
Procedia
Computer
Science

 Sindiy, Litomisky, Davidoff, and Dekens / Procedia Computer Science 00 (20153) 000–000

shortcomings of representation languages for MBSE or the tools used to implement them, but rather how MBSE
practitioners do not always take full advantages of the provided languages and tools to polish their visual products.

To address this problem, we recommend the use of techniques from information visualization—InfoVis for short.
InfoVis is an established discipline that stands at the intersection of computer graphics, graphic design, and interaction
design. InfoVis offers many guiding technique, where the intention is to encourage MBSE practitioners to use these
techniques to improve the quality of their outputs; in turn, improving the delivery of their message to their audience. We
have combined these basic principles with a number of examples drawn from previous work in aerospace and related
engineering disciplines, and have applied them to problems that are representative of outputs from Systems Modeling
Language (SysML) [1] and Unified Modeling Language (UML) [2] standards for representation of systems and software.

More precisely, the paper will demonstrate guidelines for structuring the layout, content, aspect ratio, colors, and many
other visual features of MBSE diagrams. It will also discuss how to take advantage of pre-build functionality in existing
modeling notions and stress the importance of keeping in mind human cognition concerns that also include considerations
for historically/culturally accepted viewpoint styles of the stakeholders and the final presentation media and venue(s). It
will also present a concept for how to move beyond static and traditional outputs/products from the very dynamic and rich
models, such that customer users can themselves manipulate the outputs of the models to address their real-time needs to
answer specific questions about the modeled system(s).

1.1. MBSE views for architecture description – an overview

To support the development of the complex systems, many systems engineers are applying formal model-based systems
engineering techniques, where MBSE is about “elevating models in the engineering process to a central and governing
role in the specification, design, integration, validation, and/or operation of a system” [3]. In this process, the tried-and-
true systems engineering practices are realized (and often improved) via formal modeling approaches. The application of
the MBSE allows for representing key aspects of the system architecture with a rich set of views extracted from a common
model-based repository, which provide a single authoritative source of the system architecture description. Each view
serves as a representation of a whole system from the perspective of a related set of concerns, and conforms to a viewpoint,
which is a specification of the conventions for constructing and using a view [4].

1.2. InfoVis – a rich field of study to pull from for MBSE

Information Visualization is the study of (interactive) visual representations of abstract data, both numerical and non-
numerical, to reveal patterns in data that would be otherwise difficult to find. The intention of this section is to briefly
introduce InfoVis as a field of study and then encourage the MBSE community to explore and learn from this rich field.

1.2.1. History of InfoVis
The following history is intended to provide pointers to major contributors from the various disciplines whose

convergence resulted in modern InfoVis. The list is not intended to be comprehensive, but rather, to allow those who are
interested to see the long history from which we draw, in linking InfoVis to MBSE.

Modern infographics trace their origins to the first quarter of the 18th century, where many historians credit political
economist W. Playfair [5] and mathematician J.H. Lambert [6] with the creation of the field. Even with their vastly
different backgrounds, Playfair and Lambert each arrived at the identical conclusion that they could understand their
complex data if they could develop disciplined ways to translate continuous values into graphical dimensions. In the 19th
century, French scientists J. Minard [7] and E.J. Marey [8] created the first infographics that were not created entirely by
hand. Marey, for example, was able to use the new field of high speed photography to take pictures of a horse in full
gallop. He then published the images side-by-side, in one of the first examples of the technique now called “small
multiples.” In the 20th century, modern computer graphics expanded the quantity of data that could be captured and
examined, and allowed for the customization of techniques to match the needs of various data types. George Furnas, for
example, demonstrated that a fish-eye lens might be used to provide an area of focus, while maintaining the larger context
in which the image resides [9].

 Sindiy, Litomisky, Davidoff, and Dekens / Procedia Computer Science 00 (20153) 000–000

1.2.2. InfoVis Resources
While developments in computing have enabled substantial changes to the discipline and methods of InfoVis, the

contributions from the tradition of graphical design have maintained a currency, and many are still used as the standard
texts in academic settings. The principles of modern Typography, for example, were codified in 1928 by J. Tschichold,
whose text [10], remains the universal standard on the principles that govern the creation and use of fonts. Similarly, J.
Muller-Brockman’ seminal work on the organizing principle of the grid, [11] also speaks with a clearly modern voice, and
its influence can be seen in nearly every modern print production, from the newspaper’s column layout, to the ways they
display stock prices, and baseball statistics. J. Tukey [12] contributed many of the standard plots that form the basis for all
charting in software like Microsoft Excel, and individuals like E. Tufte have organized this diverse history into a more
explicable set of principles [13, 14, 15], many of which we draw on in this paper to provide a higher-level perspective on
infographics, and R. Spence provides an overview of basic practices and principles [16].

Modern InfoVis provides a very dynamic and rich field of content to draw from. In this field, IEEE InfoVis [17] is
considered a top tier research conference that produces 40 research publications annually. Online sources like the InfoVis
Wiki [18] and Information Aesthetics [19] digest, organize, and present to a more research audience, while the EYEO
festival [20] combines research experiments with cutting edge artistic practice, to create an interdisciplinary forum. MBSE
community merely needs to explore and infuse from this field to improve the quality of its output products.

2. InfoVis patterns for MBSE

This section provides an example set of guiding patterns for visualization of output views from MBSE efforts, along
with references to example case studies. These patterns follow Robert Rasmussen’s mantra for MBSE practices, including
diagram generation: “a good pattern adheres strongly to aesthetics, experience, and fundamental principles.”

Scope and context of viewpoint abstraction for view generation:
Every MBSE viewpoint must provide a template for answering some small set of core questions about the system for

the customer stakeholders, which could not be otherwise easily answered. That is, a viewpoint must identify and meet the
needs of the target audience and their specific concerns. Each viewpoint must be well scoped (at times, even carefully
limited in amount and type of data presented) so as to make the generated views easy to draw inferences from. This is not
simple, but if well thought out, can bring much needed order to chaos.

In generating the viewpoints, a search of historically similar efforts will often reveal the expected viewpoints which
will address the needs of various stakeholders and their concerns. At times, the viewpoints may not align with the MBSE
practitioners preferred way of representing and displaying data, but as long as the technical correctness is maintained, the
target audience’s expectations/comfort should be given higher priority. If historical viewpoints do not exist for a particular
data set and stakeholder’s concern, then the viewpoints should be designed in collaboration with the target audience.

Careful consideration must also be given for separating related but different data that answers different questions. Such
consideration will drive the number of viewpoints that need to be abstracted and how to present the relationships between
the content of those viewpoints, as each viewpoint provide a targeted look into the description of the system architecture.

Presentation media and venue:
Based on whether the presentation media will be electronic and/or hardcopy, or is for reports versus presentation, or

stand alone or part of a larger package, will drive some of the visual presentation properties of the generated views. These
include but are not limited to properties such as font size and type, aspect ratio of the diagram (e.g., landscape vs. portrait
orientation), amount of text versus symbols and images, and so forth. This also includes considerations that there are cases
when the same views may need to modified for different venues. A case study example of this is presented in Section 5.

Consistency:
Albeit often impossible to completely achieve, consistency from view to view and within views is highly desired.

Consistency can apply to minute details such as uniform application of a font type across all of the elements within a
diagram to the larger issues of the number of levels of decomposition to be shown for each decomposition.

Diagram information:
Each diagram is a vessel for maintaining and delivering its contents to the target customers. Maintaining the integrity of

the vessel is vital to the integrity of the contents inside it. As such, diagram information such as title, type, authorship,

 Sindiy, Litomisky, Davidoff, and Dekens / Procedia Computer Science 00 (20153) 000–000

revision, status, dates, and so forth should not be overlooked in abstracting viewpoints as templates for views. Of note:
equal thought should be given to what information about the diagram is needed to convey the message and what
information is superfluous; especially when some of it is auto generated and placed as a default by the software tool of
choice. Additionally, the modeling team should consider whether the diagram information content should be configured
globally for the entire modeling project; if applied, this would provide consistency by ensuring that each diagram has the
required basic information for the viewer.

A very special case of diagram information is a diagram legend. Most modeling tools support for a mini-diagram
within a diagram; that is, a view within a view. This allows modelers to create diagrams that are displayed on other views
as legends. One benefit of using such functionality is when the template or style for a given viewpoint is changed, the
Legend views dynamically change on all of the implementation views that they clarify, and as such, legends do not get
stale or need to be changed on all applicable views.

Use a grid system for alignment and more:
Grid systems are commonly employed to layout technical content because they provide visually appealing organization

and/or symmetry. There are a variety of very simple grid systems that can be used to organize the basic content of a
diagram, as shown in Fig. 1. Grids contain two basic elements: content space and gutters. Gutters separate and organize
content spaces. The most basic grids use a symmetrical pattern, where columns and rows are of equal sizes, and gutters
separate them by a fixed size. For example, in Fig. 2 when done correctly, even the basic web layout with a site banner on
top, and left-side navigation conforms to a grid. Fig. 2 shows how in a more complex grid, information can flow across
columns and rows. Even these complex structures still conform to the basic principle that content should avoid gutters, and
that symmetry is easier for human perception to parse.

Fig. 1. Example grid systems , including gutters Fig. 2. Application of a grid system to web design

We can use the simple systems diagram below to illustrate how to enforce the basic principles of graphic design, so that
the system that is modeled can be communicated in a more mature and clean way. While this example will demonstrate a
very basic application, the same principles can scale to more complex diagrams. For example, Fig. 3 violates the basic grid
by placing information in the gutters of both rows and columns. This disorganization leads to a diagram that is hard to read
because there is no natural visual composition. By conforming to the basic principles of the grid, however, this diagram
can easily and formulaically attain a simple but elegant, and more powerful composition. Though a number of grids could
be applied here, we focus on a 4-column format, which maps most simply to the current layout, as shown in Fig. 3.
Though row lines are not shown to simplify the diagram, their geometric format would follow the same basic principles.

The grid allows us to align each of the graphical elements on the page. We can re-align the blocks left-justified, though
center or right would also be correct, as long as they are applied consistently. Activities “A” and “D” can then be moved
into a single column. The same is true for Activities “C”, “B”, and “E.” Activities “B” and the Start and Finish are also
aligned into a single row. The grid aligned diagram, along with other patterns, is illustrated in Fig. 4.

 Sindiy, Litomisky, Davidoff, and Dekens / Procedia Computer Science 00 (20153) 000–000

Fig. 3. An example for violating basic grid layout and implementation of a 4-column grid to help align the data

Proportionality:
In the Fig. 3 example all of the boxes are of the same height and width, and the lines are of the same weight. This use

of proportionality introduces visual order that compliments the structured functional decomposition of this diagram.

Font – type and size:
Use of fonts should adhere to simple patterns throughout the views and the products they are used in (e.g., reports,

websites, presentations, etc.). The simplest rule is to use the same font type within and across all diagrams. More advanced
patterns include: using hierarchy of type, where the size of the font is proportional to the significance of the content; using
the same font for headlines; matching diagram font type to the products they are employed in; having no fonts smaller than
7 pt. Many of these patterns can be often configured within the software tools being employed to produce the views based
on predefined viewpoint templates/styles.

Use color sparingly and with intent:
It is recommended to use a muted color palette, and to use color selectively, so that it brings key information into focus,

as illustrated in Fig. 4. It is recommended to stay away from color that does not provide meaning. For example, in the
original example shown in Fig. 3, since all the boxes were the same color, it added little to the diagram. Despite the
capabilities of most graphing software, the ability to use color is a decision, and not an obligation. While elements like
shadows, gradients, and reflection can increase the visual sophistication when used correctly, they can also increase clutter
when used incorrectly, especially when used in abundance. In general, it is a good idea to err on the side of parsimony.

We must also keep in mind some of the audience may be color blind. Hence when using colors, for example for
different connections, we should also try to use different line styles along with it, such as dashed or dotted. This will also
help if some of the versions end up in non-colored products—e.g., when black and white photo-copies are made.

Focus on the information, not the form:
Draw attention to the information, not the form. In our example, since this diagram is about a small number of

relationships, and the shape of the box is not meaningful, the box adds little to the communication value of the design.
Since the meaning of this diagram is not the boxes but their relationship, Tufte would argue to remove the boxes so that
their relationships become clearer, as shown in Fig. 5. Similar rules apply to careful exclusion of meta-data of represented
entities; as such, in some cases it may be prudent to even exclude “Activity” from these boxes, if the title of the diagram
already implies a functional activity flow.

Fig. 4. An example use of color Fig. 5. An example of drawing attention to content, not the form

 Sindiy, Litomisky, Davidoff, and Dekens / Procedia Computer Science 00 (20153) 000–000

Graphical representations – images and icons:
Addition of images to represent the physical systems can be of great advantage in setting the context of many diagrams.

However, the same mantra of using color sparingly must be observed for images. Images are particularly useful in MBSE
when icons that are places on certain model elements. These icons have to be easy to identify and meet a standard among
the community. Abundant examples can be found in computer-aided design and drafting diagrams, circuit schematics, and
propulsion system schematics. By using the same icons that are standard for that domain, the diagrams become easier to
understand by the intended audience. One of the core values of the emerging representation languages (like SysML and
UML) is they provide a common standardized representation methodology for use across a breadth of modeling
practitioners. In Fig. 6, the example activity flow is reimagined to the viewpoint style of an UML Activity Diagram.

Fig. 6. Visual reconfiguration of the example activity flow into a UML Activity Diagram

In Fig. 6, most notably, the Start and Finish buttons are replaced with UML icons for start and finish, “Activity” text is
removed as UML boxes with rounded corners imply these are activities/actions, and we optionally selected to use
rectilinear path style rather than oblique option.

Abbreviations and acronyms:
In larger organizations and projects, use of abbreviations and acronyms is omnipresent. While a list of abbreviations

and/or acronyms is often provided for the content in the text of documents, such considerations are often overlooked for
diagrams. Ensuring that the audience can easily discern all abbreviations and acronyms within a diagram can play a larger
role toward understanding the content of a view, and as such considerations should be given to this concern.

3. Auto Diagram and Report Generation

The implementation of patterns described in the previous section does not need to be very manual and time consuming
task. Many of today’s MBSE tools already include capabilities to implement some of the discussed patterns by using
functionality on existing toolbars and/or through user defined “style sheets” for each viewpoint. However, the existing
automation capabilities still fall short of being to automatically generate complete diagrams and as such, some manual user
interaction is still required and needs to be planned for.

Additionally, progress has been made in using MBSE products to dynamically defined generate the required reports.
The purpose of such capabilities is to minimize the amount of time engineers must spend on report or presentation
generation via investment in automation of such products as outputs of MBSE efforts. One excellent example of such
efforts is described by M. Jackson in Ref. [21]. In this paper, the document is treated as another type of a modeled system,
which then queries the data (e.g., diagrams, tables, etc.) from the model of the technical system to populate the report.

4. A case study in applying InfoVis patterns for MBSE diagram aesthetics

Using a block definition diagram from SysML, Fig. 7 presents a decomposition of a space exploration mission where
majority of the InfoVis patterns described in Section 2 are violated. Although this diagram was produced by the authors to
demonstrate a point for this paper, it draws from many observed instances of MBSE products.

 Sindiy, Litomisky, Davidoff, and Dekens / Procedia Computer Science 00 (20153) 000–000

Fig. 7. Example diagram which is technically correct but violates basic diagramming patterns for view generation

At issue in block view of Fig. 7 is not the technical competency of the content but how it is presented. In response, by
applying the majority of the patterns of Section 2, the authors generated three equivalent views—Fig. 8, Table 1, and
Table 2—which present the same technical content as Fig. 7 but arguably in much more aesthetically pleasing and scope
appropriate manner.

Notably, the authors generated two additional non-diagram views—i.e., tables—that separate the science requirements
satisfaction mapping to the specific instances of science payload instruments and the unknown comment into a list of a
comments. This was done to limit the scope of the Mission Block Diagram view to a hierarchical decomposition of key
elements/blocks and present related content as complimentary data outputs in separate views. Additionally, the comment
with the text “this is an assigned mission” was removed from the new views and was instead placed into the description
property of the “Mission” block, which can be accessed separately, as it did not appear to be appropriate to the scope of
what the diagram view needed to convey—i.e., a hierarchical decomposition of core mission elements.

An example of how some of these patterns have been applied to a space exploration application problem—description
of the end-to-end information system of the Orion Multi-Purpose Crew Vehicle’s Exploration Flight Test 1—can be found
in Ref. [22]. Sindiy et al., provides an example of how careful attention to viewpoint abstraction and views generation has
enabled an MBSE effort to inform a wide and distributed set of program stakeholders about a complex design problem.

 Sindiy, Litomisky, Davidoff, and Dekens / Procedia Computer Science 00 (20153) 000–000

Fig. 8. Example of an improved diagram, using the diagraming patterns, with the same technical content as Fig. 7

Table 1. A mapping of mission science requirements/objectives to the instances of science instrument types that satisfy them

Requirement ID Requirement Name Requirement Text Satisfying Element(s)
1 science objective 1 [objective text] two instances of instrument type 1 and three instances of instrument type 3
2 science objective 2 [objective text] one instance of instrument type 2
3 science objective 3 [objective text] one instance of instrument type 4

Table 2. An example list of a centralized database view of mission architecture comments

Comment ID Type Text
U01 unknown It is currently unknown the number of ground station sites needed for this mission; further analysis is required.

5. MBSE via SysML - a proposal case study with two output venues/products

The patterns from Section 2 can be employed for purposes across the span of a project life cycle—from proposal
through system decommissioning. For example, when creating a MBSE model for a proposal using SysML, there are two
main audiences: the reviewers and the proposal team. Therefore, there are two types of diagrams that must be created to
represent the same data. First, there were the ones seen by the reviewers which had to be contained within the proposal
document. Here the need was to adhere to the same font style as the rest of the proposal images. For easy of reading and
clarity, all extra information such as diagram info, element stereotypes, etc. were removed. The size of images was chosen
such that it would be easily viewed when making it the page width. By contrast all of the views for the proposal team were

 Sindiy, Litomisky, Davidoff, and Dekens / Procedia Computer Science 00 (20153) 000–000

to be printed on a plotter and were hung on the walls of the war room. Their main purpose was to keep everyone on the
proposal team using the same naming conventions, and make sure everyone is aware of the current technical baseline.

6. Dynamic selection of MBSE output views – a case study in moving beyond pre-defined outputs

There are scenarios where the time necessary to produce the desired number of different views for the modeled system
exceeds the ability of MBSE practitioners to produce such views, as the availability of modelers and their time is
insufficient to meet the customer stakeholders’ demand for extracting information from the model-based architecture
descriptions. Regardless of whether this information has already been generated or needs to be generated in real-time, the
customer stakeholders must be able to extract the desired views that address their immediate needs on their own. Here, the
customer stakeholders would generate the views based on either a predefined set of viewpoints or, if technically capable of
doing so, venture as far as defining their own viewpoints based on the existing data in the models. A caveat to such a
capability is that any dynamic manipulation of the resulting outputs should guard against manipulation of the source data.

For users who are not highly proficient at MBSE, this requires the development of graphical user interfaces to
intuitively automate the translation of the data stored in the databases of centralized, single-source-of-truth models. We
have developed an application plugin towards this end. This plugin automatically generates hierarchical diagrams based on
the background specification matrices/models. The plugin is highly interactive, allowing the customer to select or remove
components easily and regenerating the diagram(s) to show only items that are of immediate interest. This approach has
the potential to transform the relationship between the customers and the architects/engineer/modelers by allowing
customization with immediate feedback through an interface that is easy to use for technical and non-technical users.

To illustrate the utility of implementing dynamic view generation, suppose we have a large, hierarchical database of
tools, where each tool has dependencies on additional model elements. Suppose further that for each of the many users, a
different subset of those tools is relevant. When trying to understand the relevant subset of the tools using traditional
approaches, a customer stakeholder has two options: first, the user can make a mental effort to ignore the elements that are
not of interest. This approach is of limited value, since the irrelevant elements will inevitably impede the communication
of the relevant technical information. The second option is to manually remove the irrelevant elements, which will
typically necessitate a redrawing of the diagram/view. This option is time-consuming, potentially prohibitively so. Auto-
layout features attempt to alleviate the problem of redrawing the diagram, but from our experience their results are
unpredictable and often unsatisfactory. However, auto-layout features address only half of the problem, since the user
must still manually create or remove elements as desired.

If we have prior knowledge about the structure of the model, and if we can use that knowledge to create some simple
rules governing the placement of objects in a diagram, we can automate the drawing process. Even further, we can use this
knowledge to automatically add elements to the diagram as well as to remove them from it, ultimately allowing the users
to interact with the model at a high-level. An example of such interaction could be “add to the diagram all of the
requirements satisfied by block A,” or “remove from the diagram all the components of block B”. Naturally, the diagram
should be automatically redrawn after each operation so as to show the information in a manner consistent with the
principles of generating diagrams that communicate effectively. As such, interacting with the model in this way allows
customer stakeholders to rapidly create effective views that are suited to their immediate needs. An additional advantage
of this approach is that it enables users to swiftly modify diagrams without any danger of corrupting the underlying model.

Our prototype of such a system allows users to add or remove elements from a diagram through high-level commands,
either one at a time or in logically-organized batches. It allows the user to hide and show details of components, both as
additional blocks and as information within existing blocks. A diagram generated using this process is shown in Fig. 9.
Compared with generating the same document manually, as had been done previously, this dynamic view generation
approach reduced the time it takes to generate views from the days to minutes while making the process less error-prone.

7. Conclusion

This paper introduced guiding patterns for Information Visualization of model-based systems engineering products.
The paper presented a brief introduction to MBSE for generation of views that can be employed to address stakeholder
concerns by answering specific questions about the modeled architecture description, a brief history and resources of
Information Visualization, guiding visual representation patterns for view generation, and a concept for allowing non-
modeling experts to dynamically generate custom views.

 Sindiy, Litomisky, Davidoff, and Dekens / Procedia Computer Science 00 (20153) 000–000

Fig. 9. Examples of real-time user customized views generated using a handful of high-level commands.

Acknowledgements

The work described in this paper was based on tasks managed out of the Jet Propulsion Laboratory, a division of the
California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

References

1. OMG Systems Modeling Language (SysML) Specification, Object Management Group (OMG), Version 1.2, 1 June 2010.
2. OMG Unified Modeling Language (UML) Specification, Object Management Group (OMG), Version 2.1.2, 4 November 2007.
3. J. A. Estefan,, Survey of Model-Based Systems Engineering (MBSE) Methodologies, Rev. B, INCOSE MBSE Initiative (2008), 10.
4. ISO/IEC Standard for Systems and Software Engineering - Recommended Practice for Architectural Description of Software-Intensive

Systems, ISO/IEC 42010 IEEE Standard 1471-2000, 1st Ed. (2007).
5. W.H. Playfair, The Commercial and Political Atlas: Representing, by Means of Stained Copper-Plate Charts, the Progress of the Commerce,

Revenues, Expenditure and Debts of England during the Whole of the Eighteenth Century, (1786).
6. J.H. Lambert, Mémoire sur quelques propriétés remarquables des quantités transcendentes circulaires et logarithmiques. Histoire de l'Académie

(Berlin) XVII: 265–322 (1768).
7. C.J. Minard, Carte Figurative des pertes successives en hommes de l'Armée Française dans la campagne de Russie, (1869), 1812–1813.
8. E.J. Marey, Études physiologiques sur les caractères graphiques des battements du cœur (1865).
9. Furnas, G.W (1986). Generalized fisheye views. SIGCHI Bull. 17(4):16-23.
10. J. Tschichold, Die neue Typographie, Ein Handbuch für zeitgemäss Schaffende, Berlin, Verlag des Bildungsverbandes der Deutschen

Buchdrucker (1928).
11. J. Muller-Brockmann, Grid systems in graphic design. Verlag Niggli AG, Zurich, Switzerland (1996).
12. R.B. Blackman, and J.W. Tukey, The measurement of power spectra from the point of view of communications engineering. Dover

Publications (1959).
13. E.R. Tufte, Envisioning Information. Graphics Press, Cheshire, Connecticut, USA (1990).
14. E.R. Tufte, Visual explanations: Images and quantities. Evidence and narrative. Graphics Press, Cheshire, Connecticut, USA (1997).
15. E.R. Tufte, The visual display of quantitative information. Graphics Press, Cheshire, Connecticut, USA (2001).
16. R. Spence, Information Visualization, A. Press, (2000).
17. IEEE Conference on Scientific and Information Visualization, http://visweek.org/
18. InfoVis wiki, online reference, http://www.infovis-wiki.net, (2012).
19. Information Aesthetics, online reference, http://infosthetics.com/ (2012).
20. EYEO Festival, online reference, http://eyeofestival.com (2012).
21. M. Jackson, Dynamic Gate Product and Artificat Generation from System Models, IEEE Aerospace Conference, Big Sky, MT (2011).
22. T.I. McVittie, O.V. Sindiy, and K.A. Simpson, Model-Based System Engineering of the Orion Test Flight 1 End-to-End Information System,

IEEE Aerospace Conference, Big Sky, MT (2012).

http://www.citeulike.org/group/12/author/Press:A
http://visweek.org/
http://www.infovis-wiki.net/
http://infosthetics.com/
http://eyeofestival.com/

