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Abstract— This paper presents a novel chance constrained
optimal control (CCOC) algorithm that chooses a control
action probabilistically. A CCOC problem is to find a control
input that minimizes the expected cost while guaranteeing that
the probability of violating a set of constraints is below a
user-specified threshold. We show that a probabilistic control
approach, which we refer to as a mixed control strategy, enables
us to obtain a cost that is better than what deterministic control
strategies can achieve when the CCOC problem is nonconvex.
The resulting mixed-strategy CCOC problem turns out to be
a convexification of the original nonconvex CCOC problem.
Furthermore, we also show that a mixed control strategy only
needs to “mix” up to two deterministic control actions in
order to achieve optimality. Building upon an iterative dual
optimization, the proposed algorithm quickly converges to the
optimal mixed control strategy with a user-specified tolerance.

I. INTRODUCTION

A. Illustrative Example

One may better off by deciding his/her action by a coin flip
in a chance constrained optimal control (CCOC) problem.
More formally, a mixed control strategy, which chooses a
control input probabilistically, can achieve a cost that is better
than the one obtained by any determistic control strategy.

To illustrate this concept, we first present an example.
Consider a system that accepts three discrete options of
control inputs, uA, uB , and uC , as shown in Table I. We
assume that the system is subject to uncertainty. Hence, each
of the control actions results in an uncertain cost and involves
a risk of constraint violation. The expected cost and the risk
of constraint violation of each control option is shown in
Table I. We solve the following CCOC problem:

Problem (illustrative example): Find the control
input that minimizes the expected cost while limit-
ing the probability of constraint violation to 1%.

If only a deterministic control strategy is allowed, the
optimal solution is uB , with the expected cost being 30 and
the probability of constraint violation being 1%.

The optimal solution of a mixed control strategy, however,
is to choose uA with a 50% probability and uC with a 50%
probability. With this mixed control strategy, the probability
of constraint violation is still 1% but the expected cost is 25,
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TABLE I
AVAILABLE CONTROL OPTIONS FOR THE ILLUSTRATIVE EXAMPLE

PRESENTED IN SECTION I-A.

Control input Expected cost Risk
uA 40 0.5 %
uB 30 1.0 %
uC 10 1.5 %
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Fig. 1. Graphical interpretation of a mixed control strategy. Three black
dots show the deterministic control options given in Table I. The set of
the costs and risks of all the possible mixed control strategies, which is
represented by the shadowed triangle, is the convex hull of the set of the
costs and risks of all the deterministic control strategies, shown as the three
black dots. The optimal mixed control strategy is found at the intersection
of the 1% risk line and the bottom edge of the triangle, which corresponds
to the 50%− 50% mix of uA and uC .

which is less than that of the optimal deterministic control
strategy.

Figure 1 graphically explains this result. The three de-
terministic three control options are plotted in dots in the
expected cost-risk space. The control options that satisfy the
chance constraint lie on the left side of the vertical line with
a 1% risk. The optimal deterministic control is uB because
it has the lowest cost among the feasible options.

The set of the costs and risks that can be realized by
all possible mixed control strategies is the convex hull of
the set of the costs and risks of the deterministic control
strategies. This is because the cost and risk of a mixed
control strategy is a convex combination of the costs and
risks of the deterministic control options that are “mixed”
in the mixed strategy. In Figure 1, the convex hull is the
shadowed triangular area. The optimal mixed control strategy
is found by inspection at the intersection of the 1% risk line
and the bottom edge of the triangle.



B. Related Work

A mixed strategy, which chooses an action probabilisti-
cally, is an essential component in game theory. This idea
has been imported to the operation research community and
applied for chance-constrained programming problems [1].
A mixed strategy is also commonly assumed in constrained
Markov Decision Process (MDP) researches [2], where it is
usually referred to as a mixed policy.

However, such a stochastic decision making has been
rarely discussed in the context of control theory. To the
best of the authors knowledge, there is no prior work in the
domain of CCOC that considers a mixed control strategy.
This is probably because, as we shown in Theorem 1 of
this paper, a mixed control strategy can outperform pure
control strategies only for nonconvex CCOC problems, while
the majority of existing researches have focused on convex
problems [3], [4], [5], [6], [7], [8]. Although there are rela-
tively less numbers of studies on nonconvex CCOC due to
the complexity of the problem, it has important applications
such as path planning with obstacles [9], [10] and planetary
entry descent and landing [11], [12].

The contribution of this paper is twofold. Firstly, we
establish several theorems that are useful to analyze and
solve a mixed strategy CCOC problem. In addition to the
theorem that a mixed control strategy can result in a less cost
than deterministic control strategies when a CCOC problem
is nonconvex, we also show that an optimal mixed control
strategy only needs to choose from up to two control actions
(Theorem 2). Secondly, we develop the first algorithm that
optimizes a mixed control strategy for CCOC (Algorithm
1). The algorithm returns a mixed control strategy whose
suboptimality is within a user-specified tolerance.

II. PROBLEM STATEMENT

We first review a general problem formulation of a CCOC
problem with a deterministic control strategy. We then extend
the formulation to allow a mixed control strategy. A deter-
ministic control strategy can be viewed as a special case
of mixed control strategies, where a single control input is
chosen with probability one. Therefore, we use the extended
problem formulation in the following sections in this paper.

A. Formulation with a pure control strategy

Let u � X be a control input, where X is assumed to be a
non-empty compact set. We define the control input u in a
broad sense; when considering a model-predictive control
and a finite-horizon optimal control, u is a sequence of
control inputs over a finite prediction horizon; when solving
a dynamic programming problem, u represents a sequence
of control policy, which is a map from a state space to
X. Let (Ω,M, P ) be a probability space and w � Ω be a
disturbance vector. Like u, w may also represent a sequence
of disturbance spanning over a finite horizon. We consider a
set of constraints, g(u,w) ∼ 0, where g : X ⊆ Ω ∀⇐ R

N is
a constraint function and ∼ is the element-wise inequality.
A cost function, f : X ⊆ Ω ∀⇐ R, is given. We assume the
existence of the expectation of f(u,w) with respect to the

probability measure P . A CCOC problem is to find a control
input u that minimizes the expected cost while guaranteeing
that the probability of violating the given set of constraints
is below the risk bound, Δ � (0, 1]. A general formulation
of the CCOC problem is given as follows:

Problem 1: Pure-Strategy CCOC

min
u∈U

EP [f(u,w)] (1)

s.t. P (g(u,w)←0) ≥ Δ, (2)

where EP [×] is an expected value with respect to the proba-
bility measure P . In game theory, a deterministic strategy is
referred to as a pure strategy. Following this convention, we
call a deterministic control strategy as pure control strategy.
Likewise, we call Problem 1 a pure-strategy CCOC problem.

B. Formulation with a mixed control strategy

A pure control strategy u is a regular (i.e., deterministic)
variable. In order to represent a mixed control strategy, we
now consider u as a random variable. Let U ≤ X be a
finite or at most countably infinite set, whose elements are
represented as:

U = }u1, u2,×××〈 .

We define an extended probability space, (U ⊆ Ω,M′, P ′),
whose outcome is denoted by (u,w) � U ⊆ Ω. The proba-
bility measure P ′ represents the joint probability distribution
of the control input and the disturbance. We use a simpli-
fied notation of a marginal probability such as P ′(ui) :=
P ′(}ui〈 ⊆ Ω). We assume that the control input and the
disturbance are independent. Furthermore, we assume that
the marginal probability of the disturbance in P ′ is equal to
the one in P :

P ′(w) = P (w). (3)

Intuitively, this simply means that the probability distribution
of the disturbance is not influenced by the choice of control
strategies.

Let
pi = P ′(ui).

In other words, pi represents the probability that the control
input ui is chosen. Let p be a vector consisting of all
the marginal probabilities, p = [p1, p2,×××]. Then, a mixed
control strategy is formally defined as a 2-tuple, 〉U,p| . We
denote by XM the set of all possible mixed control strategies.
Note that 〉U,p| � XM must satisfy∑

i

pi = 1, 0 ≥ pi ≥ 1,∃i, (4)

since otherwise P ′ is not an admissible probability measure.
For example, the optimal mixed control strategy of the

illustrative example in Section I-A is represented as follows:

U = }uA, uC〈 , p = [0.5, 0.5].



A pure control strategy can be viewed as a mixed control
strategy with U consisting of a single element. For example,
the optimal pure control strategy of the illustrative example
in Section I-A is described as:

U = }uB〈 , p = [1].

With a mixed control strategy, a CCOC problem is to find
the elements of U as well as the marginal probabilities p
that minimizes the expected cost while guaranteeing that the
probability of violating a given set of constraints is below
the a user-specified risk bound, Δ � (0, 1]. Intuitively, an
optimizer chooses a set of control inputs to be mixed, as
well as the mixture ratio (i.e., probability). A CCOC problem
with a mixed control strategy is formally stated as follows:

Problem 2: Mixed-Strategy CCOC

min
〈U,p〉∈UM

EP ′ [f(u,w)] (5)

s.t. P ′ (g(u,w)←0) ≥ Δ. (6)

We refer to this problem as a mixed-strategy CCOC
problem. In the following sections the existence of an optimal
solution for Problems 1 and 2 are assumed.

III. THEORY

The ultimate goal of this paper is to develop an algorithm
to obtain an optimal mixed control strategy. In this section
we derive several important theorems that are necessary to
construct such an algorithm.

A. Convexity of a Mixed-Strategy CCOC Problem

Recall that, in the illustrative example in Section I-A, the
set of the costs and risks of all the possible mixed control
strategies (the shadowed triangle in Figure 1) is the convex
hull of the set of the costs and risks of all the pure control
strategies (the three black dots in Figure 1). In this subsection
we now formally prove this statement.

We denote by F the set of the costs and risks of all the
pure control strategies, that is,

F := }(EP [f(u,w)] , P (g(u,w)←0)) ‖u � X〈 .

For example, in the illustrative example in Section I-A,
F = }(40, 0.005), (30, 0.01), (10, 0.015)〈 . We also denote
by N the set of the costs and risks of all the mixed control
strategies, that is,

N := }(EP ′ [f(u,w)] , P ′ (g(u,w)←0)) ‖〉U,p| � XM 〈 .

We assume that F andN are nonempty and compact. This is
a sufficient condition for the existence of optimal solutions.

The following theorem holds:

Theorem 1:
N = conv(F),

where conv(X) is the convex hull of a set X .

Proof: We denote the risk and the cost of a pure control
strategy u � X by z(u) � R

2 as follows:

z(u) := (r(u), c(u))

r(u) := P (g(u,w)←0)

c(u) := EP [f(u,w)] .

With a slight abuse of notation, we also denote the risk
and the cost of a mixed control strategy 〉U,p| � XM by
z(〉U,p|) := (r(〉U,p|), c(〉U,p|)) � R

2. Then,

r(〉U,p|) := P ′ (g(u,w)←0)

=

|U |∑
i=1

piP
′ (g(ui, w)←0)

=

|U |∑
i=1

piP (g(ui, w)←0) =

|U |∑
i=1

pir(ui).

Note that the third equality follows from (3). Likewise,

c(〉U,p|) := EP ′ [f(u,w)]

=

|U |∑
i=1

piEP ′ [f(ui, w)]

=

|U |∑
i=1

piEP [f(ui, w)] =

|U |∑
i=1

pic(ui).

Therefore,

z(〉U,p|) � N

⇒∈ Dz(u1), z(u2),×××� F, p1, p2,×××� [0, 1] :

z(〉U,p|) =
∑
i

piz(ui),
∑
i

pi = 1

⇒∈ z(〉U,p|) � conv(F).

Hence, N = conv(F).

This theorem is illustrated in Figure 2, where F is repre-
sented by the area surrounded by the thick bold lines while
N is represented by the shadowed area.

A very important implication of Theorem 1 is that, if a
CCOC problem is convex (i.e., F is convex), then the cost of
the optimal pure control strategy coincides with the cost of
the optimal mixed control strategy because F = N . Let c�D
be the optimal cost function value of a pure-strategy CCOC
problem (Problem 1) and c�M be the optimal cost function
value of the corresponding mixed-strategy CCOC problem
(Problem 2). The following lemma holds.

Lemma 1: If F is convex, then

c�D = c�M .

Otherwise,
c�D � c�M .

In other words, we need to consider a mixed control strategy
only when a CCOC problem is nonconvex.
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Fig. 2. The cost-risk space of a mixed-strategy CCOC problem, setM ,
is the convex hull of the cost-risk space of the corresponding pure-strategy
CCOC problem, setD (Theorem 1). Therefore, the optimal mixed control
strategy can be obtained by solving the dual optimization problem of the
pure-strategy CCOC (Lemmas 2 and 3).

B. Duality of a Mixed-Strategy CCOC

In this subsection we show that an optimal solution to a
mixed-strategy CCOC problem is obtained by solving the
dual optimization problem of a pure-strategy CCOC.

Let q�D be the optimal dual objective value of a pure-
strategy CCOC problem, that is,

q�D := max
λ

min
u∈U

EP [f(u,w)] + λ(P (g(u,w)←0) Δ).

Likewise, we denote by q�M the optimal dual objective value
of a mixed-strategy CCOC problem:

q�M := max
λ

min
〈U,p〉∈UM

E
′
P [f(u,w)]+λ(P ′ (g(u,w)←0) Δ).

By the weak duality theorem, q�D ≥ c�D. Strong duality
holds for a mixed-strategy CCOC problem since it follows
from Theorem 1 that N is convex. Hence, the following
lemma holds.

Lemma 2: A mixed-strategy CCOC problem does not have
a duality gap, that is,

c�M = q�M .

Since N = conv(F), the dual optimization problem of
a pure-strategy CCOC is equivalent to the dual optimization
problem of the mixed-strategy CCOC. Therefore, the follow-
ing lemma holds.

Lemma 3: The dual optimal solution of a pure-strategy
CCOC is equal to the dual optimal solution of the corre-
sponding mixed-strategy CCOC. Hence,

q�M = q�D.

These lemmas suggest that an optimal solution to a mixed-
strategy CCOC, whose cost is c�M , can be computed through
the dual solution to a pure-strategy CCOC. This approach
allows us to solve a mixed-strategy CCOC problem with
almost the same computation cost as a pure-strategy CCOC
problem.

Graphical Interpretation: Lemmas 2 and 3 can be
geometrically interpreted through the min common/max
crossing (MC/MC) framework [13]. The primal optimal
solution to the pure-strategy CCOC (i.e., the optimal pure
control strategy) is the point that has the least cost among
D { }(r, c) � R2‖r ≥ Δ〈 . In Figure 2, the black dot on
r = Δ represents the optimal pure control strategy. Likewise,
the optimal mixed control strategy is represented by the red
dot.

In order to graphically interpret the dual optimization
problems of the pure-strategy CCOC, consider a nonvertical
line that contains F in its upper closed halfspace. The slope
of the line corresponds to λ. The dual optimization problem
is to find the maximum crossing point of such a line with the
vertical line r = Δ. In Figure 2, the maximum crossing point
for F is represented by the red dot. Note that the maximum
crossing point for N is the same red dot. Furthermore, recall
that this red dot also represents the optimal mixed control
strategy. Therefore, the optimal mixed control strategy can
be obtained by solving the dual optimization problem of the
pure-strategy CCOC.

Note that the vertical distance between the black dot and
the red dot in Figure 2 corresponds to the duality gap of
the pure-strategy CCOC problem. When the pure-strategy
CCOC problem is nonconvex, a mixed control strategy can
outperform pure control strategies because it eliminates the
duality gap by convexifying F .

C. Structure of an Optimal Mixed Control Strategy

A mixed control strategies can consist of countably in-
finitely many pure control strategies. However, a practical
algorithm can hardly handle such a mixed control strategy.
A good news is that we only need to consider mixed con-
trol strategies consisting of just two pure control strategies
because the following theorem holds.

Theorem 2: An optimal mixed control strategies can be
composed of up to two pure control strategies.

Proof: Let [r�M , c�M ] � N be an optimal solution to a
mixed-strategy CCOC problem. Note that [r�M , c�M ] always
lies at the boundary of N . Also, recall that both F and
N are compact set in R

2 and N = conv(F). Therefore,
by the supporting hyperplane theorem, there exists a line
(i.e., one-dimensional linear space), L, that passes through
[r�M , c�M ] and contains F in one of its closed half-spaces.
Hence, [r�M , c�M ] � conv(L { F). Since L { F is obviously
in a one-dimensional space, it follows from Carathéodory’s
Theorem that [r�M , c�M ] is in the convex combination of two
or fewer points in L { F .

For example, in Figure 2, the optimal mixed control
strategy is composed of the two pure control strategy, u1
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Fig. 3. Graphical interpretation of Algorithm 1.

and u2. Note that the supporting hyperplane L in the proof
corresponds to the dashed line representing the dual optimal
solution (i.e., the solution to the max crossing point problem).

IV. ALGORITHM

A. Overview

As is discussed in Section III-B, we obtain an optimal
mixed control strategy by solving the dual of the correspond-
ing pure-strategy CCOC problem. A dual optimal solution is
obtained by finding the zero-crossing of the derivative (more
precisely, the subgradient) of the dual objective function
using a zero-finding method called Brent’s method. Like
the bisection method, Brent’s method starts from an interval
that contains the zero-crossing, and iteratively narrows the
interval until a certain error measure is below a given
tolerance [14].

After the convergence of Brent’s method, our algorithm
outputs a mixed control strategy consisting of the two pure
control strategies corresponding to the both ends of the
interval. The probability distribution, p, is proportional to the
difference between the risk of failure of each pure control
strategy to the risk bound, Δ.

For example, in Figure 3, the optimal dual solution is λ�

and the optimal mixed control strategy is shown as a red
dot. Assume that the zero-finding algorithm converges to an
interval [λ, λ], as shown in the figure. The corresponding pure
control strategies are u and u, which result in risks r(u) and
r(u) while their costs being c(u) and c(u). The algorithm
returns the mixed control strategy shown as the orange dot
in the figure, which mixes u and u with the probabilities

p =

[
r(u) Δ

r(u) r(u)
,

Δ r(u)

r(u) r(u)

]
.

As a result, the risk of the mixed control strategy is exactly
Δ. Note that its cost, represented as c̃M , is greater than the
cost of the optimal mixed control strategy, c�M . Our proposed
algorithm provides a bound on this solution error (Theorem
3).

B. Review of Dual Optimization

Before presenting the algorithm, we briefly review the the-
ory of dual optimization. A reader who is familiar with dual
optimization may skip this subsection. The dual objective
function at λ is obtained by minimizing the Lagrangian as
follows:

qD(λ) = min
u∈U

EP [f(u,w)] + λ(P (g(u,w)←0) Δ). (7)

The dual optimization problem is the maximization problem
of this dual objective function. We denote by λ� the optimal
dual value:

λ� = argmax
λ≥0

qD(λ). (8)

The maximum is attained when the subgradient of qD
contains zero, that is,

0 � ∂qD(λ�).

An element of the subgradient is obtained as follows:

P (g(u,w)←0) Δ = r(u(λ)) Δ � ∂q(λ),

where u(λ) is the optimal solution to the minimization
problem (7). It is known that a dual optimization function
is always concave, hence its subgradient is monotonically
decreasing. Therefore, r(u(λ)) Δ has a sole zero-crossing,
which corresponds to the dual optimal solution. The pro-
posed algorithm solves the dual optimization problem (8)
by finding the zero-crossing using a zero-finding algorithm.
Intuitively, this corresponding to finding a control strategy u
whose risk, r(u), is exactly Δ.

C. Algorithm

The full description of the algorithm is provided below.

Algorithm 1 Mixed-Strategy Chance Constrained Optimal
Control

1: u→ argminu∈U EP [f(u,w)]
2: u→ u
3: if r(u) Δ ≥ 0 then
4: return 〉}u〈 , [1]|
5: end if
6: [λ λ]→ [0 λ+]
7: u→ argminu∈U EP [f(u,w)] + λ+P (g(u,w)←0)

8: while (r(u)−Δ)(Δ−r(u))
r(u)−r(u) (λ λ) > ε do

9: λ→ Brent’s method with [λ λ]
10: u→ argminu∈U EP [f(u,w)] + λP (g(u,w)←0)
11: if r(u) Δ = 0 then
12: return 〉}u〈 , [1]|
13: else if r(u) Δ < 0 then
14: λ→ λ, u→ u
15: else
16: λ→ λ, u→ u
17: end if
18: end while
19: return

〈
}u, u〈 ,

[
r(u)−Δ

r(u)−r(u) ,
Δ−r(u)

r(u)−r(u)

]〉



In the algorithm we denote by [λ λ] the interval on the
dual variable of Brent’s method. The optimal control inputs
corresponding to the upper and lower bound on the interval
are denoted by u) and u.

Lines 1-5 are to separate the special case where the dual
optimal solution is λ� = 0. In such a case, the risk of the
optimal pure control strategy is less than Δ. The optimal
mixed strategy deterministically choose this pure control
strategy (Line 4).

Line 6 initializes the interval of the zero-finding algorithm
with 0 and a sufficiently large value λ+ that results in a risk
smaller than Δ. The pure control strategies corresponding to
the both ends of the interval are represented as u and u.

Lines 8-18 iteratively solves the dual optimization prob-
lem of the pure-strategy CCOC through zero-finding. Line
9 computes one step of a zero-finding algorithm, Brent’s
method, in order to obtain λ � (λ λ). In Line 10, the optimal
pure control strategy corresponding to λ is obtained as the
minimizer of the Lagrangian,

EP [f(u,w)] + λ(P (g(u,w)←0) Δ).

Note that Δ is omitted in the algorithm since it is a
constant. Lines 11 - 15 updates the interval as well as the
corresponding pure control strategies so that the optimal dual
solution, λ�, is within the interval. The algorithm exits from
the loop if our error measure,

(r(u) Δ)(Δ r(u))

r(u) r(u)
(λ λ),

is within a given tolerance, ε > 0. This choice of error mea-
sure allows us to bound the suboptimality of the algorithm, as
discussed in the following subsection. Brent’s method has a
superlinear rate of convergence. Therefore, computation time
of the proposed algorithm largely depends on the solution
time of the optimization problem in Line 10.

D. Suboptimality Bound

As mentioned previously, Algorithm 1 is suboptimal,
meaning that the cost of the mixed control strategy obtained
by the algorithm, c̃M , is greater than or equal to the cost
of the optimal mixed control strategy, c�M . The following
theorem provides a bound on the suboptimality.

Theorem 3:
c̃M c�M ≥ ε.

Proof: If the algorithm exits at either Line 4 or 12, the
returned solution is strictly optimal, hence

c̃M c�M = 0.

In such cases, the optimal solution is a pure control strategy.
If the algorithm exits at Line 19, it returns a mixed

control strategy. Since the resulting mixed control strat-
egy chooses between u and u with the probabilities of

[
r(u)−Δ

r(u)−r(u) ,
Δ−r(u)

r(u)−r(u)

]
,

˜cM =
r(u) Δ

r(u) r(u)
c(u) +

Δ r(u)

r(u) r(u)
c(u). (9)

Recall that c�M = q�D (Lemmas 2 and 3), where q�D is the
dual optimal solution to the pure-strategy CCOC problem.
Since the dual optimal solution attains the maximum of the
dual objective function,

qD(λ) = c(u) + λ(r(u) Δ) ≥ q�D = c�M (10)
qD(λ) = c(u) + λ(r(u) Δ) ≥ q�D = c�M . (11)

The suboptimality bound is obtained as follows.

˜cM c�M

=
r(u) Δ

r(u) r(u)
(c(u) c�M ) +

Δ r(u)

r(u) r(u)
(c(u) c�M )

≥
r(u) Δ

r(u) r(u)
λ(r(u) Δ)

Δ r(u)

r(u) r(u)
λ(r(u) Δ)

=
(r(u) Δ)(Δ r(u))

r(u) r(u)
(λ λ) ≥ ε.

The first inequality follows from (10) and (11) and the last
inequality follows from the exit condition of the while loop
(Line 8).

V. IMPLEMENTATION

A. Mixed-Strategy Chance-constrained Dynamic Program-
ming

Algorithm 1 can be used for any types of chance con-
strained optimal control problem as long as the optimization
problem (7) can be solved. In this paper we present an imple-
mentation for a chance-constrained dynamic programming
(CCDP). The CCDP algorithm proposed by [12] is build
upon a zero-finding-based dual optimization, which is similar
to Algorithm 1. Hence, it is straightforward to implement
Algorithm 1 for a CCDP. Specifically, there are two changes
that must be made on the CCDP algorithm in order to obtain
an optimal mixed control strategy. One is to modify the exit
condition to the one in Line 8 of Algorithm 1, and the other
is to add Line 19. We call the resulting algorithm as mixed-
strategy CCOC.

B. Application to Path Planning

In this subsection we apply the mixed CCDP to a path
planning problem with obstacles. We use the same problem
formulation as in [12]. A two-dimensional rectangular state
space is discretized into a 100x100 grid. Obstacles are placed
as shown in Figure 4. The following dynamics are assumed:

xk+1 = xk + uk + wk

uk 2 ≥ dk, wk � U (0, σ2I),

where dk and σ are constant parameters, U (0,Σ) is a zero-
mean Gaussian distribution with the covariance matrix Σ,
and I is the two-dimensional identity matrix. We set dk =
6 and σ = 1. The control input and disturbance are also
discretized with the same interval as the state variable. The
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Fig. 4. Application of CCDP to a path planning problem. The optimal
mixed control strategy chooses between the two paths, u1, u2, with
probabilities of 17.0% and 83.0%, respectively.

TABLE II
THE COST AND RISK OF THE OPTIMAL PURE AND MIXED CONTROL

STRATEGIES FOR THE PATH PLANNING PROBLEM IN FIGURE 4.

Control strategy Expected path length Risk
Pure 130.8 0.64%

Mixed 104.2 2.0%

dynamic programming problem is formulated with 50 time
steps (N = 50). The cost function is the expected length of
the resulting path that connects the start and the goal, which
are specified as Figure 4.

The simulation result is shown in Figure 4 and Table II.
The resulting mixed control strategy consists of two pure
control strategies, u1 and u2, which have expected path
lengths of 130.8 and 98.7 while the risks of hitting obstacles
being 0.64% and 2.28%, respectively. The two pure control
strategies are chosen with probabilities of 17.0% and 83.0%,
respectively. As a result, the mixed control strategy has
a expected path length of 104.2 while the risk of hitting
obstacles is exactly 2.0%. On the other hand, the pure-
strategy CCOC algorithm results in the same pure control
strategy as u1, whose expected path length is 130.8. This
result shows that, when a chance constraint is imposed, one
can minimize the expected path length by choosing a path
probabilistically. The computation time of the mixed control
strategy is 20.52 seconds while that of the pure control
strategy was 20.38 seconds1. The difference in computation
time is small because the only extra computation required to
obtain a mixed control strategy is Line 19 of Algorithm 1.

C. Application to Mars Entry, Descent, and Landing

We next apply the mixed-strategy CCDP to a Mars entry,
descent, and landing (EDL) scenario [12]. Mars EDL is
subject to various source of uncertainties such as atmospheric
variability and imperfect aerodynamics model. The resulting
dispersions of the landing position typically spans over tens

1Simulations are conducted on a machine with the Intel(R) Xenon(R)
X5690 CPU clocked at 3.47GHz and 96GB of RAM

of kilometers for a 99.9% confidence ellipse [15]. Given
such a highly uncertain nature of EDL, a target landing site
must be carefully chosen in order to limit the risk of landing
on rocky or uneven terrain. At the same time, it is equally
important to land near science targets in order to minimize
the traverse distance after the landing.

Future Mars lander/rover missions aim to reduce the
uncertainty by using several new active control technolo-
gies, consisting of the following three stages: entry-phase
targeting, powered-descent guidance (PDG) [16], and hazard
detection and avoidance (HDA) [17]. Each control stage
is capable of making corrections to the predicted landing
position by a certain distance, but each stage is subject to
execution errors, which deviates the spacecraft away from
the planned landing position.

We pose this problem as an optimal sequential decision
making under a persisting uncertainty. At the kth control
stage, xk represents the projected landing location without
further control. By applying a control at the kth stage, the
lander can correct the projected landing location to uk, which
must be within an ellipsoid centered around xk. At the
end of the kth control stage, the projected landing location
xk+1 deviates from uk due to a disturbance wk, which is
assumed to have a Gaussian distribution. x3 is the final
landing location. This EDL model is described as follows:

xk+1 = uk + wk

(uk xk)
TDk(uk xk) ≥ d2k, wk � U (0,Σk),

where Dk and Σk are positive definite matrices, and dk is a
scalar constant. We use the same parameter settings as [12].

The state space ∩ is a 2 km-by-2 km square, which is
discretized at a one meter resolution. As a result, the problem
has four million states at each time step. The control and the
disturbance are also discretized at the same resolution. The
infeasible areas are specified using the data of HiRISE (High
Resolution Imaging Science Experiment) camera on the Mars
Reconnaissance Orbiter. We use the real landscape of a site
named “East Margaritifer” on Mars.

Table III and Figure 5 show the simulation result with a
risk bound Δ = 0.1%. The mixed control strategy obtained
by the algorithm chooses between two pure control strategies,
u and u, with the probabilities of 84.9% and 15.1%. The risks
of the two pure control strategies are r(u) = 0.016% and
r(u) = 0.574% while their costs being c(u) = 645.49 and
c(u) = 641.02. Note that u is equivalent to the optimal pure
control strategy shown in Table III. Table III shows that this
mixed control strategy results in less cost than the optimal
pure control strategy while satisfying the chance constraint.
Note that the optimal pure control strategy takes significantly
less risk than the risk bound. This is because there is no
other solution that is within the risk bound and has less
cost. The mixed control strategy improves the cost by mixing
this optimal pure control strategy with another pure control
strategy that has an excessive risk but a less cost.

It may sound unrealistic to decide a landing site probabilis-
tically. However, consider a situation where there are 1,000
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Fig. 5. (a) The optimal pure control strategy and (b) the optimal mixed
control strategy for the Mars EDL scenario with a risk bound ∆ = 0.01.
The red ×-marks are the optimal EDL target of the pure control strategies,
while the red circles represents 3σ of the disturbance in the first stage, wo.
The mixed strategy chooses between the two pure control strategies with
the probabilities of 15.1% and 84.9%.

TABLE III
THE COST AND RISK OF THE OPTIMAL PURE AND MIXED CONTROL

STRATEGIES FOR THE MARS EDL SCENARIO.

Control strategy Expected cost (m) Risk
Pure 645.49 0.0160%

Mixed 644.81 0.1000%

vehicles and we require 999 of them to land successfully
while minimizing the total cost. Then our result means that
the optimal strategy is to send 849 of them to the first landing
site and 151 of them to the other. When having only one
vehicle, the interpretation of this result varies with viewpoint.
For a person who knows the result of the coin flip in advance
of the landing, the resulting action is no more mixed and
hence it may violate the given chance constraint. However,
if the result of the coin flip is hidden from the observer, like
Schrödinger’s cat in a box, then this mixed strategy results in
the minimum expected cost while the probability of failure
is still within the specified bound.

VI. CONCLUSION

We showed that a mixed control strategy can result in a
less cost than deterministic control strategies when a CCOC
problem is nonconvex. We also showed that an optimal mixed
control strategy only needs to choose from up to two control
actions. Building upon these theoretical results, we developed
an algorithm that optimizes a mixed control strategy for
CCOC with a guarantee that the suboptimality is within a
user-specified tolerance.
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