
Revamping Spacecraft Operational Intelligence

Victor Hwang∗

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109

A critical aspect of any successful flight project is the ability to correctly interpret raw
telemetry data in order to monitor the health of the spacecraft and resolve anomalous
behavior. The main obstacle comes from organizing massive volumes of data from both
the spacecraft and multiple ground data systems into time-discrete trends and patterns.

The EPOXI flight mission has been testing a new commercial system, Splunk, which
employs data mining techniques to organize and present spacecraft telemetry data in a high-
level manner. By abstracting away data-source specific details, Splunk unifies arbitrary
data formats into one uniform system. This not only reduces the time and effort for
retrieving relevant data, but it also increases operational visibility by allowing a spacecraft
team to correlate data across many different sources. Splunk’s scalable architecture coupled
with its graphing modules also provide a solid toolset for generating data visualizations and
building real-time applications such as browser-based telemetry displays.

EPOXI’s experience using the Splunk system has demonstrated that employing modern
searching and indexing techniques improve the overall operational intelligence of the team.
Splunk also serves as a solid backend for developing new mission operation tools.

Nomenclature

DI Deep Impact
DSN Deep Space Network
EPOXI Extrasolar Planet Observation and Deep Impact Extended Investigation
JPL Jet Propulsion Laboratory
TCM Trajectory Correction Maneuver

I. Introduction

In the seven years that Jet Propulsion Laboratory (JPL) has been operating the Deep Impact (DI)
spacecraft, hundreds of gigabytes of information have been generated. These files, which contain spacecraft
telemetry, Deep Space Network (DSN) telemetry, prediction data, testing data, scheduling information, and
more, continue to reside in the same organizational structure since its initial development in the early 1980s.
Since then, the rise of social media and decreasing cost of computation power has accelerated the focus on
uncovering trends in Big Data. Though the amount of raw data produced by DI pales in comparison to the
data produced by certain social network data centers, EPOXI has still benefitted from the development of
their data analysis tools. Specifically, EPOXI flight project has successfully utilized the popular Big Data
tool, Splunk, to provide a new way of looking at its data.

While Splunk is more commonly used for managing large networks of computers, its ability to index
arbitrarily formatted timestamped data into events occurring on a timeline makes it ideal for spacecraft
operations. Its query language leverages this to search over timespans, rather than managing multiple text
files by hand. In addition, Splunk’s architectural flexibility allows EPOXI’s real-time telemetry stream to
be mined and transformed on-the-fly with very little latency. These two features are not new by any means.
However, Splunk packages this power into an intuitive web-based interface, which allows the user to begin
with a large quantity of telemetry data and systematically define filters until only the desired data is left.

∗Staff Engineer, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109

1 of 10

American Institute of Aeronautics and Astronautics

Since implementing Splunk, EPOXI has experimented with real-time browser-based telemetry viewers
that allow users to define their own data visualizations, anomaly analysis tools that do not require extensive
command line mangling, and advanced reporting and alerting systems. This paper describes how ingesting
Deep Impact’s data with Splunk resulted in a unified data set and how EPOXI used this to develop a new
class of operational tools.

II. Unifying Data

The following image shows a few data types that EPOXI deals with on a frequent basis.

There are various kinds of log files that reside as flat files on various filesystems. The stored telemetry
from the spacecraft sits inside databases, while the streaming telemetry come over a socket. While it is
possible to access any piece of information from these sources, it requires the user to remember the locations
of all this data and have the familiarity to extract data from the feed, whether it be with a scripting language,
basic Unix commands, or existing tools. This non-uniformity of data also makes it difficult to view different
data together - if one wanted to see the time between when a command was issues on the spacecraft (found
in the spacecraft log files) and when it was successfully stored in the ground data system (transaction logs),
it would be very cumbersome to interleave the two.

2 of 10

American Institute of Aeronautics and Astronautics

With Splunk, data indexing and access can be abstracted using a few pieces of information: the location
of the data, what the data describes, and how the data is formatted. The user defines these parameters and
then no longer has to remember file directories, server names, or column headers. Instead, the user retrieves
data by specifying a specific category of data over some particular time range. In the figure above, there
is no mention of where the data is stored or what format it is in. This has been abstracted away and one
can simply filter telemetry data by the attribute sensor name and give a time range specification from ”five
minutes ago”.

III. Defining Data Interfaces

In defining the data interfaces, Splunk decouples two pieces of information: where the data is coming
from, and what the data looks like. These are respectively called the source and the sourcetype and are
fundamental to how Splunk organizes data.

A. Defining a Source

Splunk provides modules for interacting with a variety of data sources. It is important to note that defining
a data source is completely decoupled from what is contained in the data. This merely establishes the
mechanics behind data retrieval.

1. Network Sockets and Forwarders

Splunk can bind to a socket that is streaming UDP or TCP data out. This is useful if another machine
has access to data that the indexer does not. With EPOXI, the tool for streaming live telemetry was only
compiled for a Solaris machine, and the Splunk indexing machine was running Linux. By piping that data
to a TCP socket on the indexer, there was no need to rebuild the tool to work with Linux.

Another alternative to socket binding is to use Splunk’s forwarding system. If the data lies on a remote
machine other than the indexer, a forwarding program can be installed on remote machine that pipes its
data directly to the Splunk instance on the indexer. This alleviates the need to write a script that sends
data across a network port.

3 of 10

American Institute of Aeronautics and Astronautics

2. Monitoring files and directories

Many of Deep Impact’s logs are single flat files that have additional data appended to them after every
DSN track. Splunk monitors these files for changes and indexes new data whenever the file contents change.
Expanding this further, Splunk can monitor a directory for new files. This is useful for watching directories
that contained downlink transaction logs for every single file downlinked from Deep Impact. Every time a
file is downlinked, the ground data system generates a single transaction log for the file and Splunk quickly
indexes this.

3. Scripted Inputs

The ability to have Splunk periodically run a script and index its standard output is extremely useful for
dealing with particularly unusual data that Splunk is unable to natively parse. In one case, there is a legacy
tool that outputs text embedded within tables drawn with ASCII characters.

|--------------------------------|

| 2011-100T10:00:00 | Value 1 |

|--------------------------------|

| 2011-100T12:00:00 | Value 2 |

|--------------------------------|

In this case, it is far easier to write a Python script to generate a simpler, comma-separated output.
Splunk then runs this script periodically and indexes the standard output of this Python script.

B. Defining Sourcetypes

In order to parse raw data into something meaningful, the user defines a sourcetype. The sourcetype then
takes the user definition (generally a regular expression) and generates events. The event is essentially
Splunk’s atomic data type - it consists of an arbitrary set of data that is associated with a timestamp. The
following example shows a simple definition of raw channel telemetry:

2012-100T00:10:00,temp 1,100

2012-100T00:10:00,temp 2,123

2012-100T00:20:00,temp 1,101

2012-100T00:20:00,temp 2,113

The sourcetype definition would consist of the following:

1. The location and time format of the timestamp (here it would be %Y-%jT%H:%M:%S)

2. The location and name of the first ”field” of data (this would be a regular expression capturing the
temp 1 or temp 2 string and then naming this field sensor name)

3. The location and name of the second ”field” of data (this would be a regular expression capturing the
numerical values) and naming this field digital value.

With these definitions, Splunk can index this raw data as four events with two fields of data. This allows
the user to search for temp 1 specific data, or search for digital values > 10. Once the data stream is
scaled up to millions of events with thousands of sensor names, this organizational structure becomes very
effective.

IV. Architecture Summary

Splunk’s distributed architecture allows it to handle very large data streams. Until now, there has been
no distinction between where the data gets transformed from the raw data source and where the queries are
processed. However, separating these two roles optimizes the process. Splunk defines these two roles as the
indexer and the search head. The indexer takes in the raw data feed and stores it in its own internal

4 of 10

American Institute of Aeronautics and Astronautics

format, while the search head does the more CPU intensive function of parsing the query and retrieving
exactly the data that is needed from the indexer.

This setup lends itself to solving one particular security issue that EPOXI ran into. Access to the
spacecraft data is confined to one particular network behind a firewall. Because of user access rules, having
both the search and indexing located on one machine would have required all Splunk users to have access to
this particular network, which was not an option.

Instead, the structure was split into one indexer and one search head. The indexer, which held sensitive
spacecraft data, remained behind the firewall in order to follow security regulations. The search head machine
was placed outside of this network, and a firewall exception was made between these two machines. Because
the search head only caches the sensitive data long enough to return a query result, there was no breach of
security regulations and users did not need access to the limited network.

V. Data Searches and Visualizations

Once the interfaces to data have been properly defined, searching for anomalous telemetry data becomes
an exercise in writing queries that filter out extraneous data. Below are a few example of the Unix-style
search language that Splunk employs.

sensor name=temp sensor 1 query temp sensor 1 data

sensor name=temp sensor * query all temp sensor data

sensor name=temp sensor * temp>10 query all temp sensor data greater than 10

sensor name=temp sensor *

earliest=10/19/2009:0:0:0

latest=10/27/2009:0:0:0

query all temp sensor data

between the time range

Table 1.

For the EPOXI project, any of the previous queries would still return too much data to work with. The
following queries show how one might begin filtering out irrelevant data with Unix-style pipes.

sensor name=temp sensor 1 | sort temp | head 5 returns 5 lowest temps

sensor name=temp sensor 1 | sort -temp | head 5 returns 5 highest temps

sensor name=temp sensor 1 |

delta temp as chng temp |

where chng temp > 5

returns events where the temp changes by 5

Splunk’s search language provides hundreds of functions for manipulating data. While the queries can
occasionally get complex and lengthy, the fast performance of the queries makes trial-and-error a painless
task.

A. Deep Space Network Performance Analysis

Just as Unix command line tools have their limits, Splunk’s search language falls short for particularly
complex analyses. In these cases, Splunk’s external API allows procedural languages to make data queries.
This section describes an analysis of the Deep Space Network (DSN) performance using Python and Splunk
to manipulate the data.

There are many aspects of the DSN process that influence how the spacecraft team plans their activities.
One in particular is the time it takes the DSN to lock on the spacecraft’s telemetry. Because time on the
DSN is so valuable, this wait time is expected to be extremely consistent. Otherwise, time is wasted during
the track waiting for the DSN to establish a solid connection with the spacecraft.

With Splunk, EPOXI was able to aggregate the past few years of DSN data to generate performance
statistics for each DSN station. The table below shows what performance statistics were generated (with
altered data values for export).

5 of 10

American Institute of Aeronautics and Astronautics

DSN Station Avg Predicted Tlm Lock Time Avg Actual Tlm Lock Time Std Dev in Lock Time

11 200 sec 202 sec 8

12 200 sec 209 sec 5

22 200 sec 204 sec 4

34 200 sec 201 sec 2

DSN Station Avg Dropped Tlm Lock per Track # Times No Telemetry Lock At All

11 1.2 5

12 1.11 3

22 1.4 4

34 1.3 8

The source code to generate these statistics did not exceed 100 lines. First, a Splunk query was written
that would return data from both the telemetry sourcetype and the prediction sourcetype. Then, using
transactionsa, the relevent events were grouped together based on a grouping definition. Specifically, the
boundaries of the DSN transaction object were defined by a ”beginning of track” event and an ”end of track”
event. Everything in between was grouped into the returned data object. Once Python ran this query, the
returned object contained the relevant time events for every single DSN track, which looked similar to the
following:

{

dsn_station: 11,

beginning_of_track: 2011-100T01:00:00,

predicted_lock_time: 2011-100T01:30:00,

tlm_lock_times: [2011-100T01:33:00, 2011-100T04:00:00, 2011T05:00:00]

}

The majority of development time was spent building a Splunk query to group these events properly. At
first, the transactions returned would miss the end of a track event and group together multiple predicted
lock times and telemetry lock times together. By adding more aggressive filtering, the transactions were
pruned and it became trivial to calculate the relevant time statistics with Python.

B. Visualizing Data

Splunk’s web interface has useful data visualization modules that build on top of the search language. Tables
can be built with one-line commands and graphs can have many signal filters applied to them. The following
screenshot shows the command to apply a rolling 1-day average filter over a set of data.

aMore about Splunk’s transaction command can be found at
http://docs.splunk.com/Documentation/Splunk/latest/SearchReference/transaction

6 of 10

American Institute of Aeronautics and Astronautics

Splunk also has quickviews to show event counts over time, which are helpful for showing a summary of
activities. For example,the following image shows a histogram of the number of images taken since January
of 2011, which quickly shows when the EPOXI project was actively observing.

One particularly useful feature in this quickview is the ability to zoom in on a particular time range.
This allows for an interactive environment where navigating through data only requires mouse clicks. For
instance, one could zoom in on the activity period during January and April, which would establish a new
time range. Then the query could be changed to sourcetype=downlink transactions to see exactly which
image files from that period were downlinked.

VI. Real-Time Searches

Splunk provides a real-time search system that already exists within the search language. By specifying
a time range with the rt keywoard, Splunk begins running a continuous search. For example, the query
sourcetype=temp 1 earliest=rt-5 informs Splunk to continuously search for data that has been received
within the past five minutes. Combining this feature with the data visualization modules gives the ability
to build real-time telemetry displays that are web-based, user-customizable, and very responsive.

A. Real-Time Telemetry Displays

EPOXI’s existing telemetry display system is built on a text-display system that can be difficult to gather
information from. It is difficult to customize and can only be accessed through window forwarding systems.
With Splunk already attached to the data streams, it was very simple to build dashboard views that mimicked
the existing system. The following image shows a simple DSN status page that is the result of aggregating
multiple data channels.

Each of the single value boxes continuously updates the value inside with the most recent data from its
corresponding channel.

7 of 10

American Institute of Aeronautics and Astronautics

This next image shows a page that lists completed downlinks from the spacecraft in real-time. The
ground data system stores an XML file that contains details about the transactions. Most of the data is not
pertinent, so this display shows the filename, downlink time, and the completion status (which is extracted
from the XML file). The downlink time is calculated on the fly by using the previously mentioned delta

command.

While these dashboards do not show novel information, both of these dashboards were built in under
ten minutes using the simple searches described in Table 1. No programming (aside from the queries) was
required.

B. Safing Event April 2012

In April of 2012, the Deep Impact spacecraft went into safing. While the technical details of safing are
not described here, the importance of data visualization became very apparent during the recovery of the
spacecraft.

Due to the geometry of the spacecraft and its sequenced safing behavior, solid downlink and uplink
connections were only available at periodic intervals. Despite calculating signal strength predicts, the motion
of the spacecraft was extremely inconsistent. As a result, the decision to radiate commands was based solely
on real-time signal strength data.

The below image shows the real-time instantaneous signal strength over the last 40 minutes, which was
the initial graph built before the safing event. The query tells Splunk to plot the data by quantizing the
data into 5 second buckets (which was the subscription rate of the data) and taking the first value. By itself,
this visualization was not helpful because of the noise of the signal and the short time range.

8 of 10

American Institute of Aeronautics and Astronautics

sourcetype=DSN telemetry channel name=signal strength earliest=-40m | timechart

span=5s first(digital value)

A simple change in the query syntax created a graph of far more value. The syntax now quantizes the
data from the past 2 hours into 10 minute buckets and takes the median value. This allowed us to pick out
the periodic trend much more easily and to have a better sense of when to radiate commands.

sourcetype=DSN telemetry channel name=signal strength earliest=-2h | timechart

span=10m median(digital value)

9 of 10

American Institute of Aeronautics and Astronautics

VII. Future Implementations

EPOXI still has yet to take full advantage of Splunk’s technology. The following section describes
theoretically feasible ideas that have yet to be implemented.

A. Predicted vs. Actual Data Analysis

Splunk has no issues indexing prediction data from the future. One idea considered for real-time telemetry
displays was to have plots that back-fill predicted data into the real-time graphs. Combining this with alarm
limits on channel values could provide a useful interface when monitoring a critical spacecraft event. For
example, during a trajectory correction maneuver (TCM), the predicted attitude rates could be plotted for
the entire duration of the maneuver. The real-time telemetry data could then be plotted against the same
plot, making any major discrepancies instantly visible.

This could be further expanded upon for post-DSN tracks to analyze telemetry data for anomalies. For
example, if any channel deviates from its prediction for greater than some set amount of time, an alert could
be thrown. Also, it could be used to constantly monitor the accuracy of the prediction models every time
data is received.

B. Alert System

Splunk has an alerting system that hooks into real-time searches. One can set alerts if the result of a
user-defined query returns a particular result. For example, one useful alert would have Splunk send a text
message to the spacecraft team if there was no telemetry lock within the first hour of the start of a DSN
track (or alternatively, if no spacecraft data is received within the first hour of the DSN track).

This could be combined with the feature described in the previous section to send alerts if a particular
telemetry value begins deviating from the prediction files. This would be less relevant to the EPOXI project
due to the infrequency of DSN tracks. However, this could be very useful to a project that had constant
visibility to the spacecraft.

VIII. Conclusion

The integration of Splunk with EPOXI’s data has helped unify the growing data set from the Deep Im-
pact spacecraft. Initially, EPOXI’s numerous data sources were stored in a variety of databases, flat files and
directories. The differing formats of the data was an obstacle whenever there was a need to extract infor-
mation - one would have to remember the location of the data and the corresponding tool needed to unpack
the data. Splunk provides a data access layer that abstracts away these low-level details so that anomaly
analysis can be done without battling these obstacles. Its built-in search language also makes correlating
data across many different sources (such as prediction data and spacecraft event logs) simple. Splunk’s dis-
tributed architecture also provides a responsive backend that supports highly customizable telemetry display
systems, which has already assisted the team in making operational decisions in real-time.

Splunk’s ability to turn Deep Impact’s unstructured data into a complete picture of spacecraft’s state
has the potential to revamp numerous existing tools at JPL. As the collection of data continues to grow,
Splunk proves that modern searching and indexing tools will only become more valuable as time goes on.

IX. Acknowledgements

The author would like to extend their sincerest thanks to all of the EPOXI team: Steve Wissler (JPL),
Tim Larson (JPL), Greg La Borde (JPL), Rich Rieber (JPL), Terry Himes (JPL), Bob Wing (JPL), Yee
Lee (JPL), Jeff Pinner (Twitter) and Hal Uffelman (JPL).

This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Administration

10 of 10

American Institute of Aeronautics and Astronautics

