Evaluating the Efficacy of the Cloud
for Cluster Computation

David Knight, Khawaja Shams, George Chang, Tom Soderstrom
Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Dr.
Pasadena, CA 91109
{ 818-354-5460, 818-393-0037, 818-393-4979, 818-354-5896 }
{ David.S.Knight, Khawaja.S.Shams, George.W.Chang, Tomas.J.Soderstrom }@jpl.nasa.gov

Abstract—Computing requirements vary by industry, and it
follows that NASA and other research organizations have
computing demands that fall outside the mainstream. While
cloud computing made rapid inroads for tasks such as
powering web applications, performance issues on highly
distributed tasks hindered early adoption for scientific
computation. One venture to address this problem is Nebula,
NASA’s homegrown cloud project tasked with delivering
science-quality cloud computing resources. However, another
industry development is Amazon’s high-performance
computing (HPC) instances on Elastic Cloud Compute (EC2)
that promises improved performance for cluster computation.
This paper presents results from a series of benchmarks run on
Amazon EC2 and discusses the efficacy of current commercial
cloud technology for running scientific applications across a
cluster. In particular, a 240-core cluster of cloud instances
achieved 2 TFLOPS on High-Performance Linpack (HPL) at
70% of theoretical computational performance. The cluster’s
local network also demonstrated sub-100 ps inter-process
latency with sustained inter-node throughput in excess of 8
Gbps. Beyond HPL, a real-world Hadoop image processing
task from NASA’s Lunar Mapping and Modeling Project
(LMMP) was run on a 29 instance cluster to process lunar and
Martian surface images with sizes on the order of tens of
gigapixels. These results demonstrate that while not a rival of
dedicated supercomputing clusters, commercial cloud
technology is now a feasible option for moderately demanding
scientific workloads.

TABLE OF CONTENTS

1. INTRODUCTION ..cceeeeeeeeececcssssonnsssassecssssssssanaansase |
2. METHODOLOGY .cceeeeeecsssnnassssseccsssssssnnsasassesssse 1
3. SYNTHETIC BENCHMARK RESULTSccceeeeeeee2
4. APPLICATION BENCHMARK RESULTS7
5. CONCLUSIONS ...cceeeeeesssnnnnssseecccsssssossansassascssssssesd
REFERENCES...cccueeteteeccecssssnnssssecccsssssssnssssascssssssssd
BIOGRAPHIES...ccceeeeeeeeeeccssssnnnssssecccsssssssasasssscssssssssd

1. INTRODUCTION

While cloud computing made a splash in the consumer web
space, certain industries have been relatively hesitant to
fully embrace cloud services. The scientific computing
community has raised valid concerns about the cloud’s
ability to perform on large-scale distributed tasks that have
long been the domain of dedicated computing clusters. In
particular, the constant CPU and network stress imposed by

978-1-4577-0557-1/12/$26.00 ©2012 IEEE

large linear algebra systems has a different usage profile
than the more bursty characteristics of web applications.

Early benchmarks of cloud-based clusters revealed
lackluster performance largely due to limiting network
interconnects and virtual machine overhead [1] [2]. Around
this time, NASA’s own Nebula cloud project was unveiled
in 2009 with an emphasis on increased scientific computing
performance and security; areas that were feared ignored by
commercial cloud providers [3].

Since then, recent developments in the commercial cloud
market have shown a steady investment in making cloud
services suitable for scientific computation. In July 2010,
Amazon launched their high-performance computing (HPC)
Elastic Cloud Compute (EC2) service that provides more
powerful instance hardware, reduced virtual machine
overhead, and local 10 GigE networking between grouped
instances [4]. Using a cluster of these HPC EC2 instances
comprised of 7,040 cores, Amazon proceeded to rank in the
TOPS500 supercomputing list and remains at the number 451
spot as of the June 2011 rankings [5]. Amazon unveiled an
upgraded HPC instance type in November 2011 with
additional RAM and CPU capacity [6]. Additionally, a
third-party vendor acting as a cloud broker started leasing
out time on a 30,000 core cluster of EC2 instances at a cost
of $1,279 per hour [7].

In light of these developments, a suite of both synthetic and
application-level benchmarks were identified for the
purpose of testing aspects of cloud computing that are
important for running science applications. These
benchmarks were then run on Amazon EC2 with HPC
instances to test the efficacy of commercial cloud offerings
for distributed computing tasks.

2. METHODOLOGY

Naturally, there exists a multitude of different benchmark
combinations that could be performed. A chosen set of
synthetic benchmarks tests a single machine aspect that
could potentially bottleneck distributed applications.
Selected application-level benchmarks test a computer
cluster as a whole with a representative task. Since
application-level benchmarks can be affected by multiple
components of a system, results from synthetic benchmarks

can inform the results from application-level tests by
identifying specific deficiencies.

Synthetic Benchmarks

The synthetic benchmarks fall into three general categories:
external network, single instance, and local network.
External network benchmarks test the performance of the
connection between a user and Amazon’s datacenter. Single
instance benchmarks test performance of a single
component of an instance. Local network benchmarks test
the connection between two locally networked instances.
Performance aspects being tested and the benchmark tools
associated with these aspects are shown in Table 1. Some
individual benchmarks are part of the High-Performance
Computing Challenge (HPCC), which is described later in
this section.

Table 1. Synthetic Benchmark List

Benchmark Type

Benchmark Tool

Internet Throughput

iperf 2.0.5

Internet Latency

BSD traceroute

CacheBench (release

CPU Cache Throughput 5/23/2008)

Mass Storage
Throughput

RAM Throughput

Bonnie++ 1.03¢

STREAM (HPCC 1.4.1)
MPI Ping-Pong (HPCC

Inter-process Latency

1.4.1)
Inter-process Throughput MPI ngl_zoln)g (HPCC
Inter-node Throughput iperf 2.0.5

Application Benchmarks

Unlike synthetic benchmarks, application benchmarks stress
a machine or cluster as a system and can be negatively
impacted by performance bottlenecks in multiple areas. Two
application benchmarks were selected: High-Performance
Linpack (HPL) and Hadoop image processing.

HPL is a benchmark that measures floating-point
computation performance by solving a system of linear
equations and is routinely run on supercomputing clusters.
Results of HPL are used to rank supercomputers in the
TOP500 list. In the case of this work, HPL is run as part of
the HPCC.

Hadoop is an open source framework that implements
Google’s MapReduce algorithm for highly parallel
processing. For the benchmark, Hadoop is used to process
gigapixel-sized surface images from the both moon and
Mars into sets of image tiles. The image processing job
taking place is a real-world component of NASA’s Lunar
Mapping and Modeling Project (LMMP).

High-Performance Computing Challenge (HPCC)

The HPCC is a benchmark suite managed by the University
of Tennessee at Knoxville for the purpose of providing an
easy to run and consistent method of testing across different
computing clusters [8]. Certain synthetic benchmarks and
HPL are parts of the HPCC, and results from these tests
were gathered by running the challenge as a whole.
However, the results of select tests are presented
individually.

Hardware Specifications

Tests are conducted using Amazon EC2 ccl.4xlarge HPC
instances. These instances wuse hardware accelerated
virtualization to provide lower VM overhead compared to
the paravirtualized non-HPC instances. Additionally, a
commodity desktop computer is benchmarked as a baseline
for the CPU cache throughput, mass storage throughput, and
RAM throughput tests to provide context for the cloud
instance results. Hardware specifications are shown below
in Table 2 and Table 4.

Table 2. Cloud Instance Hardware Details
Instance Type ccl.4xlarge

CPU Intel Xeon X5570 (x2)
RAM 23 GB
Network 10 GigE

Table 3. Baseline Hardware Details

Model Apple iMac 12,2
CrPU Intel Core 17-2600
RAM 8 GB
Network Gigabit

3. SYNTHETIC BENCHMARK RESULTS
Internet Throughput & Latency

Researchers often have large datasets that need to be
transferred to a computing facility for processing. Since
cloud computing data centers are physically off-facility for
users, cloud providers must support high upload throughput
from users’ facilities in order to prevent excessive delays
when preparing processing jobs.

Tests took place between JPL in Pasadena, CA and
Amazon’s US West datacenters in San Francisco, CA.
Traffic was routed through the CENIC (Corporation for
Education Network Initiatives in California) Internet2
connection. TCP parameters were tuned as detailed in Table
4, and iperf 2.0.5 was used to perform data transfer with 10
parallel streams for 10 seconds.

Table 4. TCP Tuning Parameters

Parameter Value
net.core.rmem_max 8388608
net.core.wmem_max 8388608

. 4096
net.ipv4.tcp_rmem 87380

8388608
4096
net.ipv4.tcp_wmem 65536
8388608
net.core.netdev_max_backlog 250000
net.ipv4.tcp_no_metrics_save 1
net.ipv4.tcp_moderate_rcvbuf 1
MTU 9000

With the above configuration, the average bandwidth of the
data transfer was 922 Mbps between JPL and Amazon’s US
West datacenter. It was likely that the transfer was
bottlenecked by the local gigabit Ethernet connection used
internally at JPL. This test result indicates that low
throughput can possibly be caused by networking within a
user’s own facilities and is not necessarily restrictions at the
cloud.

As seen in the traceroute output in Figure 5, three RTT trials
between JPL and Amazon US West resulted in latencies of
15.350, 15.758, and 15.413 ms.

CPU Cache Throughput

Computational applications that perform large amounts of
iteration with tight inner loops are heavily reliant on CPU
cache to keep processor pipelines full, allowing a CPU to
approach 100% processing load. CacheBench is a single-
process program designed to test CPU cache throughput. It
is configured to run on a single EC2 instance using a
maximum vector length of 2% bytes and on the baseline
system with a maximum vector length of 2°' bytes. All
results are taken from CacheBench’s hand-tuned tests (read,
write, read-modify-write) that are more robust against
varying compiler optimizations.

Table 5. CacheBench EC2 Configuration
Instance Type ccl.4xlarge

[N Amazon Linux
2.6.35.14-

Kernel 95.38.amzn1.x86 64

Hyper-Threading Enabled

MTU 1500

C Compiler gec4.4.5

Table 6. CacheBench Baseline Configuration

Model Apple iMac 12,2
[N Fedora 16
Kernel 3.1.0-7.£c16.x86 64
Hyper-Threading Enabled
MTU 1500

C Compiler gec 4.6.2

CacheBench Read Performance (Higher is Better)

30000
Amazon EC2 Read

===Baseline Read (iMac)
25000

20000

15000

MB/s

10000
5000

0
2.6E+02 2.0E+03 1.6E+04 1.3E+05 1.0E+06 8.4E+06 6.7E+07 5.4E+08 4.3E+09

Vector Length (bytes)
Figure 1 - Performance Curve for CacheBench Read
Test

CacheBench Write Performance (Higher is Better)

35000 Amazon EC2 Write

==Baseline Write (iMac)
30000

25000

20000

MB/s

15000
10000
5000

0
2.6E+02 2.0E+03 1.6E+04 1.3E+05 1.0E+06 8.4E+06 6.7E+07 5.4E+08 4.3E+09
Vector Length (bytes)

Figure 2 - Performance Curve for CacheBench Write
Test

CacheBench Read-Modify-Write Performance (Higher is

Better)

50000
‘Amazon EC2 RMW
45000

=—Baseline RMW (iMac)

40000

35000

30000

§ 25000
2

20000

15000

10000

5000

0
2.6E+02 2.0E+03 1.6E+04 1.3E+05 1.0E+06 8.4E+06 6.7E+07 5.4E+08 4.3E+09

Vector Length (bytes)

Figure 3 - Performance Curve for CacheBench RMW
Test

The newer Intel Core 17-2600 in the baseline system runs at
a higher clock frequency (3.4 GHz) than the Intel Xeon
X5570 in the Amazon instance (2.93 GHz). Since the
benchmark is a single-threaded test, this clock difference is
likely responsible for the higher throughput achieved by the
iMac in the read and write tests.

Curiously, the higher throughput achieved by the Amazon
instance for smaller vector lengths of the RMW test is
inconsistent with the rest of the results. This behavior might
be due to internal differences between the Linux 2.6.35

kernel used on the Amazon instance and the Linux 3.1.0
kernel used on the baseline system.

Effects of the memory hierarchy on throughput are visible in
the results of both systems in Figure 1, Figure 2, and Figure
3. The amounts of L1, L2, and L3 cache are the same in
both systems, and throughput drops sharply once the vector
length increases beyond data cache boundaries at 32 KB,
256 KB, and 8 MB respectively.

RAM Throughput

RAM has significantly higher throughput and lower latency
than mass storage devices, like hard drives, but unlike CPU
cache RAM storage is still large enough to hold significant
amounts of problem data. Similar to CPU cache, the ability
to quickly move data to and from RAM minimizes how
much time a processor is kept idle.

The SingleSTREAM section of the HPCC benchmark suite
is used to test RAM throughput. Each test of the benchmark
reads data from memory and optionally performs an
operation on it before writing the value to memory. The
copy test performs no floating-point operation on the read
data. The scale test multiplies the read data by a constant.
The sum test reads two values from memory and adds them
together. The triad test reads two values from memory,
multiplies one value by a constant, and adds the second
value before writing back to memory. Like the name
suggests, SingleSTREAM is a single-process benchmark.

Table 7. HPCC/SingleSTREAM Instance Configuration
Instance Type ccl.4xlarge

[N CentOS 5.4
Kernel 2.6.18-164.15.1.¢l5
Hyper-Threading Disabled
MTU 9000
C/C++ Compiler icc/icpe 12.1
Fortran Compiler ifort 12.1
Math Library Intel MKL
MPI OpenMPI 1.4.3

(1 process/core)

Table 8. HPCC/SingleSTREAM Baseline Configuration

Model Apple iMac 12,2
oS Fedora 16
Kernel 3.1.0-7.fc16.x86 64

[ksshams@s;x ~]$% traceroute 50.18.119.228

Hyper-Threading Disabled
MTU 1500
C/C++ Compiler icc/icpe 12.1
Fortran Compiler ifort 12.1
Math Library Intel MKL
MPI OpenMPI 1.4.3
(1 process/core)

SingleSTREAM Throughput (Higher is Better)

13.7 138

135 138
89||;5 [:s||:7 [
Add Triad

Test Type

Figure 4 - Plot of SingleSTREAM Throughput Results

121 121 121 121

83||82 ’5||79

Copy

Amazon EC2
M Baseline (iMac)
™ Mac Pro*
Core i7-2600*
* User-
submitted

STREAM
results

Scale

On all STREAM tests, the baseline system demonstrates
roughly 3.5-4 GBps more throughput. However, it is
important to point out that the baseline system’s Intel Core
i7-2600 uses the newer Sandy Bridge architecture than the
Nehalem architecture used by the Amazon instance’s Intel
Xeon X5570.

For context, two sets of additional STREAM results are
included from the STREAM website’s user-submission
listings: one from a Mac Pro 4,1 and one from a Core i7-
2600 system [9] [10]. Despite configuration and OS
differences with the user-submission results, the Amazon
instance demonstrates comparable throughputs to the Mac
Pro that is equipped with a similar Intel Xeon X5550.
Likewise, the baseline system shows throughputs similar to
the user-submitted Core i7-2600 results. It makes sense that
the processor family affects memory throughput due to the
fact that both the Nehalem and Sandy Bridge architectures
include the integrated memory controller within the CPU.

Considering that the user-submitted STREAM results were
obtained without running inside a VM, it demonstrates that
the virtualization layer used by Amazon EC2 HPC instances

traceroute to 50.18.119.228 (50.18.119.228), 3@ hops max, 40 byte packets

b301-264-edge-v129.jpl.
b171-rtr@-230.jpl.nasa.
hpr-riv-hpr——Llosnettos.
lax-hpr2--riv-hpr2-1@g.
svl-hpr2—lax-hpr2-10g.

el
S e -~ =R = = L L

nasa.gov (137.78.29.1)
gov (137.78.12.175)
cenic.net (137.164.27.193)
cenic.net (137.164,25.33)
cenic.net (137.164.25.38)

hpr-amazonpaix--svl-hpr.cenic.net (137.164.26.182)
72.21.222.196 (72.21.222.196)

72.21.222.229 (72.21.222.229)

216.1B2.236.72 (216.1B2.236.72)
216.182.236.65 (216.18B2.236.65)
216.182.237.85 (216.182.237.85)
ec2-50-18-119-228.us-west-1.compute.amazonaws.com (50.18.115.228)

29.10B ms

23.651 ms
20.2BB ms
15.702 ms
15.251 ms

9.340 ms
16.584 ms

22.198 ms

20.360 ms
15.275 ms
15.082 ms
15.308 ms

0.366 ms
16.531 ms
20.810 ms
27.76B ms
33.825 ms
34.149 ms
22.13B ms
20.530 ms
15.242 ms
15.183 ms
15.28B8 ms

0.421 ms
16.561 ms
20.B3B ms 20.B65 ms
27.801 ms 27.B22 ms
33.258 ms 33.375 ms
32.952 ms 32.0900 ms

15.35@ ms 15.758B ms 15.413 ms

Figure 5 - Traceroute Output between JPL and AWS

4

does not significantly hinder raw memory throughput.

Mass Storage Throughput

Traditional mass storage devices, such as hard drives, are
one of the greatest bottlenecks in a computer. Even newer
solid state drives have throughputs an order of magnitude
slower than RAM. Since scientific computing frequently
requires large datasets, slow mass storage access can
degrade overall system performance.

Bonnie++ is a program that measures mass storage
throughput by writing and reading a series of large files to a
device. The mass storage devices themselves were provided
through the Elastic Block Store (EBS) service of Amazon
Web Services (AWS).

For testing the Amazon instance, a RAIDO array is setup
using four 200 GB EBS volumes with mdadm (Linux
software RAID). This array is formatted with ext3. Because
the physical hardware is abstracted away from the user in a
cloud environment, little extra work is needed to provision a
higher-throughput RAID array over a single monolithic
volume. In order to stress the throughput of the array,
Bonnie++ is run in parallel mode with four processes each
writing 89 GB of data. This large write size prevents
artificial performance inflation from aggressive UNIX I/O
caching with RAM.

The baseline system uses a different configuration
consisting of a single 776 GB ext3-formatted partition.
Bonnie++ is run in parallel mode with four processes each
writing 32 GB of data.

Table 9. Bonnie++ Instance Configuration
Instance Type ccl.4xlarge

oS Amazon Linux
2.6.35.14-

Kernel 95.38.amzn1.x86 64

RAM 23 GB

Hyper-Threading Enabled

MTU 1500

C Compiler gcc 4.4.5

Table 10. CacheBench Baseline Configuration

Model Apple iMac 12,2
[N Fedora 16
Kernel 3.1.0-7.fc16.x86 64
RAM 8 GB
Hyper-Threading Enabled
MTU 1500

C Compiler gec 4.6.2

Bonnie++ Throughput (Higher is Better)
300.0

248.5
250.0

200.0

150.0

MB/s

Amazon EC2
100.0 S0.5 852

54.6 55.8
50.0 24.8

0.0
Block Write Throughput Block Read Throughput

M Baseline (iMac)

Block Rewrite
Throughput
Test Type

Figure 6 - Plot of Bonnie++ Throughput Results

Bonnie++ Random Seek Performance (Higher is Better)

Baseline (iMac) - 73

Amazon EC2 466.9

Cloud Instance Type

0 50 100 150 200 250 300 350 400 450 500
Seeks/s

Figure 7 - Plot of Bonnie++ Random Seek Results

The baseline system posts similar read and write
throughputs with a significantly lower rewrite throughput.
In comparison, the EC2 instance achieves nearly three times
as much read throughput as the baseline system but only
about 60% of the baseline write throughput. The EC2
instance experiences nearly identical write and rewrite
throughputs. Considering that the EC2 instance is equipped
with a RAIDO array, the lagging write throughput might
indicate a performance bottleneck imposed by virtualization
or some other abstraction present in the EBS service.

In the random seek test, the Amazon instance performs over
six times as many random seeks per second compared to the
baseline system. This performance difference is likely due
to higher performing storage devices being used underneath
the EBS service.

Inter-Process Latency

One way of thinking about a computing cluster is as a
means of operating multiple computers as if they were a
single computer. From this perspective, the cluster’s local
network is similar to a system bus. It is for this reason that
the latency between nodes needs to be as low as possible,
and the throughput between nodes needs to be as high as
possible. Poor network performance slows message passing
and data access between nodes.

Latency is measured between Message Passing Interface
(MPI) processes by a subtest of the HPCC that performs an
MPI ping-pong test between processes using an 8-byte
message. The HPCC is run on a 30-node cluster of HPC
EC2 instances comprised of 240 cores.

Table 11. HPCC/MPI Ping-Pong Instance Configuration
Instance Type ccl.4xlarge

[N CentOS 5.4
Kernel 2.6.18-164.15.1.el5
Hyper-Threading Disabled
MTU 9000
C/C++ Compiler icc/icpe 12.1
Fortran Compiler ifort 12.1
Math Library Intel MKL
MPI OpenMPI 1.4.3

(1 process/core)

Table 12. MPI Ping-Pong Latency Results

Maximum RTT 97.066 s
Average RTT 82.544 s
Minimum RTT 32.008 ps
Number of Trials 1225

Worst Case MPI Latencies (Lower is Better)

HPCEC2 97.066
.
2
%
3
=}
8 EC2 (Walker) ~230
2
€
]
o
NCSA (Walker) ~10
0 50 100 150 200 250

Latency (usec)

Figure 8 - Latency Comparison with Walker's Tests [1]

Benchmarks performed by Walker in 2008 showed a non-
HPC EC2 cloud cluster experiencing worst-case MPI
latencies of about 230 ps [1]. These latencies were shown to
be consistent between message sizes of 0 to 1 MB. In the
same benchmarks, the Abe cluster at the National Center for
Supercomputing ~ Applications (NCSA) demonstrated
consistent sub-20 ps latency between MPI processes [1].

It should be pointed out that Walker used a different
benchmark program, mpptest, and a different distribution of
processes across nodes to measure MPI latency. However, it
is still valuable to compare worst case latencies that would
occur between MPI processes housed on different nodes.
While the HPC EC2 cluster tested here exhibits over 100 ps
lower worst-case MPI latency compared to the previous
non-HPC EC2 cluster, performance still lags behind a
dedicated cluster using Infiniband (like the Abe cluster).
Higher MPI latencies in the cloud will likely degrade
performance when running parallel applications that require
large amounts of cross-node data access on a cluster with
many nodes.

Inter-process Throughput

Inter-process throughput is measured using the same MPI
ping-pong setup as the Inter-process latency benchmark.
The primary difference between the two inter-process
benchmarks is that a 2 MB message size is used for this
throughput test.

Table 13. MPI Ping-Pong Throughput Results

Minimum

Average

Throughput 532.414 MBps
Maximum

Number of Trials 484

Worst Case MPI Throughput (Higher is Better)

HPCEC2 330.631

EC2 (Walker) ~20

Compute Cluster

0 50 100 150 200 250 300 350
Throughput (MBps)
Figure 9 - Throughput Comparison with Walker's Tests
1]

Again, it is valuable to compare the worst-case MPI
throughputs between HPC and non-HPC EC2 clusters using
results from Walker in 2008. While the maximum message
size used by Walker was 1 MB, the non-HPC EC2 cluster
asymptotically approached about 20 MBps of inter-process
MPI throughput as message size increased [1]. The worst-
case throughput experienced on the HPC EC2 cluster was
331 MBps as shown in Table 13. This order of magnitude
difference in throughput is likely due to the improved
network infrastructure of the HPC EC2 instances (with a
promised 10 Gbps of full bisection bandwidth between
instances within the same placement group). Both the 10
GigE interconnect and bisection features are not provided
for non-HPC instances. The increased MPI throughput
between processes will greatly improve the dissemination of
problem data.

Inter-node Throughput

Similar to the Internet throughput benchmark, iperf 2.0.5 is
used to test throughput between two EC2 nodes within the
same placement group. A 1 MB TCP window size is used
on both the transmitter and receiver. Tests are conducted
using a single stream and 10 parallel streams of data
transfer, both with a 10 second transfer duration.

iperf Inter-node Throughput (Higher is Better)

Ten Streams 8.39

Number of Streams

Single Stream 8.04

0 1 2 3 4 5 6 7 8 9
Throughput (Gbps)

Figure 10 - Inter-node iperf Throughput Results

Even with a single data transfer stream, over 8 Gbps of
throughput was achieved between the two instances. Using
10 streams resulted in roughly 5% increased throughput.
The small disparity between the results of these two tests
indicates that few to no packets were being dropped. The
usage of over 80% of the theoretical capacity verifies that
instances are connected with 10 Gigabit links.

4. APPLICATION BENCHMARK RESULTS
High Performance Linpack (HPL)

HPL is a benchmark that solves large systems of equations
across multiple processes on multiple machines and is a part
of the HPCC. MIT’s StarCluster 0.92rc2 is used to setup a
cluster of 30 EC2 instances composed of 240 cores. The
HPL benchmark is run on this cluster using the instance
configuration shown in Table 14.

A problem size (N) of 221,760 and block size (NB) of 168 is
used for the HPL test. Values of P and Q are 10 and 24,
respectively. Theoretical cluster performance is calculated
by multiplying the maximum number of instructions per
cycle (4) by the number of physical cores (240) by core
clock frequency (2.93 GHz).

Table 14. HPCC/HPL Instance Configuration
Instance Type ccl.4xlarge

oS CentOS 5.4
Kernel 2.6.18-164.15.1.el5
Hyper-Threading Disabled
MTU 9000
C/C++ Compiler icc/icpe 12.1
Fortran Compiler ifort 12.1
Math Library Intel MKL
MPI OpenMPI 1.4.3

(1 process/core)

Table 15. HPL Results

HPL Tflops 2.00896 TFLOPS
HPL time 3619.03 s
Theoretical 2.8128 TFLOPS
Performance

Percent of Peak 71.4%

HPL Results (Higher is Better)

Achieved Performance 2.00896

0 0.5 1 15 2 2.5 3
TFLOPS

Figure 11 - HPL Computational Performance Results

Results achieved with this 30-node cluster are a significant
improvement over earlier HPL tests that used clusters of
non-HPC EC2 instances. Due to multiple factors, Napper
and Bientinesi achieved sub-40% of peak performance on
HPL tests that involved more than one node, and the largest
cluster size of 16 nodes achieved less than 10% of peak
performance [2]. The Intel-based instances used in these
tests had only 7 GB of RAM per node, which limited the
HPL problem size. Additionally, it was suspected that slow
network interconnects hampered performance as cluster size
increased. These insights are consistent with the poor MPI
network performance experienced by Walker in 2008 [1].
Most likely, the improved HPL performance witnessed here
is attributable to the HPC instances’ 10 GigE interconnects
and improved hardware specifications. The performance and
scalability disparity is too large to be attributed to only OS
and library differences.

Hadoop Image Processing

The final benchmark is a real-world application pulled from
NASA’s Lunar Mapping and Modeling Project (LMMP).
LMMP is a dataset collection system that stores lunar
surface maps from multiple missions. In order to allow for
low-powered computing devices to efficiently view surface
maps, full-size surface maps need to be resized to various
zoom-levels and subdivided into tiles so that sub-regions
can be easily retrieved. This process of resizing and tiling is
accomplished using Hadoop.

For benchmark purposes, zoom-level tiles are generated for
both a lunar and a Martian surface image. The image of the
moon’s south pole was captured by NASA’s Lunar
Reconnaissance Orbiter (LRO) and has a size of 273,052 by
273,052 pixels (~74.5 gigapixels). The Martian image is a
mosaic composed of multiple images from the HiRISE
project and has dimensions of 162,949 by 224,000 pixels
(~36.5 gigapixels). In order to focus the benchmark on the
processing and network aspects of the task, distributed
storage is setup between RAM disks created on each
instance.

Each zoom level of a surface image comprises a single job.
The number of zoom levels scales with the size of the
original surface image. Processing of higher zoom levels
performs less image shrinking and outputs more image tiles.
The amount of processing generally scales with zoom level.
The highest levels of processing take slightly less time than
the second highest levels because at the highest level, image

tiles are only resized and do not need to be passed between

nodes.

Table 16. Hadoop Instance Configuration

Instance Type

ccl.4xlarge

[N Amazon Linux
2.6.35.14-

Kernel 95.38.amzn1.x86_64

Hyper-Threading Enabled

MTU 1500

Hadoop Version 0.20.2

Java Version

Oracle SE 1.6.0 21

Distributed Storage

464 GB (16 GB RAM
disk / node)

Processing Elapsed Time, Lunar Image (Lower is Better)
14:24

12:00
9:36

7:12

Time (min:sec)

4:48
2:24

0:00 700 9 8 7 6 5 4 3 2 1 0

Amazon EC2| 8:52 11:27 3:17 1:16 0:48 0:34 0:29 0:31 0:21 0:22 0:21
Zoom Levels

Figure 12 - Elapsed Times for Lunar Image Tiling

Processing Elapsed Time, Martian Image (Lower is Better)
3:50

3:21
2:52
2:24

1:55

Time (min:sec)

1:26

0:57

0:28

0:00 9 8 7 6 5 4 3 2 1 0

Amazon EC2| 3:20 3:28 1:30 0:58 0:42 0:35 0:28 0:24 0:21 0:28
Zoom Levels

Figure 13 - Elapsed Times for Martian Surface Image

Tiling

With fewer than 30 nodes in the cluster, no single job took
long than 15 minutes to process. Given the elastic nature of
provisioning cloud instances, these processing times could
be decreased further by increasing the number of nodes in
the cluster.

5. CONCLUSIONS

Compared with performance evaluations from a few years
ago, the capabilities of commercially available cloud
services show promising improvement for running instances

in a cluster configuration. Not only has the hardware
capacity of instances increased, allowing for more
processing to be performed per node, but the local network
performance between instances has improved to the point
where running real distributed applications across clusters
hosted in the cloud is now feasible.

The idea of performing large-scale distributed computation
in the cloud is still in its infancy. Vendors will continue to
upgrade instance hardware and deploy faster interconnects if
demand is present. Additionally, this work only laid out a
broad series of benchmarks, and additional work is needed
to explore specific system aspects in-depth, such as mass
storage /0O, local network performance, and pricing
economics.

Even though NASA has supercomputing facilities, like
Pleiades at Ames Research Center, NASA has already
recognized that there exists a niche for cloud computing
services that are highly elastic and quick to provision [3]. As
the benchmark results in Section 3 and 4 demonstrated,
commercially available cloud services have overcome their
initial performance scalability problems. These cloud-based
clusters are not meant to compete for the same processing
tasks as dedicated supercomputers, but the cloud offers an
exciting new tool for scientists to explore modestly sized
problems with low barrier to entry.

6. ACKNOWLEDGEMENTS

The research described in this paper was carried out at the
Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics
and Space Administration.

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

[10]

REFERENCES

E. Walker, “Benchmarking Amazon EC2 for high
performance scientific computing,” ;login: The USENIX
Magazine, vol. 33, no. 5, pp. 18-23, 2008.

J. Napper and P. Bientinesi, “Can Cloud Computing
Reach the TOP500?” in Proc. UCHPC-MAW °09,
2009, pp. 17-20.

J. Williams, “NASA Nebula in Action: Cloud
Computing Case Examples,” Nebula Cloud Computing
Platform, Aug. 16, 2011. [Online]. Available:
http://nebula.nasa.gov/media/uploads/nasa-nebula-in-

action.pdf

C. Babcock, “Amazon Launches High Performance

Computing Service,” InformationWeek, July 14,2010.

[Online]. Available:

http://www.informationweek.com/news/hardware/utility
ondemand/225800070

TOP500.0rg, “Amazon EC2 Cluster Compute
Instances,” TOP500 Supercomputing Sites, June 2011.
[Online]. Available:
http://www.top500.0org/system/ranking/10661

Amazon EC2 Team, “Announcing a new Amazon EC2
Cluster Compute Instance (cc2.8xlarge),” AWS
Developer Forums, November 15, 2011. [Online].
Available:
https://forums.aws.amazon.com/ann.jspa?annIlD=1247

J. Brodkin. “$1,279-per-hour, 30,000-core clutser built
on Amazon EC2 cloud,” Ars Technica, Sept. 21, 2011.
[Online]. Available:
http://arstechnica.com/business/news/2011/09/30000-
core-cluster-built-on-amazon-ec2-cloud.ars

J. Dongarra, “HPC Challenge Benchmark,” Innovative
Computing Laboratory: The University of Tennessee,
June 1, 2010. [Online]. Available:
http://icl.cs.utk.edu/hpcc/index.html

S. Ludwig, “Re: stream_c results for Mac Pro,”
STREAM Mail Archives for 2009, Oct. 23, 2009.
[Online]. Available:
http://www.cs.virginia.edu/stream/stream mail/2009/00
09.html

G. Bisseling, “Stream Results,” STREAM Mail Archives
for 2011, June 28,2011. [Online]. Available:
http://www.cs.virginia.edu/stream/stream mail/2011/00
02.html

BIOGRAPHIES

David Knight is an Application Software
Engineer at NASA’s Jet Propulsion
Laboratory (JPL) where, as a college
intern in 2010, he previously developed a
WebGL front-end for rendering terrain
| data from the Lunar Mapping and

Modeling Project (LMMP). He received
a B.S. in Electrical Engineering from
Oregon State University in 2009 and a M.S. in Electrical
Engineering from Stanford University in 201 1.

George Chang is a Senior Software
Engineer at NASA’s JPL. He developed
the surface image tiling approach and
corresponding Hadoop implementation
for LMMP. He started working at JPL as
a college intern, and in his 8 years so far,
he has been intimately involved with the
data systems, security, and infrastructure
of NASA’s Deep Space Network (DSN) and LMMP project,
in addition to his work for the Mars Exploration Rovers
(MER). He constantly tries to infuse new advances in
computer technology, such as cloud computing and mobile
devices, into his projects. He has a B.S. in Computer
Science from Cornell University, a M.S. in Computer
Science from Columbia University, and a M.B.A. from
UCLA’s Anderson School of Management.

Khawaja Shams is a member of the
" Operations Planning Software (OPS) Lab
at the NASA JPL. Khawaja develops
software that contributes to the
operations of a variety of robotic assets
including ground, airborne, and
waterborne robots, as well as robots on
Mars. He leads a variety of software
projects, and he serves as the Cognizant Engineer of server
side components for the Activity Planning and Sequencing
Subsystem (APSS) for the Mars Science Laboratory.
Khawaja works closely with the Office of the CIO at JPL to
co-lead the efforts to securely deliver the benefits of cloud
computing to missions across NASA. He serves as an
advisor on the CIO Technology Advisory Board (CTAB) at
JPL. Khawaja is currently pursing a Ph.D. in robotics at the
University of Southern California, holds a M.S. in Computer
Science from Cornell University, and a B.S. in Computer
Science from UC San Diego.

Tom Soderstrom serves as the IT Chief
Technology Officer at NASA’s JPL, where
his mission is to identify and infuse new IT
technologies into JPL’s environment.
Lately, he has sponsored an effort to bring
Cloud technologies to JPL and JPL fto the
Cloud. He has led remote teams and large
scale IT best practices development and
change efforts in both small startup and large commercial

companies, in international venues, and in the US
Government arena. Some of the companies has worked for
include Telos, enterWorks, User Technology Associates,
Digital Island, Exodus, Cable & Wireless, and Raytheon.
Tom has been both a frequent producer and consumer of
advanced collaboration and engineering tools and practices
as his ventures have always included a highly distributed
workforce that required advanced collaboration practices.

10

