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Abstract—NASA is currently developing the capability to deploy
deep space optical communications links. This creates the
opportunity to utilize the optical link to obtain range, doppler,
and signal intensity estimates. These may, in turn, be used to
complement or extend the capabilities of current radio science.
In this paper we illustrate the achievable precision in estimating
range, doppler, and received signal intensity of an non-coherent
optical link (the current state-of-the-art for a deep-space link).
We provide a joint estimation algorithm with performance close
to the bound. We draw comparisons to estimates based on a
coherent radio frequency signal, illustrating that large gains in
either precision or observation time are possible with an optical
link.
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1. INTRODUCTION
The Jet Propulsion Laboratory (JPL) is currently developing
technology to support optical communications with space-
craft in deep-space. A deep-space optical communications
link can support orders of magnitude larger data rates than its
radio-frequency (RF) counterpart for the same terminal mass
and power [1], [2]. The optical link may also be used to derive
range and doppler estimates, much as its RF counterpart.
We would expect that estimates of these parameters would
similarly see improvements in accuracy relative to the RF
case.

A complete ranging protocol must take into account errors
accumulated at many layers, including calibration errors,
relative-timing errors, parameter estimation errors, etc. In this
paper we will concentrate exclusively on the physical layer,
specifically, on the parameter estimation accuracy of a one-
way-link of the ranging system. Our analysis in this paper
quantifies the performance improvement that may be gained
by estimating parameters of an intensity modulated optical
signal, rather than those of a pure microwave-frequency
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tone, and provides an intuitive comparison of the physical
signal characteristics governing the accuracy in the two cases.
Hence our results address the gains in one component of the
error budget governing a complete ranging system.

Optical links in development at JPL utilize intensity-
modulation, noncoherent photon-counting receivers, and car-
riers in the infrared regime, from 2.1 to 2.6 μm [1]. These
choices are made to maximize the power efficiency of the
link and take into account constraints of current technology.
In this paper, we consider deriving measurements from this
optical telemetry link. Throughout we use the shorthand
‘optical’ to refer to an intensity-modulated infrared signal
received with a noncoherent photon-counting receiver. We
determine the accuracy with which one may measure phase,
frequency, and intensity of an optical signal. We extend
prior work on individual estimators in [3] to joint estimators,
deriving the joint Cramèr-Rao-Bounds (CRBs) and proposing
a joint estimator with error close the to bounds.

We compare the optical estimates to the conventional state-of-
the-art estimation from coherently demodulated microwave,
or radio-frequency (RF), carriers. Conventional RF science
is derived from a ranging clock, which may be modeled as a
sinusoid received in AWGN, see, e.g., [4, Chapter 3],

y)t+B Adpt )3πfrt φ+0 n)t+ (1)

where A is the signal amplitude, fr is the range clock
frequency, φ is the phase, and n)t+is additive white Gaussian
noise. An example is illustrated in Figure 1 for fr B 2 MHz.
Estimating the instantaneous phase, frequency, and amplitude
of the RF waveform allows one to determine properties of
processes that distort these parameters. For example, space-
craft range may be determined from the transmitter delay,
via an estimate of the phase, and velocity determined by the
induced doppler shift, via an estimate of the frequency. Anal-
ogous properties of the signal waveform may be extracted
from the photocurrent generated from an intensity-modulated
optical signal incident on a photon-counting detector. The
photocurrent, when normalized by the electron charge, is
modeled as a random Poisson point process, governed by a
rate function

l)t+B lp

∞∫
k=−∞

ρ)t kTr φ′+0 lb (2)

where lp denotes the peak photo-electron rate in pe/sec, ρ)t+
is the intensity pulse shape, satisfying 2 ≈ ρ)t+≈ 1, Tr

is the repetition period, φ′ is the phase, and lb is the mean
photo-electron rate from other sources, such as thermal2 and
dark noise 3. Figure 2 illustrates an example rate function and

2We assume thermal noise is multi-mode with sufficient number of modes to
justify a Poisson approximation
3Although dark noise does not, strictly speaking, generate photo-electrons,
for convenience we utilize units of photo-electrons for all electrons.
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a realization of a random point process, representing photo-
electron arrivals, induced by it. Analogous to the parameter
estimates obtained from an RF carrier, we may estimate
lp, Tr, and φ, based on observing photo-electron emissions
governed by the rate function l)t+.

Figure 1. Coherent Microwave (RF) Received Signal

Figure 2. Noncoherent Infrared (Optical) Received Signal

The paper is organized as follows. In Section 2, we establish
a model and general framework for studying the problem, and
derive the CRBs. In Section 3 we formulate a candidate joint
estimation algorithm. In Section 4 we review the analogous
results for the RF signal and draw comparisons utilizing
parameters for current state-of-the art links. In Section 5 we
briefly discuss the results.

2. PARAMETER ESTIMATION FOR A
DIRECT-DETECTED OPTICAL SIGNAL

In any implementation of a parameter estimation system,
many errors contribute to the overall performance, such as
clock drift, clock offset, transmitter and detector jitter, and
calibration. Here we determine the estimation error for a one-
way link, limited only by the received signal and noise powers
and observation times, and otherwise ideal.

Channel Model

We model the received signal as follows. A periodic repeating
optical pulse train is transmitted in vacuum. At the receiver,
the light is focused on an ideal photodetector. The ideal
detector has negligible thermal noise, and sufficient band-
width that individual photon arrival times may be observed
at its output. The output is a random photocurrent, which,
normalized by the electron charge, is accurately modeled as
an inhomogeneous Poisson process with rate function given
by (2).

The signal parameters are determined by the underlying com-
munications link, which we presume is implemented with
pulse-position-modulation (PPM), wherein time is divided
into slots of duration Ts, with Ts on the order of the pulse
width. It is convenient, in this context, to normalize time to

be in units of slots4, that is, defining

u
def
B t/Ts , (3)

the rate function of the inhomogenous Poisson process that
describes the photocurrent is expressed as

( )u+
def
B Tsl)uTs+B ns

∞∫
k=−∞

g)u kT φ+0 nb , (4)

where ns
def
B lp

∑
g)t+e t is the mean signal photo-electrons

per pulse, nb
def
B lbTs is the mean number of noise photo-

electrons per slot, T
def
B Tr/Ts is the repetition period in slots,

φ B φ′/Ts is the phase of the periodic waveform, and

g)u+B
f)uTs+∑
f)uTs+eu

(5)

is the normalized pulse shape. We assume a generalized
Gaussian pulse,

g)u+B
p

3a )2/p+
g˜r ) √u/a√p+, (6)

where )≤+is the Gamma function, a is the 2/e width of the
pulse, and p is the decay rate of the pulse tails. Figure 3
illustrates the pulse for a range of values of p. Throughout,
for convenience, we assume p is an even integer. This
parameterized pulse shape models a wide range of practical
pulse shapes, from Gaussian (p B 3), to square (large p, e.g.,
p B 21 or greater).

u

g
(u

)

p = 2
p = 10
p = 100

Figure 3. Generalized Gaussian pulse shapes for several
decay rates p.

Cramèr Rao Bounds

We treat the problem of estimating ns, T and φ. We assume
throughout that the unknown parameters are constant over the
observation period. We also assume that the noise mean nb is
known5. Estimates are based on the observation of photon
arrivals over an interval of duration Ti B KT . Suppose

4Note that this normalization is simply a unit conversion to units of time
in slotwidths at the receiver. This is done to simplify notation and make it
easier to generalize results, but does not imply the receive has knowledge of
the slotwidth.
5The noise mean is typically slowly time varying, and may be estimated with
an accuracy justifying this assumption.
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that we observe N arrivals at times }u1, u2, . . . , uN | . The
conditional log joint density of the collection of observations
is [5]

mpi p)}ui| , N+B∑ ∑
Ti
( )u+eu 0

∫ N−1
i=0 mpi ( )ui+ ,for N > 1∑

Ti
( )u+eu ,for N B 1.

(7)

Let θ B ]φ, T, ns ,̂ the vector of parameters we are esti-
mating. The Cramèr-Rao Bound (CRB), which bounds the
variance of an unbiased parameter estimate, is given by

FSCθi B
]
I)θ+−1

∣
i,i

(8)

where I)θ+is the Fisher information matrix

]I)θ+̂i,j B E

]
∂2mo p)}ui| , N+

∂θi∂θj

(
(9)

We have

∂2mpi p)}ui| , N+

∂θi∂θj
B

√
Ti

∂2( )u+

∂θi∂θj
du 0

N−1∫
k=0

2

( )uk+

∂2( )u+

∂θi∂θj

2

( 2)uk+

∂( )uk+

∂θi

∂( )uk+

∂θj
(10)

Let { )u+denote the (random) counting process induced
by ( )u+, and i)t+B d{ )u+/du–in our case, the resulting
normalized photo-current (a sum of discrete photo-electrons).
Note that

E)i)u++B ( )u+ (11)

Let h)u+be some deterministic function of u. Note that

∫
i

h)ui+B

√
i)u+h)u+du (12)

E

]∫
i

h)ui+

{
B

√
( )u+h)u+du (13)

Applying this to (10) yields

]I)θ+̂i,j B

√
Ti

2

( )u+

∂( )u+

∂θi

∂( )u+

∂θj
du (14)

Consider the )ns, φ+term in I)θ+. We have

∂( )u+

∂φ
B

nsp

ap

∞∫
k=−∞

g)w+)w+p−1 (15)

∂( )u+

∂ns
B

∞∫
k=−∞

g)w+ (16)

]I)θ+̂ns,φ B

nsp

ap

√
Ti

∫
k g)w+w

p−1
∫

k g)w+

ns

∫
k g)w+0 nb

du (17)

where, for concise representation, we put w B u kT
φ. We assume pulses are non-overlapping. That is, that
g)u+g)u kT+� 1 for all u for k NB 1. Since the pulse

tails decay exponentially, while w(p−1) grows polynomially,
the cross terms in the numerator are negligible. Similarly,
only the corresponding term (the pulse with the same shift) in
the denominator has a significant contribution. Hence

]I)θ+̂ns,φ �
K−1∫
k=0

nsp

ap

√∞

v=−∞

g2)v+vp−1

nsg)v+0 nb
dv (18)

B 1 (19)

which evaluates to zero since the integrand is an odd function.

Consider the )φ, T+term in I)θ+. Similarly, we have

∂( )u+

∂T
B

nsp

ap

∞∫
k=−∞

kg)w+)w+p−1 (20)

]I)θ+̂φ,T �
)nsp

ap

(2 K−1∫
k=0

k

√∞

v=−∞

g2)v+v2(p−1)

nsg)v+0 nb
dv (21)

where the approximation follows, as with the prior argument,
for non-overlapping pulses. In this paper, we will be inter-
ested in the case nsg)1+� nb, i.e., the high signal-to-noise
ratio regime. Under this assumption we have

]I)θ+̂φ,T �
)nsp

ap

(2 K)K 2+

3

√∞

v=−∞
g)v+v2(p−1)dv

(22)

B
K)K 2+nsp

2 )3 2/p+

3a )2/p+
(23)

By a similar analysis with the remaining terms, we have

]I)θ+̂ns,ns �
K

ns
(24)

]I)θ+̂φ,φ �Knsp

a2
(25)

]I)θ+̂T,T �K3p2 )3 2/p+ns

4a2 )2/p+
(26)

]I)θ+̂ns,T �1 (27)

It is straightforward to invert the Fisher information matrix.
In doing so, we obtain terms that are quadratic in K. Our
region if interest is in large K. Taking the K2 terms yields
the asymptotic (large K) CRBs

FSCT �κ
4a2 )2/p+

K3nsp2 )3 2/p+
(28)

FSCφ �κ
a2

Knsp
(29)

FSCns �
ns

K
(30)

where

κ B
2

2 3pa2Γ(2−1/p)
4Γ(1/p)

(31)
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We’ve factored CRBφ and CRBT into the product of the
CRB of the individual estimator-that is, the CRB when the
other terms are known-times a loss term κ. The loss term
depends only on the pulse shape via the parameters )a, p+.
Hence, the loss due to not knowing the other parameters is
a fixed constant that depends only on the pulse shape. The
signal photon number CRB is identical to the individual CRB.

3. JOINT PARAMETER ESTIMATION
In this section we develop a joint estimator for ]φ, T, nsˆthat
has performance close the to CRB. The estimator is formed
by iterating between the individual parameter maximum-
likelihood (ML) estimators.

Phase

Given estimates ) aT , ans+, of the period and signal rate, we
estimate the phase as

aφ B csi n c˜
φ̃

N−1∫
i=0

mpi
)
ansg ]ui φ ˆ̂T

[
0 nb

(
, (32)

where ]u T̂
def
B )u 0 T/3 n pe T+ T/3. This is the

approximate ML phase estimate if aT B T, ans B ns [3].

Intensity

The ML estimate of the intensity with )T, φ+known ans,ML,
satisfies

N−1∫
i=0

g)ui φ+

ans,MLg)ui φ+0 nb
�K (33)

If we approximate the pulse as uniform on ] β, β+and zero
otherwise, we have the approximation

ans,ML � 2

K
N[−β,β] 3βnb (34)

where N[t1,t2] is the number of arrivals on ]t1, t2 .̂ Estimate
(34) is the number of arrivals over an approximate pulse
duration, minus the mean noise arrivals on the same period.
However, if the phase is not known in the nsg)1+ � nb
regime, an accurate estimate of ns can be formed by simply
dividing the number of arrivals by the estimated number of
pulses

ans B
N[0,Ti]

aK
3βnb (35)

where aK B Ti/ aT .

Period

Given estimates )ans, aφ+, we estimate the period as

aT B csi n c˜
T̃

ansK 0

N−1∫
i=0

mpi )ansg)]ui
aφ ˜̂T+0 nb+

(36)

This is the approximate ML period estimate when ans B

ns, aφ B φ [3]. We find the maximum of (36) numerically,
using a grid search around a region of the true value. In doing
so, we assume prior knowledge of the parameter domain.
This is a valid assumption as the period will be known within
a range bounded by uncertainties due to transmitter clock
stability and Doppler predicts.

Joint Estimator

As suggested above, the joint estimator is formed by iterating
between the individual estimators, each given by the ML
estimator with the current estimates of the other parameters.
To initialize, we first obtain an estimate of the period by

setting aφ B 1, ans B 1 in aT . We then estimate ns via (35),

and iterations proceed by evaluating aφ, aT , ans, . . ., at each step
setting inputs )φ, T, ns+to their current estimate.

Unit Conversion

In the following section we draw comparisons to the estima-
tion errors for an RF signal. To draw comparable conclusions,
we convert the phase, period, and photon-number estimates
to range, (normalized)frequency, and (normalized)power, re-
spectively. To do so, we assume the path time-of-flight,
Λ t B AT 0 φ, is known a-priori to within one period (A is
known, and √φ√≥ T 6), and the transmission path is vacuum.
This yields range, frequency, and power estimates:

r B cΛ t )m+ (37)

f B 2/)TTs+)Hz+ (38)

Pr B
nshc

TTsλ
)W+ (39)

where h is Planck’s constant, c is the speed of light in vacuum,
and λ is the carrier wavelength. It is a straightforward
exercise to convert the RMS estimator errors and CRBs
from phase, period, and photon-number, to the corresponding
errors and bounds on range, frequency, and power.

4. COMPARISON WITH ESTIMATION FROM A
COHERENTLY RECEIVED RF SIGNAL

As discussed earlier, the received RF ranging signal may be
modeled as a sinusoid in additive white Gaussian noise

y)t+B Adpt )3πfrt 0 φ+0 n)t+ (40)

where A is the signal amplitude (A B 3Pr where Pr is
the received power in the range signal), fr is the range clock
frequency, and φ is the phase. The additive noise n)t+is
Gaussian noise with power spectral density Sn)f+B N0/3
Watts/Hz on ] W,Wˆ and zero elsewhere. The signal is
sampled at rate fs B 3W . Put f0 B fr/fs. Estimates are
based on a collection of N samples

yn B Adpt )3πf0n 0 φ+0 wn (41)

where wn is an IID, zero-mean, Gaussian sequence with
variance σ2 B WN0. Approximate ML estimates and the
CRBs for estimating )f0, A, φ+are well known, see, e.g., [6].

6The notion of the period may been to be increased by sending a pseudo-
random sequences of pulses to make this a valid assumption
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We simply restate the results here:

FSCf0 �
7σ2

A2π2N3
(42)

af0ML �csi n c˜
f̃0

(((((
N−1∫
n=0

yn g˜r ) j3πf0n+

((((( (43)

FSCA B
3σ2

N
(44)

aAML � 3

N

(((((
N−1∫
n=0

yn g˜r )3π af0MLn+

((((( (45)

FSCφ B
9σ2

NA2
(46)

aφML �csdxco

) ∫ N−1
n=0 yn tlo)3π af0MLn+∫ N−1

n=0 yn dpt)3π af0MLn+

[
(47)

Table 1 compares the achievable RMS errors (RMS B
MSE ≈ FSC), or normalized versions, for ideal RF and

optical links (recall we use the high signal power asymptotes
for the optical case). We see similar behavior for each
parameter. The RMS phase error is inversely proportional
to the product of the power and the integration time, the
frequency error is inversely proportional to the product of the
power and the cube of the integration time, and the intensity
error goes as the power on the integration time. Hence the
slopes of RMS error versus either integration time or SNR
will be the same for RF and optical. In order to compare
performance requires a determination of the signal and noise
powers, which we treat for a sample pair of links in the next
section.

Representative Link Budgets for a Mars-Earth Downlink

In this section we compare two specific candidate Mars-
Earth downlinks: a Ka-band RF link with carrier frequency
43 GHz (wavelength =.4 mm), and an optical link in the
near-infrared with carrier frequency 2=4.6 THz (wavelength
2.66 μm). The link budgets are provided in Table 2. The
Ka-band link parameters are chosen to correspond to a Ka-
band Mars-Reconnaissance-Orbiter link [7], [8]. The optical
link parameters are chosen to correspond to the Deep-Space-
Optical Transceiver (DOT) concept [1]. The DOT concept
was designed to have comparable mass and power as the
Ka-band terminal. Hence the comparison is normalized
for comparable burden on the spacecraft terminal. These
represent current state-of-the-art candidates for a deep-space
telecommunications link.

For the optical link, we assume a receive telescope diam-
eter Dr B 22.9 m, corresponding to the Large Binocular
Telescope in southeastern Arizona. We choose Ts B 1.53
ns, a target slotwidth at a range of 1.53 AU. To be conser-
vative, we choose a worst case noise power for this link,
Pn B 4.39 r [ [1]. At long integration times, the noise is
negligible, reflected in the large signal power CRBs. From
these parameters, we find the received power from the link
equation

Pr B Pt

)
πDtDr

5Rλ

[ 2

η (48)

where R is the range and λ the carrier wavelength. From the

link budgets we obtain

ns B
PrTTsλ

hc
B 2.=6 )pe/pulse+ (49)

nb B
PnλTs

hc
B 1.12 )pe/slot+ (50)

For the RF link, we assume a receive antenna diameter Dr B
45 m, corresponding to a Deep Space Network antenna. We
assume a range clock modulation index of 1.9 rad, hence the
received power is [9]

Pr B Pt

)
πDtDrfc
5Rc

[ 2

η3J2
1 ) 3φr+ (51)

where J1 is a Bessel function of the first kind or order 2. From
the link equation we obtain

A2 B 3Pr B 1.16 )pW+ (52)

σ2 B N0W B 1.113 )pW+ (53)

Ka-band Link
f0 carrier frequency 43.1 GHz
fr range clock 2.1 MHz
φr range mod. index 1.9 rad
φc data mod. index 1.1 rad
Dt transmit diameter 4.1 m
Dr receiver diameter 45.1 m
η system efficiency 21 dB
No noise spectral density 289.56 dB-mW/Hz
W bandwidth 2.6 MHz
Pt transmit power 46 W

Near-Infrared Link
λ wavelength 2.66 μm
Dt transmit diameter 33.1 cm
Dr receiver diameter 22.9 m
η system efficiency 27.85 dB
αb noise spatial density 1.14 pW/n 2

Ts slot width 1.53 ns
p pulse shape 3
a pulse width 2/3
M B T PPM order 27
Pt transmit power 5 W

Table 2. Sample Ka-band and Infrared Link Parameters

Estimator Performance

Figures 4, 5, and 6 illustrates the CRBs for the operating
points in Table 2, along with the performance of the two joint
estimators described earlier: the (approximate) joint-ML RF
estimator, and the iterative optical estimator. We see that the
optical power estimate is robust, as we would expect, and
that joint optical estimation of frequency and phase performs
close to the CRB.

Since the errors behave the same as a function of the inte-
gration time, we see the difference in the RMS errors may
be factored into three constituent terms: a ratio of received
powers, a ratio of noise contributions, and a ratio of the
bandwidths of the signals. The ratio of the square of the
received power for our presumed budgets is 27 dB. This is
a result of the large divergence gain when transmitting at

5



RMS error

parameter pr xldcm SM

SRWrange)m+ c

)
2

TiPr

[ )
hc

λ

[ )
a2T 2

s κ

p

[
c

)
2

TiPr

[
)3N0+

)
2

)3πfr+2

[

SRWf
f

)
2

T 3
i Pr

[ )
hc

λ

[
4)aTs+2 )2/p+κ

p2 )3 2/p+

)
2

T 3
i Pr

[
)3N0+

)
4

)3πfr+2

[

SRWPr

Pr

)
2

PrTi

[ )
hc

λ

[ )
2

PrTi

[
)3N0+

Table 1. Comparison of achievable parameter estimation accuracies in the high SNR regime. h is Planck’s constant and c the
speed of light in vacuum.

optical wavelengths. The ratio of the noise contributions
relates the shot noise of the optical signal to the thermal noise
of the RF signal. As we have factored the terms, this benefits
the RF signal by approximately 9 dB. The final term is the
ratio of the signal features, or bandwidth, which appears as
)aTs5πfr+

2/p (note that for p B 3, the ratios of the constants
is the same). For our signals, this ratio is approximately 3=
dB. Hence we see gains on the order of 48 dB for range and
fractional frequency estimates, and on the order of 9 dB for
the power estimate, which doesn’t benefit from the bandwidth
gain.

Figure 4. Achievable RMS Range Error )m+for Example
RF and Optical One-Way Links. Solid line is the estimator
performance, dashed is the CRB asymptote.

5. CONCLUSIONS/DISCUSSION
In this paper we derived the CRBs and a candidate estimator
for joint estimation of the phase, period, and intensity of a
direct-detected intensity-modulated (optical) signal. We illus-
trated that the joint CRBs of phase and period are degraded
from the individual CRBs by a constant that depends only
on the pulse shape. We demonstrated the performance of an
iterative estimator with performance close to the CRBs. In

Figure 5. Achievable Fractional RMS Power Error for
Example RF and Optical One-Way Links. Solid line is the
estimator performance, dashed is the CRB asymptote

comparing the optical CRBs to those for the RF case, we see
the forms are analogous in their dependence on the integra-
tion time, signal power, noise power, and bandwidth, where
the RF analog of shot noise (photon energy) is N0, and the
RF analog of bandwidth (the reciprocal of the pulsewidth for
optical) is the range clock frequency. Hence the performance
difference between optical and RF systems comes down to the
realization of these parameters. We provided a sample com-
parison for sets of parameters taken from mass-and-power
normalized spacecraft terminals, illustrating several orders
of magnitude gain improvement in the CRBs for the optical
system over its RF counterpart. This addresses only one
aspect of a full ranging system. A complete comparison will
have to look at all error sources, including joint estimator of
unknown parameters, and resolution of the period ambiguity,
in a full, round-trip, ranging protocol.
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Figure 6. Achievable Fractional RMS Frequency Error for
Example RF and Optical One-Way Links. Solid line is the
estimator performance, dashed is the CRB asymptote.
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