 
actions. In this diagram, swimlanes exist for Telecommunications (Telecom), Command and Data Handling (CDH), 
Integrated Control Electronics (ICE), and Guidance, Navigation and Control (GN&C).  This diagram treats these 4 
components as functional peers, meaning that they are at the same level of abstraction.  Looking back at our physical 
decomposition in Figure 1, it is clear that these components are not only at different levels of abstraction, but also 
parts of different structural branches; the ICE is part of the Instrument while the others are parts of the Bus.  This 
diagram basically has created an artificial construct, the “Perform Low Rate Spin-Up Subsystem”, which consists of 
these 4 components as peers. 

There is a benefit to creating these artificial elements that cut across abstraction boundaries: using this cross-
cutting method makes that possible to point to a single element in the model and say that that element is responsible 
for performing a particular function.  It might not be possible to allocate responsibility for a behavior to a single 
element in the model otherwise (except possibly at the very top of the structural decomposition), especially if the 
behavior is very distributed or involves components in many different branches of the structural tree. 

While this cross-cutting allocation pattern makes it clear which elements are responsible for performing which 
actions in this activity, it allows a behavior to be allocated to a low-level component without visibility from its 
parent component.  For example, in the case above, we are assigning responsibility to the ICE without assigning 
responsibility to the Spin Subsystem or the Instrument, which are both ancestors of that assembly in the structural 
decomposition. This could lead to confusion as functionality allocated to low-level components in the system are not 
exposed to the project team members responsible for the corresponding higher-level components in the hierarchy. 

Comment [a4]: We should call attention to what 
the issue with a logical system is and what a logical 
system is i.e. we would rather allocate behavior 
directly to a component (say reaction wheels) then to 
a logical aggregation (say GN&C) 

Comment [a5]: I think this would work better in 
our behavior patterns section 
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B. Hierarchical Allocation Option 
A second option for behavior allocation is to conform to the structural relationships between components.  

Rather than allocating behavior directly to a component, a behavior can be allocated to each structural parent of an 
component until the desired component is indirectly allocated as well.  This approach respects the structural 
decomposition that was previously agreed upon and improves upon the option discussed in Section A in that it does 
not create artificial elements for each activity.  Additionally, instead of manifesting as a single allocation in the 
model, it manifests as an allocation at each structural level.  This option is depicted in Figure 14. 

There is a drawback to this approach.  If you have a behavior that involves an interaction between two leaf-level 
components down different branches of your structural tree, like the ICE and Ground System, applying this pattern 
results with each action for ICE also being allocated to all ancestor components all the way up to the Flight System.  
In general, responsibility will be allocated all the way up to the point where the branches are peers (Flight System 
and Ground System are both children of the Mission). However, a high-level element like Flight System should 
probably not be responsible for a low-level action, like “Power Instrument Motor”.  Some responsibility should have 
been allocated to the Flight System and that responsibility should trickle down the structural decomposition to the 
ICE. The next option discussed in subsection C addresses this concern. 

C. Enforced Abstraction (Top-down Allocation) Option 
A third option for behavior allocation is to conform even more rigidly to the structural decomposition and create 

appropriately abstracted behaviors allocated to each level in the structural decomposition.  The SMAP source 
materials (functional design description documents) we were provided largely used subsection A’s cross-cutting 
approach, which would require us to create similar higher-level activities in order to resolve into the lower-level 
activities.  For example, our source materials had the ground commanding the ICE to “Power Instrument Motor”.  
We changed this to better match our structural decomposition by creating some intermediate behaviors: the ground 

 
Figure 13. Cross-Cutting Allocation Pattern – In this diagram, the impression is that the Flight System (the 
component responsible for the “Perform Low Rate Spinup” activity) is the parent of the 4 components 
represented by the swimlanes (Telecom, CDH, ICE, and GN&C).  However, the ICE is not a peer of the 
other components, based on our structural decomposition.  The ICE is a part in the Spin Subsystem of the 
Instrument, see Figure 1. 
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commands the flight system which then delegates to the Instrument subsystem, which then delegates to its Spin 
Subsystem, which ultimately delegates to the ICE.  This pattern has the benefit that each behavior can be viewed as 
a black box††† allocated to a specific component, meaning that it relies solely on the actions of that component’s 
children for the completion of that action.  An example is shown in Figure 15. If this behavior allocation approach is 
applied carefully, we found this option to be the least confusing and cumbersome of the three presented. It maps 
directly to the type of functional decomposition that is performed during the design of a system, and can be applied 
incrementally as the system structure and functionality is elaborated over the development lifecycle. 

V. Proposed Pattern for Capturing System Behavior 
As mentioned in Section IV above, the structural decomposition we started with (which was based on the 

decomposition adopted by the SMAP project) contained not only physical components, but also “logical” or 
“functional” components (e.g., subsystems). Such a heterogeneous pattern can provide unwieldy and impractical, 
from the standpoint of behavior allocation. Consequently, we propose a modification to the decomposition approach.  
We propose a physical decomposition that solely contains physical components, and a distinct logical decomposition 
that contains the functional components (see Figure 16).  What this means is that the physical decomposition of the 
Spacecraft Bus will not include the “logical” subsystems like the GN&C subsystem or the Thermal subsystem; 
instead, it will include the physical components (and physical assemblies thereof) in each of those systems, like N 
distinct Heaters, M distinct Reaction Wheel Assemblies, etc. Given this cleaner separation between physical and 
functional concepts, we have teased apart the concepts of behavior specification and function execution, which we 
previously were essentially using interchangeably. In the following subsections, we discuss each of these concepts in 
greater detail. 
  

††† By black box, we mean that their inputs and outputs can be specified, but their internal implementation is hidden. 

 
Figure 14. Hierarchical Allocation Pattern – This pattern causes low-level behaviors to be allocated to all 
ancestor components in the structural decomposition.  In this case, a low-level behavior “Power 
Instrument Motor” is allocated to the “Integrated Control Electronics”, but it is also allocated to the “Spin 
Subsystem”, “Instrument” and “Flight System”. 

 

Comment [IMD6]: ??? 
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A.  Physical and Logical Decompositions 

 
Figure 15. Enforced Abstraction Pattern – In this pattern, each behavior is a black box.  For example, the 
Flight System’s “Power Up Spin Mechanism” behavior decomposes into the “Forward Power Spin CMD” 
and “Power Spin Subsystem” behaviors allocated to sub-components of the Flight System, Spacecraft Bus 
and Instrument, respectively. Each behavior is completely specified through decomposition into behaviors 
allocated to sub-components, with inputs from peer component behaviors provided via data flows. 
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By adopting a physical decomposition, we end up with a flatter view of our system.  One benefit is that we can more 
easily explain how different components interact with one another.  There is no need to create “artificial” interfaces 
or interactions to mesh with a decomposition that has artificial or logical constructs. 

Another benefit to this approach is that we can then tease out the logical decomposition.  Logical components are 
containers for a set of functions that some part of the system is expected to perform. They have a reference to 
physical components (and other logical components).  These functions are black box descriptions of what the logical 
component is expected to do. 

 

B. Functional Decomposition/Elaboration 
Although functions can be considered black box descriptions of intent, it is possible to say that performing a 

function, like “Determine Attitude” in Figure 17, may also require the performance of other functions, such as 
“Produce Attitude Measurements” and “Produce Attitude Rate Measurements”.  Note that this functional 
decomposition says nothing about order or sequence of functions. This functional decomposition pattern is 
analogous to the notion of Goal Elaboration in the State Analysis methodology.6 

Figure 17 also indicates the mapping between physical elements and functions.  The relationships show that the 
GN&C Software is responsible for performing “Determine Attitude” and in order for “Determine Attitude” to be 

 
Figure 16. Physical and Logical Decompositions – We show a snippet from a proposed decomposition of our 
system, in which we separate out the physical components from the logical components.  Note that the 
physical components are defined as parts of the Bus (“black diamond” relationship) while the logical 
components are references (“white diamond” relationship). 

 
Figure 16. Physical and Logical Decompositions – We show a snippet from a proposed decomposition of our 
system, in which we separate out the physical components from the logical components.  Note that the 
physical components are defined as parts of the Bus (“black diamond” relationship) while the logical 
components are references (“white diamond” relationship). 

Comment [IMD7]: Check consistency 
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completed successfully, the Coarse Sun Sensor must perform “Produce Attitude Measurements” and the IMUs must 
perform “Produce Attitude Rate Measurements”.  This mapping between physical elements and functions formalizes 
the functional allocation via swimlanes as shown in previous sections. 

C. Behavior Specification 
A Behavior Specification is a description of all the possible ways that a component can act. There may be 

multiple different aspects that characterize the behavior of the component; we represent these different 
characterization aspects using State Variables. For example, given a heater component, we may be interested in its 
power state (on, off, etc), its temperature (in degrees Kelvin), and perhaps its health state (healthy, failed closed-
circuit, failed open-circuit, etc); each of these aspects can be represented by a State Variable.‡‡‡13 A Behavior 
Specification models the component’s behavior space as a collection of Behavior Variable Specifications, one per 
State Variable that characterizes the component. A Behavior Variable Specification is a description of how a single 
State Variable can change. In SysML, these Behavior Variable Specifications may be represented in one of two 
ways: 

- A State Machine with an associated State Machine Diagram for variables that change in a discrete manner, or 
- A Constraint Block with an associated Parametric Diagram for variables that change in a continuous manner. 

By defining the Behavior Specification as the set of all Behavior Variable Specifications for a specific 
component, we can specify the entire behavior space for that component.  Figure 18 shows an example of how 
Behavior Variable Specifications can be used to create the entire Behavior Specification for a component. 

‡‡‡ Our definition of State Variable is based on the definition from the State Analysis methodology [ref]. It is a 
property of a physical element that affects how that Component behaves. The set of a Component’s State Variables 
provide full knowledge of the state of the Component.13 

 
Figure 17. Logical and Functional Decomposition – A logical component, such as the GN&C subsystem, 
can have references to physical components as well as an aggregation of functions as parts.  The functions 
can be decomposed further in a functional decomposition.  There is a mapping between physical 
components and functions (a physical component performs a function). 
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D. Functional Executions 
A Functional Execution shows a single trace through a component’s behavior space, as determined by its 

Behavioral Specification.  This is really a runtime description of how the associated function is performed. As a 
Functional Execution is a representation of a function, each Functional Execution is a subclass of a function, 
meaning that it must conform to the function’s specification (inputs, outputs, and required sub-functions).  This 
pattern allows for multiple Functional Executions for a single function, as shown in Figure 1920.  This is beneficial 
for two reasons.  First, this pattern allows us to capture areas of functional redundancy (when there are multiple 
ways to accomplish a function), which is helpful for risk management.  Second, this pattern also allows us to capture 
nominal executions and off-nominal executions.14  

 

VI. Uses of the System Model 

The main reason for aggregating behavior-related information into our system model was so that we could extract 

 
Figure 19. Functional Execution – This diagram shows that many executions are possible for a single 
function, allowing for capturing of functional redundancies as well as nominal and off-nominal executions. 

 
Figure 19. Functional Execution – This diagram shows that many executions are possible for a single 
function, allowing for capturing of functional redundancies as well as nominal and off-nominal executions. 

 
Figure 18. Behavior Specification – This diagram shows how a component’s Behavior Specification can be 
represented as a collection of descriptions of how its State Variables can change, as given in Behavior 
Variable Specifications. 

 
Comment [EA9]: I don’t understand this section, 
maybe an example would help. 

Comment [a10]: I don’t think we need this 
section either 

Comment [IMD11]: Insert ref to John’s paper 

Formatted: Indent: First line:  0"

 
American Institute of Aeronautics and Astronautics 

 
 

17 



that information to generate behavior-related products, beyond the views SysML offers as part of the language (as 
discussed in previous sections). Through various plugins to our modeling environment, we were able to generate 
documentation about specific parts of the model and extract information from the model for use in external analyses. 
Two of these uses are described further in the following two subsections. 

A. Automated Document Generation 
A group at JPL has created a framework for generating documentation about models created in MagicDraw.  

This MagicDraw plugin is known as DocGen.15  Using DocGen’s profile we were able to create a model of the 
document we wanted to generate, and using DocGen’s scripts, we could generate a DocBook version of the 
document, which could then be transformed into HTML, PDF, and other formats. 

For this task, we wanted to generate our own version of the SMAP Antenna Spin-Up functional design 
description (FDD) document.  Using DocGen to model the desired output document, our document has the 
advantage over the original FDD that products that feed the document can be queried when the document is 
compiled.  This means that if someone changes any part of the system model, say a State Machine Diagram, that 
appears in the DocGen model, then when the user requests the most up-to-date version of the document, DocGen 
queries the model for an image of that diagram and puts that in the document.  The result is that the compiled 
document reflects the current state of the model at all times. 

Instead of having documents live statically in repositories and updated infrequently, they can be generated 
instantly, reviewed, and archived.  Documents living in the archive then become versioning artifacts; the current 
version should always be pulled directly from the model to limit the amount of information that is out of date. This 
capability has also allowed for documentation in areas where there is traditionally a lack of organization, such as 
mission V&V test plans. By using the DocGen capabilities and a well-constructed system model, we are able to 
generate up-to-date and consistent documentation of anything from a single functional test to the entire project’s 
V&V testing flow. 

After we were able to generate a simplified version of the FDD as a proof of concept, we began extending the 
DocGen profiles to include custom elements for meta-documenting (documenting about documenting), creating 
stereotypes for sections that needed to be re-worked and elements that needed values for their properties, for 
example.  This allowed us to have a query in the document model for elements with those stereotypes that we could 
put into a table.  The result was a document that automatically populated its own TBD/TBS/TBR (“to be 
determined”, “to be supplied”, “to be revised”) tables.  DocGen allows for arbitrarily complicated queries, so we 
were also able to generate tables showing which Requirements did not have corresponding Verification Activities, 
for example. 

B. Connection to External Analysis Tools 
Creating formal representations of behavior forced the information in our model to have a well-defined structure.  

Using that well-defined structure, we developed a plugin to our modeling environment that allows us to use scripts 
to perform operations on the model.  One of these scripts allows us to extract information from the model in the 
form of an XML file.  This export option enables us to decouple our model and our analysis tools.  The only 
requirement on the analysis tool side is that the tool be able to read an XML file. 

As an example application of this approach, we wrote a MATLAB program to ingest an XML file containing 
key model elements and parameters pertinent to the antenna spinning dynamics, and used that information to 
perform a dynamic simulation of the spin-up behavior, producing a plot of the spin-up profile.  This resultant plot 
can be fed back into the SysML model.  Figure 20 shows a description of the information flow between our 
modeling environment and MATLAB, though the pattern applies to any external analysis tool. 
 In addition to this decoupled interaction between the model and external tools, we created a direct interface from 
MagicDraw to certain tools using their Java APIs.  The tools we focused on were MapleSoft’s Maple, MathWorks’ 
MATLAB, and Wolfram’s Mathematica.  Using the Java APIs for these tools, we have created a tight coupling 
between the model and these external tools, enabling us to invoke functions of the external tools directly from our 
modeling environment.  These interfaces allow for round-trip calculations, meaning that the result of the external 
function call can be written back into the model. 

VII. Conclusions and Future Work 
Throughout this pilot project we have identified numerous useful patterns to aid in the modeling of requirements, 

behavior, V&V and their relationships between one another. In addition to identifying these patterns, we have 
identified additional ways to derive value from the system model beyond generating diagrams. These included 
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automatic document generation and interfacing the system model with external analysis tools. Future work will 
involve applying the discussed patterns (in particular the proposed pattern for capturing system behavior discussed 
in Section V) to more areas of the SMAP project, to explore in greater depth their benefits and limitations. The 
automatic document generation capability will be explored further to create more systems engineering artifacts. 
Finally, we intend to further develop the executable system model capability for early system design validation.  
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