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Abstract—System models are often touted as engineering tools 
that promote better understanding of systems, but these 
models are typically created during system design.  The 
Ground Data System (GDS) team for the Dawn spacecraft took 
on a case study to see if benefits could be achieved by starting a 
model of a system already in operations. 

This paper focuses on the four steps the team undertook in 
modeling the Dawn GDS: defining a model structure, 
populating model elements, verifying that the model 
represented reality, and using the model to answer system-level 
questions and simplify day-to-day tasks.  Throughout this 
paper the team outlines our thought processes and the system 
insights the model provided.   
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1. INTRODUCTION 

The design of a GDS used to support spacecraft mission 
operations is never truly finished.  While its basic 
functionality may satisfy the customers’ needs initially, the 
system will continue to evolve.  Even during the operational 
phase, a project’s GDS will continue to be shaped as 
automation of data processing tools affects system 
performance, cyber security concerns drive adoption of new 
operating system patches and upgrades, and personnel 
changes occur both in the people using and the people 
maintaining the system. 

The GDS for JPL’s Dawn spacecraft is no exception.  
Planning for a simultaneous upgrade of the Dawn GDS 
hardware and operating system software initially proved to 
be a complex task, especially because those responsible for 

the original design were not involved in the upgrade.     

In an attempt to manage the complexity of the upgrade and 
gain further insight into how the original system worked, the 
new GDS team undertook a case study to model relevant 
pieces of the system.  The team chose to use the Systems 
Modeling Language (SysML) [1], a general-purpose 
modeling language for systems engineering applications.  
Goals of the model included: managing complexity, 
explaining complex data flows, and forcing clear and logical 
thinking about the system design. 

While modeling methodologies like the Object-Oriented 
Systems Engineering Method (OOSEM) [2] often involve 
starting the model early in the system design phase, the 
Dawn case study was different in that it used an 
incremental, grass-roots approach that was very limited and 
selective in scope. This case study was undertaken more 
than two years into mission operations and the project had 
neither the resources nor a compelling need to model the 
complete system from beginning to end.  Instead, the GDS 
team focused our effort on capturing pieces of the design we 
felt were most useful or important to specify during the 
course of the upgrade and using SysML to explicitly 
communicate this information. 

Although the model began with a limited scope, its power to 
easily answer complex system-level questions quickly 
became apparent.  Scripts were written which queried the 
model and linked previously disparate system properties 
with great success. As more system properties were linked, 
more questions were answered.  This in turn prompted 
further questions, so more information was added.  
Incrementally, the model grew.   

Steps were taken to verify that the model represented 
reality.  The model was used to document changes in the 
system as the system evolved.  The model informed design 
changes by answering questions like: If parts of the system 
go down, which machines will be affected?  Which 
machines could be backups for each other?  What is the 
operating cost for a given hardware configuration? 

This paper will address the goals of the modeling task, make 
a judgment on how successfully they were achieved, and 
highlight some new insights into the system that resulted 
from the modeling process.   
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Due to the sensitive nature of the data stored in the model 
example diagrams were created for use in this paper.  They 
are representative examples of the diagrams used by the 
Dawn GDS team but were created specifically for this 
paper.   

2. ESTABLISHING A MODEL  
Defining a Model Structure for Software 

The first step in establishing a model was to carefully design 
a framework for capturing information in a consistent way.    
Since the model’s purpose was to manage complexity 
during GDS hardware and software upgrades, the logical 
place to start was by defining a “GDS software delivery” in 
SysML.  A “GDS software delivery” already had an 
accepted definition before the modeling task began: an 
aggregation of one or more specific versions of software 
elements from a core set of available elements, packaged 
and tested to be deployed together.   

A metamodel lays out the hierarchical and compositional 
structure of a model.  It defines basic relationships between 
elements of given types.  The team used stereotypes to 
define the system’s hierarchy.  A stereotype is defined as a 
method of “[extending] an existing metaclass, and … 
[enabling] the use of platform or domain specific 
terminology or notation in place of, or in addition to, the 
ones used for the extended metaclass”. [4]   

Figure 1 shows the software metamodel for this case study: 

 

Figure 1 - Software Metamodel 

Figure 1 shows that a Software_Delivery stereotype is an 
aggregation of Software elements.  Slots for stereotype 

properties are also shown.  For example, a 
Software_Delivery has a Delivery Date, a GDS Delivery 
Version (which represents the version number the team 
assigns to the whole aggregation), and a License Cost 
(which is related to the Operating System that the delivery is 
built for).  The general Software element has a slot for a 
Version property. No specific software names have been 
defined in this diagram, the metamodel view simply sets up 
basic model elements and relationships for more specific 
use later. 

The next step was to use the metamodel’s structure to model 
one generic GDS delivery containing all possible software 
elements, as shown in Figure 2.  Specific names of software 
elements have now been included; in this case, the names 
are “SoftwareA”, “SoftwareB”, and “SoftwareC”. 

 

Figure 2 – Generic GDS Delivery 

The elements in Figure 2 build upon the metamodel shown 
in Figure 1.  For example, Generic_Software_Delivery is a 
SysML block of stereotype Software_Delivery, so it will 
have all the properties and relationships that the 
Software_Delivery stereotype has.  Likewise, SoftwareA, 
SoftwareB, and SoftwareC are blocks of stereotype 
Software and will each have a Version number property.  
Figure 2 shows the next layer in specification after the 
metamodel and contains a superset of all available software.   

The name on each arrow in Figure 2 represents a SysML 
part property of the Generic_Software_Delivery.  For 
example, SoftwareA is a part property of 
Generic_Software_Delivery, meaning that some version of 
SoftwareA is part of the delivery.  No version identifiers 
have yet been specified either for the complete software 
delivery or for any Software element’s version. 
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With the definition of a generic GDS software delivery 
established, the team then added another layer to the system 
specification by representing a specific software delivery. 
The “Specific_Software_Delivery_V1” shown in Figure 3 
inherits all of the generic pieces of software that make up 
the “Generic Software Delivery” via the generalization 
relationship.   

 

Figure 3 - Specific Software Delivery Inheritance From 
Generic Software Delivery 

Figure 4 illustrates the use of SysML’s redefinition concept.    
Redefinition is defined as a “change [in the] definition of an 
existing feature” and was used to differentiate new GDS 
deliveries and software versions from their previous/generic 
counterparts shown in Figure 2 and Figure 3. [3]  For 
example, in Figure 4 SoftwareB_V1 redefines Software_B 
and is a specific part of the delivery 
Specific_Software_Delivery_V1. The “V1” designation 
added to “Specific Software Delivery” is the version 
number for this aggregation of software elements. 

 

Figure 4 – Specific GDS Delivery 

It then follows that each specific software delivery would 
inherit generic software components from “Generic 
Software Delivery”.  Although the software delivery shown 
in Figure 4 includes one version of each allowable software 
element, any given delivery is not required to contain all 
allowable elements.  This was important because the team 
delivers far more partial “point” deliveries than full 
deliveries. 

New versions of each software element are modeled as 
separate blocks from any other element, including prior 
versions of the same piece of software.  This is due to the 
nature of the software included in GDS deliveries.  Some 
software organizations deliver their elements as complete 
installs with each version, but other organizations deliver 
only overlays, which are installed on top of older versions of 
the same software.  A project could use versions 1 and 3 of 
a software element and choose never to install version 2, so 
we needed a way to represent multiple versions of the same 
software layered on top of each other.  Redefinition of 
properties provided the team with the freedom to more 
accurately capture the system.  

Defining a Model Structure for Hardware 

With the software modeling structure established, the next 
step was to define a metamodel for the GDS hardware 
elements.  This metamodel is shown in Figure 5: 
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Figure 5 - Hardware Metamodel 

Like the software metamodel discussed in the previous 
section, the hardware metamodel describes the building 
blocks of the system and relationships between these 
elements. It also allowed the team to categorize and 
hierarchically group sets of properties that were useful to 
track for different hardware element types.   

For example, all NASA property is assigned a property 
number, so the Hardware stereotype has a slot for a value 
called “NASA property number” as shown in Figure 5.  The 
Hardware stereotype is specialized into Network Device and 
Non-Network Device, each of these stereotypes will inherit 
the property number slot from its parent. Then Network 
Device is further specialized into Physical Machine and 
Virtual Machine, each of these stereotypes will inherit the 
property number slot as well. 

Note that hardware metamodel shown in Figure 5 includes 
the same Software_Delivery stereotype from Figure 1, 
which allows mapping between hardware elements and the 
software installed on them.  The Network Device stereotype 
has a slot for a Software Version; this Software Version is 
then set to the name of a GDS delivery.  For more 
information see the “Linking Software and Hardware 
Elements” section below. 

The hierarchy shown in Figure 5 was the result of careful 
thinking and the progression of this hierarchy shows the 
modelers’ progression in their understanding of the GDS.  
At the beginning of the modeling task, the team had already 
been supporting the operation of this hardware for more 
than a year and had developed a mental model of it over 
time.  Due to the nature of the required support, the team 

was used to thinking primarily about where the hardware 
was located.  It makes sense then that initial versions of this 
hierarchy were location-based, separating machines that 
were physically at JPL from those in use at remote partner 
sites.  

As the team came to better understand the system, we began 
to abstract it. At this stage the team changed the hardware 
metamodel hierarchy to be venue-based by separating 
development, test, and operational hardware regardless of its 
location.  The team eventually found that many of the 
hardware properties we wanted to capture were the same 
across these development, test, and operations partitions.  
The boundaries between the hardware metamodel 
stereotypes were not clean enough.  The team then realized 
that for our implementation, the best way to partition the 
hardware was by physical properties that did not change, 
like whether or not a component could access the network. 

To identify the full list of value properties that should be 
included in the model, the team turned to JPL’s existing 
institutional hardware databases.  These databases store 
various parameters about each piece of hardware, and 
together almost completely describe each hardware 
component.  The only information these institutional 
databases lack is which software versions are deployed on 
each piece of hardware.  Initially the team planned on 
capturing only the most important of these properties in the 
model.  However, since the team wanted the model to 
become an authoritative source for all information about the 
GDS system we decided that the model should include the 
superset of all information that already existed in these 
databases.  This later proved to be a good decision, because 
the model contained diverse information that could be used 
to answer system-level questions the team had not originally 
considered. 

The architecture of the hardware and software metamodels, 
combined with the large quantity of hardware information 
stored in the model itself, allowed the team to write scripts 
to query the model and return information.  These scripts 
determined which pieces of hardware are connected to each 
other, produced lists of hardware with similar properties, 
and summed things like maintenance costs.  Each of these 
will be discussed in detail in later sections of this paper. 

Populating and Updating Model Elements 

The first step in populating the model was to create 
relationships to show each of the specific software 
deliveries.  Due to the small number of elements and simple 
relationships, the team populated the necessary deliveries by 
hand.  Populating the model with hardware information 
proved to be a much more complicated task.  Each hardware 
element can have dozens of properties, and the risk of 
humans introducing errors was too great.  The team needed 
a different solution. 

The existing institutional databases that store hardware 
information can output their contents as comma-separated 
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value (CSV) files, and the modeling tool used by the team 
was able to automatically populate model elements using 
these CSV files along with the hardware metamodel.  This 
made initially populating the model with all the system’s 
hardware elements fast and simple.  The CSV import/export 
process is bi-directional, meaning CSV files can also be 
exported from the model and imported into institutional 
hardware databases in order to keep them in sync. 

Information from JPL’s hardware databases was imported 
into the model only once.  From that point forward, all 
updates were made in the model and exported to the 
institutional databases as necessary.  The team wanted the 
model to be the one authoritative source containing the 
superset of all information about the system, so continuing 
to maintain this information outside of the model would 
have created opportunities for information in different 
sources to diverge.    

Each of the institutional databases provides a specific view 
of the system, but the source of this data is disparate and 
prone to inconsistencies between various databases.  For 
example, a common inconsistency was two different 
databases showing conflicting IP addresses for a single 
computer.  During the import process the team found and 
corrected many of these inconsistencies to make the model 
accurately represent the system.  This points to one 
advantage of the model: although information in the model 
can be viewed in many different ways to match the existing 
database views, it always comes from the same source.  
Two views of the same model cannot have conflicting 
information in them.  This process validated the model as an 
authoritative source for the project’s hardware property 
information, which has proven to be incredibly useful for 
simplifying routine tasks like performing yearly hardware 
inventories.   

In addition to the import/export features, the modeling tool 
the team used provided a built-in table wizard to view and 
edit properties in a spreadsheet format as shown in Figure 6:  

 

Figure 6 - IP Address Table Wizard Example 

The team was used to seeing information in a spreadsheet 
format similar to the table shown in Figure 6, so having this 
view available helped ease the transition to the model.  This 
table is a very convenient view to show large amounts of 

information at one time and was used to spot-check 
elements to make sure they had been imported properly.   

Linking Software and Hardware Elements 

After the system hardware and software were both modeled, 
the two were connected in order to denote which GDS 
delivery a piece of hardware had installed on it at any given 
point in time, as shown in Figure 7:  

 

Figure 7 - Software and NFS Allocation 

Figure 7 shows a hardware element of type Network Device 
called Computer1 that has a Software Version called 
Software_Delivery_3 installed on it.  By looking at the 
Software_Delivery_3 block, a person looking at the diagram 
(or a model query script traversing relationships between 
model elements) can clearly see exactly which software 
elements and versions are installed on Computer1. 

Note that this portion of the model is dependent upon the 
accuracy and depth to which the system’s software and 
hardware were modeled.  As new software deliveries 
became available, the modeling team needed to update these 
properties onto the model’s hardware elements.  At first it 
sounded like this would make updating the model after a 
software delivery more time-consuming, but it proved to be 
a good way to ensure all the hardware had been updated 
appropriately.  Paper deployment checklists were replaced 
with model-generated reports.  With the model elements in 
place, the team was now ready to verify them. 

Model Verification 

A model that describes a particular system is only useful if it 
can be proven that the model accurately describes the 
system.  The model elements and properties need to be 
verified against the actual system hardware and software.   

The GDS team already had an automated checkout script 
that would run on all the project computers and return a 
single XML file listing the values of several hardware and 

 5 



 
software properties on all the machines.  A similar script 
was written to query the model and return a second XML 
file in the same format as the existing checkout script 
output.  The team ran both scripts, then looked for 
differences in the resulting XML files and resolved all 
conflicts.  This process can be repeated on a regular basis to 
ensure that the model continues to properly reflect the 
system as both evolve. 

Once the model was set up, populated, and verified, it was 
time to start using it to analyze the GDS system. 

3. MANAGING COMPLEXITY 
Viewpoints Developed to Manage Complexity 

After laying the groundwork by defining the system and its 
elements, several viewpoints needed to be developed to 
provide useful information about the system.  In this 
context, a “viewpoint” is defined as a diagram that shows a 
particular subset of information from the model in order to 
convey specific details of the system.   

The important thing to note about these viewpoints is that 
they are products of the initial model architecture and data 
population.  Since the subset of information being expressed 
has already been documented in the model, “creating a 
viewpoint” is often just a matter of selecting which pieces of 
information are important to display and dragging them onto 
a new diagram.  As the model became more complete, more 
and more useful views were identified and created.  This 
section gives examples of views that the team found to be 
useful, and which factors prompted their creation. 

Hardware Locations 

The GDS hardware and software upgrade that prompted this 
modeling task was the last one before the Dawn spacecraft’s 
first science phase.  The GDS team needed to ensure that an 
adequate, reliable, and stable hardware and software system 
was in place before the science phase began. 

One of the first steps of the GDS hardware upgrade was to 
condense hardware previously located in two separate 
rooms down to one room.  This one room had resource 
limitations like a limited number of power circuits and 
Ethernet ports.  The GDS team had to determine if the 
room’s existing resources were sufficient.  At the time, the 
only way to do this was to trace cables under desks and 
behind cubicle walls to find all the power and Ethernet 
ports, then determine which ones were already in use.  The 
task proved to be time-consuming and the team realized it 
would be useful to capture this information in the model so 
that it could be referred to again in the future.  Figure 8 
shows the resulting diagram: 

 

Figure 8 - Hardware Locations 

The hardware location view, shown in Figure 8, came out of 
this hardware consolidation task and is one of the more 
useful views of the system.  The next time users want to add 
hardware the GDS team can quickly determine if the room 
can support new hardware.  Each port is automatically 
color-coded by the modeling tool based on its connection 
type.  This allows the team to see at a glance what ports are 
in use and why. 

The hardware locations internal block diagram (IBD) in 
Figure 8 clearly shows locations nested inside each other: 
JPL at the top level, and SysML blocks at the next 
hierarchical levels represent buildings, then rooms, then port 
boxes, then ports.  Each port box contains three Ethernet 
ports.  Each port represents one available Ethernet 
connection; hardware that uses a particular Ethernet 
connection is nested inside the appropriate port.  Finally, for 
computers with monitors attached, the monitors are shown 
nested inside of each computer.    

Traceability from a computer to its monitor is easily 
overlooked but is extremely useful for inventory purposes.  
Non-networked devices like computer monitors can be very 
difficult to find during the annual inventory because there is 
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no way to ask a monitor what its location is.  Devices on the 
network can be logged into remotely; from there it is easy to 
determine an IP address and map that to an Ethernet port.  
Having this monitor-to-machine mapping has helped the 
GDS team track down several monitors quickly. 

Cost Rollup 

Once the team added Ethernet port tracking to the model, 
there was an unintentional but very useful side effect: the 
model could now track all the costs associated with a 
particular hardware configuration.  Each active port has a 
monthly fee associated with it that varies based on the port’s 
purpose.  For example: Ethernet ports on different subnets 
cost different amounts, there are additional charges 
associated with VOCA boxes (used for radio 
communications), and different models of machines have 
different hardware and software warranty costs.   

Previously these charges have been difficult to track 
because there was no itemized bill to the project; just one 
final sum that goes through the cost account was typically 
given.  A common occurrence was that a computer was 
moved without the GDS team remembering to deactivate 
the Ethernet port and confirm that the deactivation request 
went through, so the project continued to get charged for an 
unused port without realizing it.  However, if the model 
accurately represents the GDS system, a script can be 
written to sum up these expected port charges to compare 
them to the actual bill that the project received.    This 
allowed the GDS team more insight into where their money 
was going and allowed them to catch discrepancies. 

Figure 9 shows the same metamodel seen in Figure 5, but 
this time red boxes highlight the attributes of the hardware 
metamodel that are summed by the cost rollup script. 

 

Figure 9 – Cost Script’s Targets 

The cost rollup script traverses the model and sums the 
appropriate costs depending on the machine type.  For 
virtual machines that the project leases, the script sums the 
Lease Cost, Port Cost, and Software_Delivery’s License 
Cost.  For Physical Machines, the script sums Hardware 
Support Cost (warranty), Port Cost, and License Cost. 
 
Scripts like the cost rollup mentioned above and the disk 
space query mentioned later were written in Jython.  The 
modeling tool allowed for scripting in a preset list of 
languages: AppleScript, BeanShell, Groovy, JRuby, 
JavaScript, Jython, and QVT Operational.  Jython was 
chosen because of the large library of Java classes that came 
with the tool for free and the authors’ familiarity with 
python.   
 
The modeling tool had intuitive ways of running these 
scripts as macros, which could be called easily with shortcut 
keystrokes.  After the initial learning curve of understanding 
which Java libraries to call in each scenario, writing the 
scripts themselves took about anywhere from one to several 
hours, depending on the complexity of the task.     
 
Tracking and Planning Configurations 

Another big task for the GDS team is managing disk space.  
The project has multiple network file system (NFS) servers 
that house most of the disk space used by the flight team.  
The team knew they would need to procure additional disk 
space before the hardware/software upgrade, but didn’t 
know how much would be necessary.  The Dawn GDS team 
generally purchases a large quantity of disk space at a time, 
which is held in reserve and slowly allocated to the flight 
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team as necessary.  It was important to understand up-front 
how much disk space might be required, so that the team 
could take advantage of economies of scale. 

In order to prepare for the disk space purchase the GDS 
team went through an exercise to understand how much disk 
space the flight team was already using in order to predict 
future needs.  It was clear through this exercise that there 
needed to be a better way of capturing disk space 
information, so the team decided to add the NFS servers to 
the model.   

It was also suggested that tracking the project’s required 
disk space throughout the life of the mission might help 
future projects predict their needs too.  Figure 10 shows the 
method the team came up with for showing disk space 
configuration. 

Figure 10 shows that each NFS server has a Total Size slot 
that is used to track the server’s total amount of disk space.  
Each NFS server is divided into volumes, and each volume 
has an allocation of disk space.  Additionally, different NFS 
volumes are mounted on or accessible from different 
computers.  Capturing which computer was dependent upon 
which NFS server was important. 

 

 

Figure 10 - NFS Partitions 

Scripts were written to query the NFS model and answer 
three different questions:  How much disk space on any 
given NFS server was in use, and how much total disk space 
did it have?  If an NFS server needed to be taken offline for 
maintenance, which computers would be affected by the 
outage?  Which NFS servers can any given computer access 
in the current GDS configuration?  Each of these questions 
had come up at times and finding answers was always a bit 
challenging.  The model has definitely helped with disk 
space management. 

4. COMPLEX DATA FLOWS  
Once the team saw that the model could successfully be 
queried, we began to look for other opportunities to use 
modeling to document the system.  One of the first 
opportunities we found was the documentation of complex 
data flows.   

The team knew that during the planned hardware/software 
upgrade some parts of the Dawn testbeds would need to be 
upgraded, and other parts would need to stay as they were.  
The team had to prove that the upgraded and legacy 
machines would still be able to interface with each other.  
The first step was to map out all the elements in the testbeds 
and their interfaces, as shown in Figure 11. 

Figure 11 shows the connections between all the testbed 
elements captured on a SysML internal block diagram 
(IBD).  Once the testbed was partially upgraded with new 
hardware and software, users reported performance 
degradation.  This data flow diagram greatly assisted the 
GDS team in identifying where race conditions could exist 
or where software configurations needed to be adjusted to 
account for the new equipment. 

Capturing data flows in the model has many advantages 
over a basic drawing tool.  For example, the model can 
perform type-checks between interfaces, so if a modeler 
attempts to draw a connection between two incompatible 
ports, for example 1553 and Ethernet, the model will flag it.   

 

Figure 11 – Testbed Data Flows 

Another advantage of modeling over other drawing methods 
is that the model already contains information about all the 
hardware and software the project uses, and that information 
draws its truth from a single source.  As computers’ 
properties like hostnames or IP addresses change, those 
changes will be automatically reflected in all diagrams.  
This both reduces the amount of work necessary to keep the 
system description diagrams up-to-date and also reduces the 
likelihood of inaccuracies since there are more opportunities 
to notice a given mistake.  Dawn’s prime mission is eight 
years long, so there is risk of documentation becoming out-
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of-date.  Capturing data flows in the model mitigates risk. 

5. FORCING CLEAR THINKING 
Eventually it felt natural for the team to turn to the model 
whenever we ran into anything needing further clarification.  
The act of modeling complex systems often forces the 
modeler to ask questions that he or she never knew needed 
asking.  An example of this is how various pieces of 
software on the same computer interact with each other. 

Due to way the Dawn GDS has evolved over time, there are 
a few cases where one tool is built specifically to call a 
second tool with certain options/arguments.  From time to 
time, users will report a bug with the tool they’re using, but 
upon further investigation, the GDS team will realize the 
bug actually lies in a completely separate tool.  Tracing 
through all these tools can be complicated.   

It is even more challenging when users request a new 
feature be added to one tool, but the GDS team finds that the 
change really has to be made in a different program.  Now 
the developer needs to understand how all the tools relate to 
one another in case the new change breaks something else.  
This process requires the GDS team to think clearly about 
the interfaces between a set of programs, which is 
something the modeling process is good at promoting.  An 
example diagram is shown in Figure 12. 

 

Figure 12 – Software Sequence Diagram 

The SysML sequence diagram in Figure 12 shows how one 
software program calls a second, which then calls a third.  
The descriptions on the arrows show what kind of 
information is being passed between each program.  Using 
SysML forces the modeler to use unambiguous syntax. 

6. ADVANTAGES OF MODELING OVER 
TRADITIONAL APPROACHES 

When describing any system as complex as a spacecraft 
GDS it will always be necessary to create multiple views for 
different audiences and purposes.  These views are typically 
created by several different authors using presentation or 
drawing tools, so it is common for each to use their own 

style conventions.  A single arrow symbol can represent 
hierarchy, data flow, control flow, etc. depending on which 
diagram you look at or who created it.  It’s up to the reader 
to determine what each symbol means on each diagram and 
to make sure their interpretation is correct.  Instead, the use 
of a standardized modeling language like UML or SysML 
imposes a standard convention so that no matter which 
diagram the reader is looking at, the meaning of each 
symbol is unambiguous. 

When using presentation or drawing tools to create system 
views, one big challenge is maintaining consistency across 
all the views, particularly since the system inevitably 
changes over time.  The advantage of a modeling tool over 
these presentation or drawing tools is the model itself.   

When diagrams are created using presentation or drawing 
tools there is no connection between each view, which 
allows for inconsistency.  However, when using a modeling 
tool, all the diagrams utilize the same underlying model 
elements and relationships no matter who creates the 
diagram.  If element names or relationships change over 
time, those changes are automatically propagated to all 
system views.  This reduces both the amount of work 
necessary to keep the views up-to-date and the likelihood of 
inaccuracy.  Just as there is only one GDS system for a 
given mission, there is also only one self-consistent model 
representation of that system. 

Traditional presentation or drawing tools also have no 
understanding of their system elements.  Through the use of 
metamodels, a modeling tool understands basic information 
about the system being described and can be the first line of 
defense against inconsistency. For example the modeling 
tool can perform type-checks between interfaces, so if a 
modeler attempts to draw a connection between two 
incompatible ports, like 1553 and Ethernet, the tool will flag 
it. 

During operations many GDS system engineers rely on 
spreadsheets listing hardware properties to track their 
systems.  Spreadsheets are useful for viewing large 
quantities of data at once or for passing information between 
teams, however they also make it easy to miss mistakes or 
inconsistencies.  When different teams own different 
spreadsheets that each describe part of a single system, 
things get out of sync very quickly.  A model enforces 
consistency, but users are not forced to choose between the 
traditional spreadsheet and a model.  Once information is in 
the model, generating an editable spreadsheet view from 
that single source of truth is trivial, as was previously shown 
in Figure 6. 

Dawn’s prime mission is eight years long, so there is risk of 
the GDS system documentation becoming out-of-date.  The 
transition of personnel over the course of the mission makes 
it even more important to maintain a single accurate 
representation of the system.  Capturing this information in 
the model mitigates this risk. 
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7. CONCLUSION 

Overall the Dawn GDS modeling task was a success.  
Initially setting up and revising the hardware and software 
metamodels took the team a fair amount of thought, but 
once the metamodels were in place model elements were 
quickly populated from existing databases.  The process of 
importing model elements uncovered many inconsistencies 
in the existing hardware databases, which were then 
resolved.   
 
Once the model was populated, it was used with great 
success to help the GDS team manage complexity.  A 
diagram was established to track the locations of various 
pieces of hardware as well as building resources.  Scripts 
were written to query information out of the model and give 
the team more insight into costs and dependencies of the 
project’s computers on other servers.   
 
As the team became more comfortable with the model, we 
continued to find new ways to make our job easier.  The 
model was used to understand and document complex data 
flows within the system, and also to force the GDS team to 
think clearly about the system’s interfaces. 
 
The team’s approach of selective modeling as time and 
money allowed worked well.  Modeling the GDS piece by 
piece provided incremental growth in functionality and the 
team ended up with a fairly complete model by the end of 
the study.  Based on the insight the team gained through this 
modeling process, we believe system modeling earlier in the 
mission definitely would have been beneficial. 
 
The team believes this case study shows that with 
reasonable goals in mind, even a small team without a 
significant amount of money to dedicate can see benefits of 
system modeling.  Most of the modeling and scripting in 
this study was performed by an academic part time 
employee working 10-20 hours per week over the course of 
one year. 
 
The team continues to use and refine the Dawn GDS model.  
More work should be done to explore how to automatically 
audit the model’s contents against the actual hardware in use 
on a regular basis.  At the moment verifying that the model 
matches reality is one of the most onerous aspects of 
maintaining the model.   
 
Another goal of the team’s future modeling work is to 
generate views that will be used to educate new members 
coming onto the GDS team.  Most system description views 
generated during the mission’s design have become 
outdated and would not be of much benefit for people new 
to the project.   
 
Lastly, parts of this GDS model are relevant to other 
missions using similar software deliveries and hardware.  
Being able to modularize the model and export it as a 
baseline for other projects would be a key goal to strive for 

in reducing the amount of redundant modeling work.       
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