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Abstract—Radio Science started when it became apparent with
early Solar missions that occultations by planetary atmospheres
would affect the quality of radio communications. Since then
the atmospheric properties and other aspects of planetary sci-
ence, solar science, and fundamental physics were studied by
scientists. Radio Science data was always extracted from a
received pure residual carrier (without data modulation). For
some missions, it is very desirable to obtain Radio Science data
from a suppressed carrier modulation. In this paper we propose
a method to extract Radio Science data when a coded suppressed
carrier modulation is used in deep space communications. Type
of modulation can be BPSK, QPSK, OQPSK, MPSK or even
GMSK. However we concentrate mostly on BPSK modulation.
The proposed method for suppressed carrier simply tries to wipe
out data that acts as an interference for Radio Science measure-
ments. In order to measure the estimation errors in amplitude
and phase of the Radio Science data we use Cramer-Rao bound
(CRB). The CRB for the suppressed carrier modulation with
non-ideal data wiping is then compared with residual carrier
modulation under the same noise condition. The method of
derivation of CRB for non-ideal data wiping is an innovative
method that presented here. Some numerical results are pro-
vided for coded system.
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1. INTRODUCTION
Radio Science investigations utilize the telecommunication
links between spacecraft and Earth to examine changes in
the phase/frequency, amplitude, and polarization of radio
signals to investigate: planetary atmospheres, planetary rings,
planetary surfaces, planetary interiors, solar corona and wind,
comet mass flux, fundamental Physics. The measurements
are conventionally made at the earth station. In Deep Space
communications in addition to receiving the information data
reliably, it is always desirable to receive Radio Science ob-
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servations accurately to estimate a planet atmosphere struc-
ture. Currently the Radio Science observations use only the
residual carrier (no data on carrier). For deep space commu-
nication systems, the decision of whether or not to suppress
the transmitted carrier has always been an issue. In general,
for a given total available power, a fraction of the power
would be allocated to the carrier signal and the remainder
of the power would be allocated to the signal with data. It
is well known that the more power allocated to the carrier,
the better the synchronization and Radio Science observation
accuracy. At the same time the more power allocated to the
data-bearing signal the better the error probability of the end-
to-end communication link. The question is how to trade off
between these two conflicting power limited requirements so
as to minimize the average error probability of the system
and at the same time enabling accurate Radio Science ob-
servations. Obviously there always exists an optimum split
of the total power into the two components mentioned above
if the cost is a function only of error probability. When the
cost is a function of probability of error and goodness of
Radio Science data, still there could exist an optimum phase
modulation index corresponding to required average error
probability performance, while satisfying the required Radio
Science data accuracy. For certain missions that use high data
rates, the available bandwidth might be a limitation factor.
In such case, it is preferred to use a completely suppressed
carried system that is more bandwidth efficient. Currently
Radio Science measurements are performed by using only
a residual carrier scheme. When a carrier signal is passing
through the atmosphere of a planet, Radio Science informa-
tion is extracted from the amplitude, and phase variations of
the received carrier. For certain critical missions, pure carrier
transmission without data might be used for some duration
of time to enhance the quality of received Radio Science
observations. In this paper we consider a pure suppressed
carrier system and we restrict the modulation to be binary
Phase Shift Keying (BPSK). However extension of results to
Quadrature Phase-Shift Keying (QPSK), and M-ary Phase-
Shift Keying (MPSK) is possible. We present a method
to remove the data from the received suppressed carrier
and effectively generate a residual carrier for Radio Science
from the received suppressed carrier data for estimating the
amplitude, and phase variations. For an un-coded system a
simple way to remove data is to square the received baseband
samples or to multiply the incoming samples with the tangent
hyperbolic function of the received samples. Unfortunately
using this method, only twice of the actual phase can be
estimated. Thus, this method creates phase ambiguity that
requires unwrapping of the estimated phase. With such
scheme there is also a performance degradation due to the
squaring of noisy samples. For coded systems, fortunately
this is not the case. The existing coding schemes for space
communications include convolutional codes, concatenated
Reed-Solomon and convolutional codes, turbo codes, and
Low density Parity Check (LDPC) codes. The proposed
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Figure 1. Concept of Radio Science Measurements using RF.

method takes the hard output of the decoder to remove the
data from the incoming signal after re-encoding and re-
modulation. Since delay is not an issue in Radio Science
measurements the process of data removal can also be done
in several iterations. We analyze the received data using
open loop estimation techniques for amplitude, and phase.
Results will be parametrically represented so that it can
represent all the different cases of interest to Radio Science
observations. In section 2 we provide the received signal
models, in section 3 a theoretical analysis based on Cramer-
Rao bound is performed. The goal is to obtain a lower bound
on minimum variance of unbiased estimation of parameters
related to Radio Science data for the suppressed carrier. Then
the theoretical results are compared to the residual carrier
case. In section 4 a system for suppressed carrier to extract
the Radio Science data is proposed. Section 5 provides
an example and numerical results. Section 6 provides a
summary.

2. CHANNEL AND SIGNAL MODELS
For suppressed carrier BPSK modulation the complex enve-
lope of the received signal in absence of planet atmosphere
can be modeled as

y(t) = Ad(t)ej(2πfdt+φo) + n(t) (1)

where y(t) is the complex received signal, with amplitude A
, Doppler frequency shift fd, and the carrier phase φo. In (1),
n(t) is additive zero mean white Gaussian noise and d(t) is
transmitted data that can be represented as

d(t) =
∑
k

dkp(t− kTs) (2)

where p(t) represent modulation pulse shaping, dk ∈
{+1,−1} for BPSK, and Ts is symbol duration. In deep
space communications usually p(t) is a rectangular pulse
shape such that

p(t) = 1; 0 < t ≤ Ts (3)

and zero otherwise. Other pulse shaping such as Nyquist
pulse shaping can also be considered if there are strict band-
width limitation.

When the suppressed carrier BPSK modulation is passed
through a planet atmosphere the received signal can be mod-
eled as

y(t) = Aa(t)d(t)ej(2πfdt+ψ(t)+φo) + n(t) (4)

where a(t) and ψ(t) are the amplitude and phase of Radio
Science signal to be measured. For residual carrier the com-
plex envelope of the received signal can simply be modeled
as

y(t) = Aa(t)ej(2πfdt+ψ(t)+φo) + n(t) (5)

Comparing (4), and (5) we see that for pure residual carrier
the multiplicative term d(t) is missing. The received obser-
vation using (5) provides all information required for Radio
Science measurements. The only nuisance interfering signal
is the noise n(t). However in (4) the data d(t) represent
an additional multiplicative nuisance interfering signal that
should be removed. In addition to Doppler frequency, we are
interested in estimating a(t) and ψ(t). In order to simplify the
signal model, either prior to estimating ψ(t) we can calibrate
out the Doppler, and φo or simply represent the Doppler and
φo as part of ψ(t) phase. Also we assume the received signal
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can be normalized (calibrated) by A. Thus a simpler model
for the received signal can be written as

r(t) = a(t)d(t)ejψ(t) + n(t) (6)

The discrete time model for signal in (6) at a symbol sample
rate can be represented as

r = s(a;ψ;d) + n (7)

where the kth component of r can be represented as

rk = akdke
ψk + nk (8)

Suppose the estimation of time varying amplitude and phase
is done over windows of N samples. Since these parameters
are slow varying, in practice we can make the following
approximations for amplitude and phase process. Over every
N samples we assume the amplitude a is almost constant
and phase can have linear approximation. The estimated
amplitude and phase (with possible phase unwarpping) over
consecutive windows will represent the time varying ampli-
tude and phase if the number of samples per window frame
is chosen properly. Without loss of generality consider the
time index for a given window be k = 0, 1, 2, . . . (N − 1).
Over this window then ak = a, and ψk = 2πψ1k∆ + ψ0
where ψ0 is the initial phase at the beginning of the window
i.e at k = 0, ψ1 represent the slope of the phase, and ∆ is
the sampling period (here it is equal to Ts). In fact we used
piecewise line fitting for the phase over every N samples. In
(8), the nks are independent and identically distributed zero
mean noise samples with variance σ2 = No

2Es
per dimension.

The symbol energy is given by Es = PTs where P is the
averaged received power. Note that the variance of noise
after normalization is correctly done since if we set a = 1,
and ψ1 = ψ0 = 0, by passing the received samples rk
through a hard limiter we get exactly the performance of
uncoded coherent BPSK modulation. With this setup we have
a simpler signal model to be used in our theoretical analysis
in the next section. The received vector is modeled as

r = s(θ;d) + n (9)

where the vector parameter θ = (θ1, θ2, θ3) = (a, ψ0, ψ1) to
be estimated given the received complex observation samples

rk = adke
j(2πψ1k∆+ψ0) + nk (10)

For wiping out the data, we use a genie argument. Assume
for every received sample a genie tells us the correct value
of data dk with probability of 1 − p and incorrect value with
probability of p. This is equivalent to have p(dk = 1) = 1−p,
and p(dk = −1) = p. Using genie argument simplifies our
theoretical analysis. In real implementation of the system
we replace the genie with the channel decoder output the
provides the same information for non-ideally wiping out the
data.

3. THEORETICAL ANALYSIS BASED ON THE
CRAMER-RAO BOUND

The Cramer-Rao bound (CRB) [1], [2], [3] in estimation
theory, provides the tightest achievable lower bound on the
mean square error of an unbiased estimator. The CRB for
vector parameter estimation in additive white Gaussian noise
in absence of other nuisance random vectors has already

been done and there is nothing new. However a closed
form solution of the CRB for vector parameter or even for a
single parameter estimation when there is a nuisance random
vector such as a non-uniform (not equally likely) random
data is extremely hard and to the best of our knowledge no
closed form solutions have been provided in the past. A
modified Cramer-Rao bound (MCRB) was proposed in [4],
[5], [6] in order to obtain a closed form solutions to the lower
bound of the error variance in estimating the synchronization
parameters in digital communications. In most cases equally
likely data were assumed. The MCRB represent a looser
lower bound. Here we use the CRB rather than MCRB. In
appendix B we briefly review MCRB bound. In fact we will
show that MCRB is useless for our problem when the data
values have unequal probabilities.

Cramer-Rao bound

Consider estimating a vector parameter θ = (θ1, θ2, . . . , θq)
T .

Assume that the estimator θ̂ is unbiased. Using the Cramer-
Rao bound we have [3]

var(θ̂i) ≥ [I−1(θ)]i,i (11)

where I(θ) is the q × q Fisher information matrix where the
(ij) component of I(θ) is defined as

[I(θ)]i,j = −Er{
∂2 ln p(r|θ)

∂θi∂θj
} (12)

for i, j = 1, 2, . . . , q and it is evaluated at the true value of θ.
The vector r represents the N received observations samples
for index set k = 0, 1, . . . , (N − 1). The model of received
observation vector r depends on the vector data vector d,
which acts as a unwanted nuisance vector in estimation of
θ. Thus the probability density function p(r|θ) in CRB can
be obtained as

p(r|θ) = Ed{p(r|θ,d)} (13)

Based on the observation model for suppressed carrier BPSK
modulation over AWGN channel and model of amplitude and
phase we have

p(r|θ,d) =
N−1∏
k=0

p(rk|θ, dk) (14)

where

p(rk|θ, dk) =
1

2πσ2
e−1/2σ2|rk−adkej(2πψ1k∆+ψ0)|2 (15)

For BPSK modulation data dk is taking values of +1,−1.
Using genie argument where genie is not reliable as discussed
above we have p(dk = 1) = 1 − p and p(dk = −1) = p
where genie lies independently with probability p, then using
(13) we have

Edk{p(rk|θ, dk)} = p(rk|θ, dk = 1)(1− p)
+p(rk|θ, dk = −1)p (16)

Using (13) and (14) we have

p(r|θ) =

N−1∏
k=0

Edk{p(rk|θ, dk)} (17)
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Thus

ln p(r|θ) =
N−1∑
k=0

lnEdk{p(rk|θ, dk)} (18)

Using (15) and (16) we obtain

lnEdk{p(rk|θ, dk)} = ln

√
p(1− p)
2πσ2

−|rk|
2 + a2

2σ2

+ ln cosh(zk(rk;θ; p)) (19)

where

zk(rk;θ; p) =
a

σ2
<{rkβ∗k}+ ln

√
1− p
p

(20)

and
βk = ej(2πψ1k∆+ψ0) (21)

∂

∂θi
lnEdk{p(rk|θ, dk)} = − ∂

∂θi

a2

2σ2

+
∂zk(rk;θ; p)

∂θi
× tanh(zk(rk;θ; p))

(22)

∂2

∂θi∂θj
lnEdk{p(rk|θ, dk)} = − ∂2

∂θi∂θj

a2

2σ2

+
∂2zk(rk;θ; p)

∂θi∂θj

× tanh(zk(rk;θ; p))

+
∂zk(rk;θ; p)

∂θi

∂zk(rk;θ; p)

∂θj

×(1− tanh2(zk(rk;θ; p)))

(23)

[I(θ)]i,j = −
N−1∑
k=0

Erk{
∂2

∂θi∂θj
lnEdk{p(rk|θ, dk)}} (24)

Note that − ∂2

∂θi∂θj
a2

2σ2 = − 1
σ2 when i = j = 1, and zero

otherwise.

∂zk(rk;θ; p)

∂θ1
=

1

σ2
<{rkβ∗k} (25)

∂zk(rk;θ; p)

∂θ2
=

a

σ2
={rkβ∗k} (26)

∂zk(rk;θ; p)

∂θ3
=

2πak∆

σ2
={rkβ∗k} (27)

∂2zk(rk;θ; p)

∂θ1∂θ1
= 0 (28)

∂2zk(rk;θ; p)

∂θ2∂θ1
=

1

σ2
={rkβ∗k} =

∂2zk(rk;θ; p)

∂θ1∂θ2
(29)

∂2zk(rk;θ; p)

∂θ3∂θ1
=

2πk∆

σ2
={rkβ∗k} =

∂2zk(rk;θ; p)

∂θ1∂θ3
(30)

∂2zk(rk;θ; p)

∂θ2∂θ2
= − a

σ2
<{rkβ∗k} (31)

∂2zk(rk;θ; p)

∂θ3∂θ2
= −2πak∆

σ2
<{rkβ∗k} =

∂2zk(rk;θ; p)

∂θ2∂θ3
(32)

∂2zk(rk;θ; p)

∂θ3∂θ3
= −a(2πk∆)2

σ2
<{rkβ∗k} (33)

We note that 1
σ<{rkβ

∗
k} = a

σdk + νI,k and 1
σ={rkβ

∗
k} =

νQ,k, where νI,k = <{nkβ
∗
k

σ }, and νQ,k = ={nkβ
∗
k

σ }. Both
νI,k and νQ,k are zero mean, unit variance, independent
Gaussian random variables.

Using equations (23) to (33) it is easy to show that the zero
components of the Fisher information matrix are

[I(θ)]1,2 = [I(θ)]2,1 = 0

and
[I(θ)]1,3 = [I(θ)]3,1 = 0

.

Further using the above results we notice that

[I(θ)]2,2 =
N−1∑
k=0

Erk{
a

σ2
<{rkβ∗k} tanh(zk(rk;θ; p))

− a
2

σ4
=2{rkβ∗k}(1− tanh2(zk(rk;θ; p)))}

(34)

It is easy to show that Erk{.} in (34) is independent of index
k. Further using the above results we notice that

[I(θ)]2,3 =
∑N−1
k=0 (2πk∆)

×Erk{ aσ2<{rkβ∗k} tanh(zk(rk;θ; p))

− a2

σ4=2{rkβ∗k}(1− tanh2(zk(rk;θ; p)))}
(35)
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where
h∗ = h

a

σ
(52)

ν∗1 =
a

σ
+
σ

a
ln

√
1− p
p

(53)

ν∗2 = − a
σ

+
σ

a
ln

√
1− p
p

(54)

Then

[I(θ)]1,1 =
N

σ2
[1− 2W (h∗) +W (2h∗)] (55)

In order to compute [I(θ)]2,2, in addition to equations (45)
to (47) we need the following results. Again for a Gaussian
random variable ν with zero mean and unit variance, and
constants h∗ and ν∗ we have

E{sgn(ν + ν∗)} = 1− 2Q(ν∗) (56)

E{ν sgn(ν + ν∗)} =
2√
2π
e−

ν∗2

2 (57)

E{sgn(ν+ν∗)e−h
∗|ν+ν∗|} = g(−ν∗, h∗)−g(ν∗, h∗) (58)

E{sgn(ν + ν∗)νe−h
∗|ν+ν∗|} =

−h∗[g(ν∗, h∗) + g(−ν∗, h∗)]

+ 2√
2π
e−

ν∗2

2 (59)

Using equations (56) to (59), and (42) in (34) we get

[I(θ)]2,2 =
Na2

σ2
Z(h∗) (60)

where

Z(h∗) = (1− p){1− 2Q(ν∗1 ) + (h− 1)g(ν∗1 , h
∗)

+ (h− 3)g(−ν∗1 , h∗)
+ g(ν∗1 , 2h

∗) + g(−ν∗1 , 2h∗)}
+ p{−1 + 2Q(ν∗2 ) + (h− 3)g(ν∗2 , h

∗)
+ (h− 1)g(−ν∗2 , h∗)
+ g(ν∗2 , 2h

∗) + g(−ν∗2 , 2h∗)}
(61)

Having components of the Fisher information matrix, next we
obtain the inverse of this matrix to compute [I−1(θ)]i,i, for
i = 1, 2, 3 to find the CRB for the parameters as

var(θ̂1) ≥ 1

[I(θ)]1,1
(62)

var(θ̂2) ≥ [I(θ)]3,3
[I(θ)]2,2[I(θ)]3,3 − [I(θ)]22,3

(63)

var(θ̂3) ≥ [I(θ)]2,2
[I(θ)]2,2[I(θ)]3,3 − [I(θ)]22,3

(64)

For large N , we have N − 1 ≈ N , and 2N − 1 ≈ 2N then
using (63), (64) we get

var(θ̂2) ≥ 4

[I(θ)]2,2
(65)

var(θ̂3) ≥ 12

(2π∆N)2

1

[I(θ)]2,2
(66)

For the residual carrier case p = 0, the CRB reduces to

var(θ̂1) ≥ σ2

N
, (CRB)res,1 (67)

var(θ̂2) ≥ 4σ2

Na2
, (CRB)res,2 (68)

var(θ̂3) ≥ 12σ2

Na2(2π∆N)2
, (CRB)res,3 (69)

For suppressed carrier then

var(θ̂1) ≥ γ1(p, a2, σ2)(CRB)res,1 , (CRB)sup,1 (70)

var(θ̂2) ≥ γ2(p, a2, σ2)(CRB)res,2 , (CRB)sup,2 (71)

var(θ̂3) ≥ γ3(p, a2, σ2)(CRB)res,3 , (CRB)sup,3 (72)

where γi(p, a
2, σ2), for i = 1, 2, 3 represent the amount

of degradation for the estimation of parameters for the sup-
pressed carrier with respect to the residual carrier (CRB)res,i.

γ1(p, a2, σ2) =
1

1− 2W (h∗) +W (2h∗)
(73)

γ2(p, a2, σ2) =
1

Z(h∗)
(74)

γ3(p, a2, σ2) =
1

Z(h∗)
(75)
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However

|rk − adkej(2πψ1k∆+psi0)|2 = |rk|2 + a2

−2adk<{rke−j(2πψ1k∆+ψ0)}
(82)

After taking the second partial derivatives all terms in the
expressions will be in form of linear function of dk<{rkβ∗k}
or dk={rkβ∗k}. This implies that

Erk|dk=1{
∂2 ln p(rk|θ, dk)

∂θi∂θj
} = Erk|dk=−1{

∂2 ln p(rk|θ, dk)

∂θi∂θj
}

(83)

So in the final step that we require to take expectation with
respect to data the final results will be independent of p, and
1−p. Thus the modified Cramer Rao bound is useless for our
problem.
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