
Aquarius’ Object-Oriented, Plug and Play
Component-Based Flight Software

Alexander Murray
Jet Propulsion Laboratory

California Institute of Technology
Pasadena, CA 91109

818-354-0111
alex.murray@jpl.nasa.gov

Mohammad Shahabuddin
Jet Propulsion Laboratory

California Institute of Technology
Pasadena, CA 91109

818-354-4993
shahab@jpl.nasa.gov

Abstract—The Aquarius mission involves a combined radiome-
ter and radar instrument in low-Earth orbit, providing monthly
global maps of Sea Surface Salinity. Operating successfully
in orbit since June, 2011, the spacecraft bus was furnished by
the Argentine space agency, Comision Nacional de Actividades
Espaciales (CONAE). The instrument, built jointly by NASA’s
Caltech/JPL and Goddard Space Flight Center, has been suc-
cessfully producing expectation-exceeding data since it was pow-
ered on in August of 2011. In addition to the radiometer and
scatterometer, the instrument contains an command & data-
handling subsystem with a computer and flight software (FSW)
that is responsible for managing the instrument, its operation,
and its data.

Aquarius’ FSW is conceived and architected as a Component-
based system, in which the running software consists of a set of
Components, each playing a distinctive role in the subsystem,
instantiated and connected together at runtime. Component
architectures feature a well-defined set of interfaces between the
Components, visible and analyzable at the architectural level
(see [1]). As we will describe, this kind of an architecture offers
significant advantages over more traditional FSW architectures,
which often feature a monolithic runtime structure.

Component-based software is enabled by Object-Oriented (OO)
techniques and languages, the use of which again is not typical
in space mission FSW. We will argue in this paper that the use
of OO design methods and tools (especially the Unified Modeling
Language), as well as the judicious usage of C++, are very well
suited to FSW applications, and we will present Aquarius FSW,
describing our methods, processes, and design, as a successful
case in point.

TABLE OF CONTENTS

1 INTRODUCTION . 1
2 MISSION & FSW REQUIREMENTS OVERVIEW . 1
3 ARCHITECTURAL APPROACH & FEATURES 2
4 TECHNIQUES & PROCESSES . 6
5 THE USEFULNESS OF PLUG & PLAY COMPO-

NENTS . 7
6 VERIFICATION . 9
7 FSW QUALITY . 9
8 CONCLUSIONS . 10
9 FUTURE WORK . 10

ACKNOWLEDGMENTS . 10
REFERENCES . 10
BIOGRAPHY . 10

978-1-4673-1813-6/13/$31.00 c©2013 IEEE.

1. INTRODUCTION
The use of Object-Oriented (OO) techniques and languages
in flight software (FSW) is not without controversy: there
are justifiable concerns about the efficiency and complexity
of OO software in the demanding and resource-constrained
arena of embedded software in general, and FSW in par-
ticular. We argue in this paper that the advantages of OO
architecting and implementation, as well as the lack of real-
ization of some of the typically feared disadvantages, have
been amply demonstrated by Aquarius FSW and its success
in development, test, and in Earth orbit.

We begin with an overview of the mission and the require-
ments on the FSW, followed by a presentation of the archi-
tecture of the FSW, which will focus on the Component-
based architecture employed. In this approach, the software
is concieved and designed as a set of Components, with well-
defined interfaces, visible at the architectural level, which are
dynamically instantiated and connected together at run time.

This has important advantages for testability and operability,
by enabling a plug-and-play capability that allows significant
modifications to the FSW, including whole new applications,
to be uplinked and safely installed in the running software
with very little disruption to the operation of the instrument
(in particular, with no reboot needed)

We continue with a discussion of the software systems engi-
neering approach employed, and a description of techniques
used in architecting, design, and implementation of the FSW,
which include the use of modeling with the Unified Modeling
Language (UML), and coding in C++.

We go on to discuss verification and testing techniques used
to ensure the robustness and reliability of the FSW. These
include a high degree of test automation, careful architecting
of test tools, and use of random scenario generation for the
testing of some of the software’s capabilities.

We conclude with discussions of quality metrics and compar-
isons with other missions, and a description of current and
possible reuse of Aquarius FSW.

2. MISSION & FSW REQUIREMENTS
OVERVIEW

The primary goal of the SAC-D/Aquarius mission is to pro-
duce global maps of Sea Surface Salinity (SSS) on a monthly
basis. SSS is a key variable in understanding water cycles,
ocean currents, and glacial processes, to name a few. TBF

The mission’s spacecraft bus, named SAC-D, was built and

1

Figure 1. The operational context of Aquarius flight software, showing key subsystems with which the FSW has
interfaces.

integrated by the Argentine space agency, CONAE. While
Aquarius is the primary instrument of the mission, SAC-D
hosts other instruments as well. The spacecraft has been in a
Sun-synchronous, low Earth orbit since June of 2011.

The Aquarius instrument consists of radiometer, which takes
the primary measurement of L-band brightness temperature,
and a scatterometer, responsible for acquiring a secondary,
corrective measurement of water choppiness.

The high-level block diagram in Figure 1 shows the FSW
and the key subsystems with which it has interfaces, some
direct, some indirect. There are three boards in the chassis
with the computer upon which the FSW runs, which in turn
provide communication with other subsystems, including the
spacecraft bus, the radiometer, and the scatterometer. Each
of the four active thermal control assemblies is responsible
for one thermal region of the instrument (which includes, in
addition to the radiometer and scatterometer, a deployable 2.5
meter antenna, 3 large feedhorns, and a power distribution
unit, none of which are shown in the diagram).

The diagram shows science data flowing from the instruments
to the FSW, which in turn packages it into science blocks
of combined data along with a great deal of housekeeping
telemetry, and sends it back to the spacecraft (the SciData
flows), via the communications board. Ground commands are
received from the spacecraft bus, again via the communica-
tions board, and the FSW sends commands to the instrument
components via the scatterometer processing board.

The scatterometer processing board generates a 100-Hz inter-
rupt, which the FSW uses to drive its thread scheduler.

Not shown in the diagram, there are two physical links
between the communications board and the spacecraft bus:
a redundant MilStd 1553 bus for commands and telemetry,
and a high-speed serial bus for science data.

The following list of functional capabilities gives the FSW
requirements in a nutshell:

1) Command reception (1553) and processing

2) Science data collection from the radiometer and scat-

terometer,

3) Science data formatting, storage and output at .5MB/s

4) Analog and digital housekeeping telemetry collection
from all subsystems

5) Housekeeping telemetry formatting and transmission
(1553 bus)

6) Radiometer command & control

7) Scatterometer command & control

8) Reflector deployment mechanism temperature control

The science data collection, formatting, and sending rate
group runs at 100 Hz, while 1553 communication with the
spacecraft occurs sporadically based on message traffic.

3. ARCHITECTURAL APPROACH & FEATURES
Armed with an understanding of the FSW’s requirements, we
can present our approach to architecting the FSW.

Architectural Principles

We begin with a set of principles and guidelines that govern
the design:

1) Achieve a high degree of modularity, a clear partitioning
of the software with clear assignment of distinct responsibil-
ities to each part: One of the most fundamental problems
of software engineering is complexity, both intrinsic and
domain-derived. Dividing software into manageable pieces
is a fundamental necessity to reduce complexity.

2) Maintain visibility, clarity and minimality of interactions
among parts of the FSW: Developing, testing, debugging,
maintaining, understanding and explaining the software are
all made easier the more this principle is achieved, and
these in turn are crucial to the reliability and success of the
software.

3) Make information visible in the smallest scope possible:

2

Figure 2. A simplified runtime view of Aquarius FSW, consisting of a set of Components.

This is related to the previous principle, in that it tends to
avoid unanticipated interactions among parts of the software.
It also reduces complexity by minimizing the amount of
information present in any given context.

4) Follow patterns: for tasks or logic that must be done more
than once in the software, use a pattern, instead of doing the
task in an ad hoc way eacy time. Patterns can be implemented
once, thoroughly analyzed and tested, and reused.

These principles are not unusual, and software engineers have
been striving to work by them for decades. Our contention is
that an Object-Oriented approach, as opposed to traditional
structured programming, and a Component-based architec-
ture, naturally enable and simplify the realization of these
principles to a high degree. Some of the features of OO
design that make this so are:

1) Polymorphism: the concept that a given type (including
behavior declared by that type) may be inherited and refined
by more specific types (which inherit the attributes and be-
haviors of the general type)

2) Substitutability: an application of polymorphism as well
as information hiding, by which different implementations of
the same interface (expressed in a base type) can be swapped

without an impact on the user of the interface. This allows
easy replacement of parts of software, enabling better, more
complete, more flight-like testing at all levels, as well as
incremental development

3) Object Paradigm: this is a paradigm in which software
engineers look at software as sets of things that have behavior,
rather than as a call tree of behaviors. The concept involves
objects, or data hidden behind behavior, which is a natural
extension of the principle of information hiding. It’s worth
mentioning here that, while OO software engineering has
permeated and become the norm in most domains of software
engineering, it still is not as prevalent in flight software.

Component Architecture

In a Component-based architecture, the running software
consists of a set of objects called Components, working in
tandem to perform the required functionality. A simplified
runtime view of Aquarius FSW, showing Components and
abstract data flows among them, is given in Figure 2, in
order to lend a clearer idea of what we mean by Component.
A Component is a key building block of the software, and
each component fulfills a unique role in the system. So for
example, the object RadiometerCmp shown in the figure is a
Component that has the job of containing all of the FSW’s
”knowledge” of and interfaces to the radiometer instrument.

3

Figure 3. The architectural interfaces involved in the management of Components.

The Component named CommBoardCmp embodies all of the
FSW’s ”knowledge” of and interfaces to the communications
digital electronics board, and so on. A Component may be
thought of as an application program.

Component architecture, which is enabled by and an exten-
sion of OO design concepts, further enhances the attainment
of the principles. In this approach, the definition of the inter-
faces between components (which is to say, the definitions
of the components), is a primary concern and architecting
activity. Rigorously defining the interfaces between compo-
nents forces the engineer to concentrate on understanding and
defining the interactions among parts of the software, which
enhances the clarity and visibility of the interactions within
the software.

Another key aspect of Component architecture is that Com-
ponents are deliverable in binary form, which means they
must be able to be compiled and linked in isolation. To
be sure, there are common elements needed to compile the
Component - e.g. framework libraries, or the public interface
declarations of other Components - but once these shared
interfaces are defined and stabilized, each Component can
be developed largely independently. To achieve the ability to
compile Components in relative isolation requires that the de-
pendencies on other source packages be carefully understood
and controlled. This has the desirable side effect of making it
more difficult to introduce unexpected, invisible interactions
among the software parts.

A key part of the Component management framework in
Aquarius is a Component Manager (CM), which is responsi-
ble for all Component creation, connection, etc. For example,
during initialization, the CM instantiates all of the Compo-

nents that will make up the running FSW.

The framework also consists of a set of interfaces used for
managing the initialization and management of the Compo-
nents and their connections. We call some of these interfaces
architectural interfaces, to differentiate them from opera-
tional interfaces. The architectural interfaces are used only
during initialization, swapping or adding Components, and
finalization, while the operational interfaces are used when
the FSW is in normal, functional mode. The architectural
interfaces allow the creation, connection, disconnection, and
finalization of the set of Component instances that make up
the running software.

These interfaces are shown in Figure 3. The architectural
interfaces are shown in light turquoise and in light green, and
a few operational interfaces are shown in violet. Some of
these interfaces may be provided by a given Component (i.e.
implemented and available for calling on that component),
and others are provided by the CM (i.e. available for calling
on the CM by Components). The former are shown in light
turqois in the figure, and latter in light green.

The abstract class Component shown in the figure is a base
class for all Component implementations, and it provides an
implementation of all of the turquoise-colored architectural
interfaces. The implementation it provides for each is trivial,
i.e. does nothing successfully. So for example, a call to
installHandlers on this class does nothing but immediately
return successfully. A given Component must override the
base class’ trivial implementation of a given architectural
interface only if that Component needs to provide a non-
trivial implementation of the interface. So for example, if
a Component needs to have one or more threads created,

4

then that Component must override the TaskOwner interface
to register those threads with the Scheduler implementation
provided by the CM in the scheduleTasks call.

To see how these interfaces are used, consider this frag-
ment of the scenario of initialization: for each component
ComponentX, the CM invokes the operation installHandlers
(which is possible because ComponentX implements the
interface CommandProcessor), passing to ComponentX an
implementation of the interface CommandDispatcher. That
latter interface is then used by ComponentX to register its
CommandHandler implementations (one for each unique
command that ComponentX handles).

This is the pattern for establishing connections among Com-
ponents: the CM invokes the architectural interfaces provided
by each Component, in so doing providing an implementation
of the relevant interfaces that the Component needs to carry
out the connection (i.e. registration) process. In this way, the
CM gives each Component the opportunity to connect into
the architecture.

The CM does not ”know” the true type of any of the Com-
ponent instances; it knows only that all of the Component in-
stances are derived from the abstract class Component (shown
in the figure), and therefore that it may invoke all of the ar-
chitectural interface operations on each. This is an important
usage of the concepts of polymorphism and substitutability,
and it is a key feature that enables the flexibility needed for
testing in different environments, which we’ll discuss later.

The operational interfaces shown represent activities that
occur only after the architecture is configured. For example,
the handling of commands, a normal functional activity, is
done through various Components’ implementations of the
CommandHandler interface.

The doCycle operation of the Periodic interface is the mecha-
nism by which a periodic thread is given the CPU each period
- also an operational activity. In Aquarius FSW, the science
manager Component provides an implementation of Periodic
upon which doCycle is called at 100Hz to perform science
data management.

Figure 4 helps in understanding how polymorphism and
substitutability are again used to achieve significant changes
in FSW behavior by swapping out an old version of a
Component for a new version. The class ComponentX in
this figure represents a typical Component. Note that it is
derived from the abstract Component base class, the same
one that appeared in Figure 3. All of the functionality of
the initial version of ComponentX is implemented in the
class ComponentX, represented in the figure by the virtual
functions operation1(), operation2() and operation3(). How-
ever, the class ComponentX is still abstract because of the
inherited pure virtual function getVersion(), and so the actual
implementation class of the initial version of ComponentX
is ComponentXV1. Now suppose at some time during the
mission, a change is required in the behavior of existing
functionality of ComponentX, as well as the addition of some
new behavior. These changes are accomplished by defining
a new class, ComponentXV2, in which only operation2() is
overridden (thus, the code of the other two operations are
reused, unchanged).

ComponentXV2 also has a new operation, newOperation(),
which represents the desired new functionality. The in-
stantiated new version of ComponentX, an instance of class

Figure 4. The inheritance pattern of Components.

ComponentXV2, thus contains code both old and new. This
means that it is only necessary to upload the new code (the
implementations of the functions of ComponentXV2), and
not the old code that is already part of the FSW.

Design for Reuse

There is a tendency to think of reuse as being important only
in a multi-mission sense. As important as reuse between mis-
sions is, reuse internally, within the same software subsystem,
has important benefits. But reuse on any level doesn’t just
happen; it has to be designed for by carefully separating the
general from the specific, layering the software to separate the
concerns of each. Designing for reuse forces the definition
of minimal and clear interfaces. Internal reuse avoids doing
the same thing in multiple ways, decreasing the possibility
of errors, and increasing the value of time spent testing. To
achieve higher reuse, Aquarius FSW is divided at the root
source-code level into two parts: a framework, which is not
Aquarius-specific; and the Components’ source code, which
tend to be highly Aquarius-specific.

The framework part of the code provides the skeleton of a
solution for common but important tasks. To name the most
important ones:

1) Handling the validation and routing of commands among
the Components of the FSW

2) Handling the collection and bundling of housekeeping
telemetry

5

Figure 5. The definition of Component classes and specific UML interfaces implementing the data flows shown in Figure
2.

3) Managing Components: instantiating, connecting, discon-
necting, and finalizing them

4) Wrappers around a small number of key operating sys-
tem capabilities, including queues, threads, and semaphores.
These wrappers lend the using code OS and platform inde-
pendence, for the supported platform and OS configurations.

The code for the Components tends to be highly mission-
specific. For example, one Component embodies all knowl-
edge of the radiometer that is contained in the FSW, and is re-
sponsible for the management of the radiometer, including all
command & control, monitoring, and science data collection.
Another Component is responsible for all interfaces between
the FSW and the communications board. These functions are
generally highly specific to Aquarius.

4. TECHNIQUES & PROCESSES
The Use of UML

The Unified Modeling Language (UML) is an enabling tech-
nology for Object-Oriented design in general, and for Com-
ponent architecture as well. UML was made for expressing
OO-based architecture and design, and the concept of Com-
ponent is contained in UML and is fairly well developed.
We found the use of UML highly effective for the following
activities:

1) Initial architecting of the FSW, including describing the
context in which the FSW operates, and a high-level descrip-
tion of the requirements

2) Requirements organization and presentation

3) High-level design of the FSW, definition of Components
and interfaces between them

4) Detailed design of the FSW, using Class Diagrams and
behavioral diagrams such as State Machines, Activities, and
Communication Diagrams.

5) Partial FSW code generation; the tool we used generates
the declarations of classes and operations in C++. It also is
able to read C++ header files and build or refine a model from
them.

6) Partial test tool code generation. Our UML tool was quite
good at generating and round-tripping in Java, which we used
for test tools.

Design Process: Defining the Components

One very key activity in architecting a Component-based
software system is defining the components and the inter-
faces among them. We found an effective procedure for
accomplishing this. The most directly applicable of our
previously-listed architectural guiding principles here is part
of 2), to maintain minimality of interactions among parts of

6

the FSW. This implies finding a decomposition of logical
responsibilities into Components that results in the least and
simplest possible communication among them.

Using a white board, and the kind of diagrams shown in Fig-
ure 2, it is easy to try out various candidate decompositions
of the FSW into Components, sketching out the data flows
them. Reducing the number and complexity of data flows
in each candidate decomposition informs the decision among
the alternatives.

Another key guiding principle we identified in defining the
Component decomposition is that the software should follow
the physical modularity of the hardware. In Aquarius, there
were three custom-made circuit boards with which the FSW
had a direct interface. We wanted to be able to test in configu-
rations in which any combination of those three boards being
present or not present could occur.

If a particular board is not present, it needs to be simulated
in software, and this is easily accomplished by creating a
simulation version of the Component or Components that
implement the interface to that board. Clearly, if a single
Component has a direct interface to more than one board, then
it’s quite difficult to accommodate having one or the other
of the boards, but not both, in the software. Also, the ease
of substituting just one Component to simulate a non-present
board is better than substituting multiple ones; thus, it’s best if
there is one software Component for each discrete, removable
hardware piece.

Again refering to Figure 4, the simulation version of Com-
ponentX is implemented as the class ComponentXSim. Note
that, because that class is derived from the ComponentX base
class, the simulation version can exercise much of the flight
code, which resides in the ComponentX class.

Having identified the Components and the data flows between
them, the next step is to convert the data flows into actual
UML Interfaces, with function signature definitions. This
step includes making decisions about whether a given inter-
face operation is synchronous or asynchronous, and whether
data is pushed or pulled.

Refer again to the simple runtime diagram of Figure 2. The
Component instances and data flows shown in that diagram
have been converted into specific classes and interfaces in
the diagram of Figure 5. For example, the data flow labeled
”msg” going from the CommBoardCmp object at the top of
Figure 2 to the CommandCmp is shown to be implemented, in
Figure 5, as the interface MessageSink, and its being provided
by the CommandCmp, and used by the CommBoardCmp.

In the model, the MessageSink interface has a single opera-
tion in it: acceptMessage() (this is not shown in any of the
diagrams in this paper). From this model, the header file for
the code of interface MessageSink can be generated by the
UML tool.

The Use of C++

There has been much debate in the FSW community about
the relative benefits and suitability of C versus C++ for FSW.
C has been the dominant FSW language in our institution.
Among the concerns about using C++ for FSW are:

1) Code bloat, excessive executable size

2) Hidden dynamic memory allocation

3) General complexity

4) Performance.

Before discussion each of these, we need to describe our
restrictions on the use of C++ for Aquarius FSW. We use the
full C++ language with the following exclusions:

1) No use of Runtime Type Information (RTTI). This in-
cludes not only the typeid operator but also dynamic cast.
This feature makes linking more complex, executables larger,
and significantly complicates pointer logic.

2) No use of exception handling (try, throw, catch). This
causes dynamic memory allocation beneath the covers.

3) No use of multiple or virtual inheritance. This feature can
cause virtual functions to run slightly slower, and it implies
the use of RTTI.

4) No use of standard string, IO streams, and other standard
library features. These can tremendously increase the size of
the image, and are not really required in FSW anyway.

5) No extravagent use of templates. We do allow templates,
but sparingly. This avoids code bloat.

These restrictions on the language make it possible to avoid
realizing the concerns outlined above. We avoid code bloat by
carefully using templates, and by avoiding unneeded library
features and RTTI. We avoid hidden memory allocation by
avoiding exception handling, and also by an educated and
careful use of Standard Template Library (STL) container
templates, i.e. by allocating memory for these containers
up front, and knowing how to use them so that they do not
allocate memory thereafter.

The complexity argument, we find, is a combination of
unfamiliarity with OO concepts and ways of thinking, as well
as a reaction to indeed overly-complex use of inheritance
and template usage, often perpetrated by new users of C++.
Aquarius’ FSW design and code has been presented and
reviewed extensively, and our experience tells us that it is not
more complicated than other FSW designs of similar size.

And finally performance: The ISO Technical Report on C++
Performance (see [3]) thoroughly examines the performance
of C++ in every aspect of execution, and concludes that C++
is in some respects (e.g. virtual functions in a multiple-
inheritance hierarchy) very slightly slower than C, and in
many respects no different at all. Our experience agrees.
Aquarius FSW has quite demanding performance require-
ments, among them handling interrupts at rates in excess of
100Hz while sending downlink data at 1/2 MB/second, which
it meets easily.

5. THE USEFULNESS OF PLUG & PLAY
COMPONENTS

To date, the run-time modification capability has been ex-
tremely useful in flight as well as testing situations. It has
allowed lower-risk and quicker problem fixes in flight and
in integration and thermal testing. It has enabled tests on a
system level that would normally be possible only in white-
box context, allowed rapidly prototyping design modifica-
tions and problem fixes, and served other utility purposes.

7

Figure 6. The class model of the EEPROM Writer Component.

Following is a brief discussion of some of the applications of
this capability.

1) Fixing problems after the flight instrument had been as-
sembled: In integration testing with the flight Radiometer,
a minor FSW bug was found (not copying a status word
from the instrument into the science header). Later still,
a deficiency in the design for reporting of radio frequency
interference was detected, which had to be fixed by using
some spare words in the science block for additional RFI
status bits. However, overwriting the EEPROMs at that late
date was judged too risky, and the decision was made to fix
these problems by uplinking modified components. This was
done in flight after the instrument was originally turned on.
These fixes together required uplinking modified versions of
three Components.

2) Writing the EEPROMs: Late in the development, we
realized that writing the EEPROMs using a patch instead of
the traditional serial port-based EEPROM writing application
would save us from having to modify the flight hardware con-
figuration to enable the serial port if we wanted to write the
EEPROMs after the flight system had been assembled. (This
would also open the possibility of writing the EEPROMs in
flight, though this is not planned.) Thus the EEPROM Writer
component was developed to write a flight software image to
either (or both) of the two on-board EEPROMs. This com-
ponent is not part of the original flight software component
configuration. It is itself uploaded as a new flight software
patch. There are two on-board EEPROMs; one on the CPU
board and the other on communications board. The EEPROM
Writer component is capable of writing to and verifying of
either EEPROM, selected via ground command. The EEP-
ROM Writer component, of class EepromCmp, consists of an
EepWriter, and CmdHandler classes, as shown in Figure 6.
During the connection process, the installCommandHandlers
method registers all the new ground commands needed for

uplinking a complete FSW image, with unique op-codes
and their associated command parsers. The scheduleTasks
method adds the EepWriter object to the schedule as a new
periodic task with pre-selected priority. The EEPROM writes
must be timed carefully, and this Periodic runs at 100 Hz to
accomplish this. Once installed, the EepWriters CmdHandler
object wakes up on a series of ground commands to upload
a new flight image. The image is written to one of the EEP-
ROMs in chunks during periodic calls from the Scheduler to
the EepWriter.

3) CPU stress test: we uplink a new component whose sole
purpose is to waste CPU time at a high priority, and to
progressively use more of it as time goes on. We want to
make sure that the performance of the FSW degrades in a
predictable way. This patch is called the CpuHog.

4) Prototyping a different design of 1553 driver: We wanted
to optimize the driver, but we wanted to try it out before
changing the baseline and overwriting the EEPROM, so we
made a patch of the component that contains the driver. After
debugging the driver, we decided to incorporate the new
design into the baseline.

5) Analog telemetry reading changes: We had to make a
change in the FSW timing of reads from an analog accu-
mulation register because the board required more time than
its specification said it did. We made the modifications
necessary in a patch of the component that contains the
interface to that register, and, after some experimentation and
modifications (over several patch uploads), we settled on the
best fix and made it part of the baseline.

6) Quick fix in thermal testing: In thermal testing, we found
that a serial bus driver chip became very noisy above a certain
temperature, and had to change the FSW to handle this, which
included disabling an interrupt and other changes. Under

8

extreme time pressure, we quickly put the fix into a patch,
tested it, and then incorporated it into the baseline. Doing the
patch let us test the fix in the thermal chamber before having
to write the EEPROMs with a new edition of the FSW.

7) Fault injection in system-level patching tests: we have
several components that intentionally fail at different steps in
the patching sequence so that we can test the FSW’s response
to these failures.

8) Cleaning up after and replacing a suspended task: on
one of our system test scenarios, we intentionally peek an
invalid address, which causes the thread that handles the peek
command to get suspended. We don’t want to reboot, so we
uplink a replacement patch for the component containing that
thread. The finalization process of the replaced component
deletes the original thread, and installing the replacement
creates a new one. In this case, we install a new instance
of the very same version of the component. This could avoid
a reboot in flight.

We believe that the effort of designing and implementing the
Component management framework and its application to
Aquarius FSW, as well as the additional work of thoroughly
verifying the Component replacement logic, has been amply
rewarded.

6. VERIFICATION
Verification of the FSW, both in terms of implementation of
the requirements and also of a high degree of reliability, takes
place by both analysis and by testing. Testing is preferable,
we resort to analysis when testing is not possible or practical.
Testing takes place on two levels: ”black box”, system tests,
in which only the flight data paths in and out of the FSW
are available; and ”white box”, subsystem tests, which are
implemented as C++ applications which have access to the
internals of the parts of the software under test.

We spent a great deal of time writing test tools and test code;
in fact we wrote about half again as much test code as we did
flight code, and it was well worth it.

An important aid for testing: by wrapping OS functions
in a C++ interface, our FSW could run on both the target
PowerPC under VxWorks, and on the Solaris/SUN target,
using native Solaris Posix threads, queues, etc. Thus, we
could run almost any of our tests on either the workstation
or the target.

Automated System Testing

We defined a set of scenarios at FSW-system level, using only
the flight interfaces: 1553 bus messages and high-speed serial
port for science downlink. This set of scenarios was sufficient
to verify almost all of the FSW’s requirements. (There were
some requirements that had to be verified on a white-box
level, and a few that could only be verified by inspection or
analysis.)

We automated this system testing to a high degree. We wrote
several tools to achieve this:

• Command Tool: reads command dictionary, processes
scripts with commands in simple English/ASCII format, with
delay specifications per command, converts commands to
binary, 1553 format commands, sends them on a socket to
SIM version of communication board interface Component.

Can run indefinitely, being given new scripts to process by
copying files into the input directory.

• Telemetry Tool: Accepts ”1553” messages on a socket from
the SIM version of the comm board interface Component,
converts binary messages into simple ASCII format.

• Sci Data Tool: Accepts binary science block messages on
a socket from the SIM version of the comm board interface
Component, converts binary messages into simple ASCII
format.

• Test Executive: Reads a suite of tests, executes each one
(option to particular tests simultaneously or in series) using
the Command/Telemetry and SciData Tools, evaluates results
by comparing ASCII housekeeping and science data output
files with expected results files in the form of Perl regular
expressions.

With these tools, we were able to easily run long suites of test
scenarios and quickly evaluate the results. This enabled us
to do a comprehensive retest as often as we liked (subject to
the limitation that it took many hours to run the entire set of
tests).

Testing Component Replacement or Addition

Changing out a Component at runtime, or adding in a new
one, seems risky, even though it is entirely common-place
in ground software. But because it is not so often done in
flight software, and because of the higher reliability needed,
we perceived a greater risk in doing it, and therefore paid
special attention to the verification of this capability in the
FSW.

One of the difficult things to verify was that there were no
stray interactions between successive versions of a compo-
nent. For example: if Component A did not completely
detach from Component B, and Component B were replaced
with a new version, might Component A still have an invalid
reference to the old instance? The order of Component
replacement then, is meaningful. With about 10 Components
that can be patched, Aquarius FSW might be vulnerable to
bugs such as this, only in specific Component replacement
order.

Verifying the lack of such bugs is a combinatorial problem,
resulting from the ordering of Component replacement op-
erations. To test this, we developed a program that gener-
ated thousands of pseudo-random sequences of Component
replacement operations. We ran this program frequently
throughout the development process. This gave us signifi-
cantly more confidence that we had uncovered any bugs in
the connection/disconnection logic.

7. FSW QUALITY
At JPL, software defect rates are tracked on an ongoing basis
in order to understand how well (or not well) we are doing in
producing quality software.

Metrics are collected on all types of software: ground system
as well as flight, and categorized by type. Defect rates are
also categorized by phase: development, system test, and
operations. These values for instrument flight software are
shown in the Table 1.

Overall, Aquarius FSW had an order of magnitude fewer

9

Table 1. Average instrument flight software defects per
thousand physical lines of code, by phase

Phase Average AQ AQ/Av
Development 1.6 .053 3.3%
System Test 1.71 0.16 9.2%
Operations 0.14 0 N/A

defects than the average for JPL instrument FSW projects.
We should note that this dataset was collected over only
five instrument flight software projects, so its authority is
questionable. But it does provide a rough metric of software
quality.

8. CONCLUSIONS
One frequently-heard reaction to the plug-and-play capability
provided by our architecture is: That is not necessary in flight.
Another is: That increases risk by reducing determinism
because of the dynamic connection process.

The first objection is not surprising: After all, once the system
is launched, it can hardly change so much that it would need
major behavior modifications. This may be true, but it seems
to us that it rarely is. Many missions, including Aquarius,
have had to make significant FSW changes after integration.
Moreover, this objection misses the point that important use
cases for the FSW happen well before launch: namely during
development and integration, and in the continuous verifica-
tion that (should be) is done during all phases of development
and integration. Our plug-and-play architecture, as we have
seen, greatly enhances the ability to do better, faster, more
flight-like testing at all phases of development.

And that addresses the second objection: by improving test-
ing, this capability decreases the overall risk to the mission,
by making the FSW better tested and thus more reliable.
There is only so much test time, and if the FSW is difficult
to test because of built-in rigidity, then that degrades the
quality and quantity of testing, and so results in a less reliable
product.

9. FUTURE WORK
The Aquarius framework (including Component manage-
ment as well as the OS wrapper facility) is currently being
used in a new development for the Gravity Recovery and
Climate Experiment (Grace) Follow On mission (see [6] and
[7]), for the FSW of an instrument called the Laser Ranging
Interferometer. The framework has already proven its value
in getting the LRI’s FSW up and running quickly. Also, this
will give us the opportunity to make minor improvements and
enhancements to the framework.

The next important step to be made with this framework is
to modify it to be able to work in a partitioned memory
operating system, such as Unix or VxWorks and its Real-
Time Processes. This would make the framework suitable for
use on larger missions with stringent reliability requirements.
We hope to have an opportunity to do that in the near future.

ACKNOWLEDGMENTS
We would like to thank our colleagues on the Aquarius
project, in particular the Instrument Engineer, Dalia McWat-
ters, and the command and data subsystem engineers, Mimi
Paller (lead), Andy Berkun, Mark Fischman, and Craig
Cheetham for their excellent work in producing clear, stable,
and exceptionally well-documented hardware and interfaces:
they made the FSW team’s work much easier.

The research described in this paper was carried out at the
Jet Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space
Administration.

REFERENCES
[1] Clemens Syzperski, Component Software: Beyond

Object-Oriented Programming (2nd Edition), Addison-
Wesley, June 7, 2011

[2] NASA’s Aquarius mission website:
http://aquarius.gsfc.nasa.gov/

[3] ISO (Internal Organization of Standardization): Tech-
nical Report on C++ Performance, ISO/IEC TR
18015:2006(E), 2006

[4] A. Murray, M. Shahabuddin, OO Techniques Applied to
a Real-time, Embedded, Spaceborne Application, ACM
International Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, 2006 pro-
ceedings.

[5] Grace Follow On Website:
http://eospso.gsfc.nasa.gov/eos homepage/mission profiles/show mission.php?id=83

[6] Grace Website: http://grace.jpl.nasa.gov/

BIOGRAPHY[

Alex Murray Alex Murray is a senior
software engineer with the Jet Propul-
sion Laboratory, California Institute of
Technology. He is currently leading the
development of Grace Follow On’s LRI
instrument FSW. He previously devel-
oped FSW for the Mars Science Labora-
tory, led the development of the SMAP
spacecraft bus FSW, and previously led
the development of the flight software

for the Aquarius instrument. He has led and done software
development for flight, ground, and simulation software for
missions and for technology development projects at JPL.
Previously he led and developed software for a variety of
projects at TRW (now Northrop- Grumman), and he served as
a system engineer for the European weather satellite agency,
Eumetsat, as well as software engineer for the Dresdner Bank
in Frankfurt, Germany. His experience includes embedded
and flight software development, prototype and research
development, OS development, AI, analysis and simulation
tools, science and image processing applications, business
and GUI applications, and databases. He holds BS and MS
degrees in mathematics from The Ohio State University.

10

Mohammad Shahabbuddin Moham-
mad Shahabuddin is a Senior member
of the Technical Staff at the Caltech
Jet Propulsion Laboratory. His contri-
butions to NASA include design and
development of FSW for Mars Science
Laboratory, and previously for Aquarius
instrument flight software, Mission Data
System (MDS) flight framework, multi-
mission simulation framework and soft-

ware simulators for Galileo, Voyager, and Cassini compute
data hardware. Object oriented principles were applied in the
design and development of Aquarius software, using UML
design tools and C++ language. He and his team earned
NASA award for developing bit-level High Speed Simulator
for Cassini Spacecraft used as a testbed for command and
sequence validation. He received his M.S. degree in Elec-
trical Engineering from California State University at Long
Beach. He did his undergrad in Electrical Engineering from
Engineering University Peshawar, Pakistan.

11

