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ABSTRACT 
Abstract --- A major open question for advocates of Model-
Based Systems Engineering (MBSE) is the question of how 
system and subsystem engineers will work together.  The 
Systems Modeling Language (SysML), like any language 
intended for a large audience, is in tension between the desires 
for simplicity and for expressiveness.  In order to be more 
expressive, many specialized language elements may be 
introduced, which will unfortunately make a complete 
understanding of the language a more daunting task.  While 
this may be acceptable for systems modelers, it will increase 
the challenge of including subsystem engineers in the modeling 
effort.  One possible answer to this situation is the use of 
Domain-Specific Languages (DSL), which are fully supported 
by the Unified Modeling Language (UML).  SysML is in fact a 
DSL for systems engineering. 

The expressive power of a DSL can be enhanced through the 
use of diagram customization.  Various domains have already 
developed their own schematic vocabularies.  Within the space 
engineering community, two excellent examples are the 
propulsion and telecommunication subsystems.  A return to 
simple box-and-line diagrams (e.g., the SysML Internal Block 
Diagram) are in many ways a step backward.  In order allow 
subsystem engineers to contribute directly to the model, it is 
necessary to make a system modeling tool at least approximate 
in accessibility to drawing tools like Microsoft PowerPoint and 
Visio. 

The challenge is made more extreme in a concurrent 
engineering environment, where designs must often be drafted 
in an hour or two.  In the case of the Jet Propulsion 
Laboratory’s Team X concurrent design team, a subsystem is 
specified using a combination of PowerPoint for drawing and 
Excel for calculation.  A pilot has been undertaken in order to 
meld the drawing portion and the production of master 
equipment lists (MELs) via a SysML authoring tool, 
MagicDraw. 

Team X currently interacts with its customers in a process of 
sharing presentations.  There are several inefficiencies that 
arise from this situation. The first is that a customer team must 
wait two weeks to a month (which is 2-4 times the duration of 
most Team X studies themselves) for a finalized, detailed 
design description.  Another is that this information must be 
re-entered by hand into the set of engineering artifacts and 
design tools that the mission concept team uses after a study is 
complete.  Further, there is no persistent connection to Team X 
or institutionally shared formulation design tools and data 
after a given study, again reducing the direct reuse of designs 
created in a Team X study. 1 
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This paper presents the underpinnings of subsystem DSLs as 
they were developed for this pilot.  This includes specialized 
semantics for different domains as well as the process by which 
major categories of objects were derived in support of defining 
the DSLs.  The feedback given to us by the domain experts on 
usability, along with a pilot study with the partial inclusion of 
these tools is also discussed. 
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1. BACKGROUND: CONCURRENCY AND NON-
CONCURRENCY REVISITED 

Concurrent engineering is contrasted with non-concurrent 
engineering by looking at multi-domain problems like 
spacecraft design.  The non-concurrent approach is 
characterized by work in series, with the answers to one 
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engineering question used to frame another.  Meetings are 
held to synchronize work and the process is often quite 
iterative.  Concurrent processes are also iterative, but the 
approach is to co-locate a variety of engineers and run a 
series of parallel threads with constant communication in 
order to converge at a feasible design.  The result of this is a 
great reduction in time to converge designs [1], and a side-
effect of this improvement in speed is often a greater 
understanding of the fundamentals of how a given space 
mission is framed. 

Team X has been greatly successful within JPL, and has 
generated over 1000 space science and technology studies.  
Its success, and the limits of its scope that have been 
discovered, have led to the development of new concurrent 
teams to address missions of different maturity [2].  What 
this suggests is that there is a need for multiple interchanges 
between different teams as they work together to create and 
mature mission concepts.  However, there are challenges in 
doing so, owing to limitations in current engineering tools. 

There are three major groups of issues with the computing 
infrastructure of concurrent teams. The first is the stark 
contrast between the level of integration that is often 
available to engineers working in concurrent and non-
concurrent environments.  While databases for coordinating 
parameter value updates are common in concurrent teams, 
the availability of such middleware is not guaranteed to non-

concurrent teams during formulation.  The second is the 
very manual process of moving information between 
concurrent and non-concurrent teams, which results in part 
from the first group of issues.  The final group of issues 
(which this paper does not address) is the tension between a 
need to pre-configure tools for speed but to remain flexible 
to new types of missions. 

Understanding the contrast in information interchange 
support made available to concurrent and non-concurrent 
teams is best done through the lens of facilities.  Concurrent 
engineering is often performed in specialized facilities with 
specialized tools made available. A combination of room 
arrangement, preconfigured workstations, and supporting 
infrastructure are dedicated to this mode of work. As a 
radical form of team collocation, they are well-built to 
provide multiple ways for team members to share 
information - by gesture, voice, or computer link.  A sign of 
the centrality of these facilities is that every team will show, 
as part of their self-description, a room layout.  An example 
is below in Figure 1. 

It can be clearly seen that tool integration is an enabler for 
effective concurrency.  This enabling is done through a set 
of curated, standardized, and well-understood parameters 
that are shared between domain experts that specialize in a 
given study role, or chair. This parameter set is housed 
within some form of custom software (e.g., ICEMaker [3] 

Figure 1. Layout of JPL Project Design Center (PDC); typical of concurrent design centers. 
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developed at Caltech and JPL, or xIDEA [4], developed at 
Aerospace Corporation and adapted to Team X) that is 
designed to find values input by concurrent session 
participants. These values are then routed to other 
participants at their workstations to propagate design 
updates. The software is often built around Microsoft Excel 
spreadsheets in some way or another.  Further, there is often 
a publish-and-subscribe approach to the timing of 
interchange that is used to allow individual participants to 
have time to work separately as needed. 

The integration between spreadsheets breaks down after a 
concurrent study is completed and the mission concept is 
further developed by the concept team. New or different 
parameters may be required, nullifying the well-controlled 
interfaces of the concurrent environment.  It becomes harder 
to provide the controlled infrastructure that enables the 
custom software to function. Finally, there is a host of 
additional tools or calculators the nonconcurrent team may 
wish to employ that are outside the purview of concurrent 
team toolsmiths. 

The difference in environments often available to concurrent 
and nonconcurrent teams heightens the problem of data 
transfer. Currently, the handoff is done with documents and 
presentations. If it is the case that both concurrent and 
nonconcurrent teams have members in common, this can 
greatly improve the transition, because design models in the 
form of spreadsheets can be handed off directly. If this is 
not the case, teams are often left to "hit the highlights," 
leaving behind many details of design work that are buried 
in spreadsheets.  In either case, the spreadsheet-based 
models can be hard to grow organically with increasing 
detail. Also, convolutions between generic design models 
and sets of proprietary data or sensitive (e.g., cost) models 
make it much less likely that the spreadsheets will simply be 
passed from team to team. Spreadsheets simply make it too 
challenging to restrict passed information only to that 
relevant to the receiving team. 

All of these considerations have led to an interest in using 
much more durable and capable expressions of engineering 
models in JPL's Team X.  One such platform is that 
provided by the Systems Modeling Language (SysML) 
standard and its supporting toolset. SysML models can be 
exchanged, expanded, audited, and marked for 
interconnections between parameters easily and robustly. 
They appear to be a natural solution for handling both the 
disparity in concurrent vs. non concurrent tool integration 
and the issues of data transfer between teams. 

2. BACKGROUND: REQUIREMENTS UPON 
MODEL-BUILDING IN A CONCURRENT 

ENVIRONMENT 
Models written in languages like SysML can be to the 
systems engineer as CAD models are to mechanical 
engineers. They can convey large quantities of information 
at a more or less arbitrary level of detail. They are expressed 

in increasingly standardized languages with improving 
support tools. 

There are many issues in systems engineering that could 
benefit from software support including: tracing out lines of 
causality, cycle detection, graph-based metrics of 
complexity, and simple verification of system composition 
rules. This support is often offered by formal modeling. 
SysML is a language that provides a modeling platform 
under graphical view creation.  SysML is not formal in the 
sense of semantic languages like OWL but it does provide 
standardization of multiple diagrams.  Also, when combined 
with frameworks like the Object Constraint Language 
(OCL) to implement rules and logical queries on user-
created profiles, it can approach OWL in formality. 

While the possibilities of formal modeling are attractive, it 
is not to say that the employment of formal models for 
concurrent engineering is without risk. 

The clearest risk is that the use of formal models by systems 
engineers is relatively new.  The discussion above about the 
degree of SysML’s formality highlights a good deal of 
frustration and confusion in the MBSE community; SysML 
is not formal enough for those fluent in mathematically-
backed semantics but is intimidatingly complex to 
traditional systems engineers. Formal models have made 
even less penetration into domains such as mechanical or 
electrical engineering (outside those directly connected to 
analytical contexts). Thus, the "standard language" is really 
not so standard in day-to-day practice. For an interchange 
between teams via these models to be useful, both teams 
must have members able to read them. 

Another risk especially relevant to concurrent engineering is 
the potential threat of formal modeling to timeliness and 
agility. So much time can easily be spent in model-building 
that there is no time left over to work the actual engineering 
issues. SysML models can easily become complicated and 
employ a wide variety of modeling elements and 
diagrams.  Many authoring tools have yet to fully streamline 
mouse clicks or make finding model attributes entirely 
intuitive. 

Another issue is that SysML was designed to be a general 
language for system description. Its representation of 
systems via boxes and lines is very bland in comparison to 
the rich schematics available to some domains. Engineers in 
the propulsion or telecommunications areas, for example, 
would lose a great deal of descriptive power in their 
diagrams using SysML Internal Block Diagrams. 

These risks and others not so well articulated motivated the 
performance of a pilot task of infusing SysML-based tools 
into Team X.  One key was to get feedback on tools under 
development from domain experts that participated in Team 
X as specialist chairs. Another was to assure that this new 
tooling could be made compatible with the existing 
infrastructure of Team X to enable incremental deployment. 
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Eclipse Foundation.  The Eclipse Modeling Framework [11] 
and XText [12] project now have several tools for 
metamodel definition, custom grammar creation, and the 
crafting of language interpreters.  Microsoft has spent a 
great deal of effort trying to convince the development 
community to look toward DSL’s for modeling rather than 
general-purpose frameworks like UML.  While Microsoft 
tools now incorporate UML ideas, they do still promote the 
domain-specific approach.  The approach of using both the 
domain-specific language while anchoring it on a generally 
applicable language is a good one, and is promoted by the 
Open Modeling Group (OMG). 

OMG offers multiple approaches to deriving domain-
specific models while utilizing a generic framework.  Two 
of the best known are the leveraging of the metametamodel 
called the Meta-Object Facility (MOF) (aka, M3) and 
extended UML through profiles.  The latter approach is how 
SysML itself was defined. 

4. APPROACH: BUILDING DSL’S IN SYSML 
The SysML authoring tool MagicDraw has a feature set 
dedicated to building domain-specific languages.  Various 
modeling elements are dedicated to controlling how various 
model elements are seen by the tool.  Custom diagrams can 
be created by the user with customized context, side, and 
title menus.  There are also a variety of entry points to the 
API for further customization.  The use of DSL’s in 
defining an appropriate library for domain engineers is 
presented in Figure 2. 

There are three major places that these customization points 
can be used.  The first is to restrict the interface so that only 
a controlled subset of modeling concepts is available to the 
user.  The second is to change the look and feel of the 
modeling tool so that it is more appropriate to the domain 
that a given user is comfortable with.  Finally, the third way 
is to set certain defaults (such as menu items or the 
placement of Ports when an icon is first drawn) to facilitate 
faster use of the tool.  While all three of these options have 
been investigated, the last two in the list appear to be the 
most useful. 

The default behavior of MagicDraw was altered via the 
Application Programming Interface (API) in order to make 
a true drag-and-drop feel from libraries.  This was the first 
foray into a series of customizations to be made in order to 
streamline custom tools for concurrent engineering teams.  
The customization overrides the default behavior, where 
MagicDraw attempts to size Part Properties according to the 
length of the name and classifier at a given text size, and 
then add relevant Ports in either a left / right (all along the 
left side and right side) or top / bottom configuration.  Many 
of the DSL icons the team used did not obey this 
convention, but had a different set of locations to fix 
connections to.  Thus, specialized functions were added via 
MagicDraw’s API to resize icons to predetermined values 
(since thrusters are usually emphasized over temperature 

sensors, for example) and place Ports in the correct 
locations. 

One final aspect of building the DSL in MagicDraw should 
be highlighted.  While SysML modeling tends to focus on 
point-to-point connections between components, there are 
also buses, junctions, and manifolds that must be addressed 
in engineering schematics.  Specialized icons were added 
for these as well to be added to diagrams for 
interconnections.  This allows for rapid adjustment of 
layouts, as well as a proper semantic capture of routing.  A 
plumbing fork, for example, does not merely connect 
multiple components.  It also is a place where a common 
pressure and flow rate is known, and can be leveraged to 
analyze the properties of the circuit at large.  While a similar 
look can be made by overlaying lines that connect 
components point-to-point, this would lead to improper 
information being captured in the model database. 

5. APPROACH: LIMITING USE OF SYSML 
CONCEPTS 

An important goal of the prototyping effort was to minimize 
the number and scope of concepts from SysML that would 
be required to work with the various chair-specialized tools.  
The quantity and rate of Team X work can be highly 
variable depending on the demand for concepts (e.g., for 
peaks to support national Decadal Survey analysis requests).  
There is potentially a long period of time between when a 

Figure 3. Inheritance path from specific component to 
generic idea of Product. 
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given specialist will use the Team X tools, and so there is a 
need for them to be intuitive to minimize retraining 
demands.  Further, many specialist chairs do not have the 
mastery of SysML on the list of critical skills that they must 
maintain in order to be effective in their various roles within 
the organization. 

In discussing this area, it is worth noting that the UML 
superstructure and SysML specification together specify 
about 300 first-class metamodel elements.  Many of these 
are abstract base metaclasses for other metaclasses, which 
means that inheritance must be considered when attempting 
to understand the language as a whole.  This means that 
UML / SysML currently requires much study and practice to 
truly master.  Even to comprehensively understand the 
basics requires many days of class time.  While this is 
perhaps an acceptable training requirement for systems 
engineers, who will leverage the concepts of the language 
daily, it is hard to justify training intermittent users. 

The traditional way of presenting the major components of a 
system or subsystem provide the starting point for required 
SysML elements to be used.  The typical box-and-line (or 
more schematically interesting icon-and-line) drawings that 
are presented correspond nicely to the contents of a SysML 
Internal Block Diagram (IBD).  This then requires at least 
the metaclasses of Property and Connector to be introduced.  
In addition, Ports should also be included to properly 
ground the connections between major participating 
elements in a design. 

The structure of the model requires some more ideas to be 
introduced.  The notion of TypedElement and Type in 
general need to be described.  Rather than precise SysML 
semantics, however, this manifests more in the generic 
“what does it mean to have a ‘type’” question.  The modular 
development and semantic refinement of various elements 
also requires a description of the ideas of inheritance and its 
relationship to steadily more restrictive classifications.  The 

classification progression of a bipropellant thruster, for 
example, is Product -> Powered Hardware Product -> 
Thruster -> Bipropellant Thruster.  As the classification is 
refined, the SysML relationship of Generalization is used to 
imply that new properties are inherited.  Thrusters, for 
example, will need a property to describe thruster 
performance, while bipropellant thrusters will need to 
discuss mixture ratios.  The relationships of Generalization 
and addition of parameters is shown below in Figure 3. 

As more work was done on the toolset, it became clear that 
behavioral descriptions of the spacecraft would also be 
required.  Although detailed scenario development and 
definition could be left to systems engineers (who would 
hopefully be stronger practitioners of SysML), there is still 
the need to define basic system states.  The definitions are 
required to properly anchor the descriptions of power use 
and data generation.  There are likely other dynamic states 
that may also be added to the general design framework, but 
power and data are the only considerations for now. 

The initial pattern for defining states is to use SysML State 
Machines as containers for state value constraints.  This is 
illustrated in Figure 4.  In it, the higher Block “Power” is 
specialized into two State Machines called On and Off.  
They redefine power estimate properties for the times that 
they are active.  This pattern represents the most challenging 
pattern developed to date to place behind the more user-
friendly façade that this pilot is creating. 

The states are then aggregated into relevant “power modes” 
that can be referred to in scenarios through the use of 
Sequence Diagrams.  This threatens to quickly expand the 
scope of required concepts.  State, State Machine, Lifeline, 
Interaction, State Invariant, Duration Constraint, and Time 
Constraint quickly enter the picture. 

An approach to keep the concept list small has been to 
construct the relevant parts of the behavior model 

Figure 4. Definition for power consumption of hardware in given states. 

6 
 





infrastructure were opportunistically leveraged.  As 
described in [4], the Team X infrastructure works with a 
Web Service to collect and curate the analysis variable 
values for a given study.  This Web Service makes an 
excellent target for various programming languages, 
including those accessible to the MagicDraw API. 

Specialized functions and stereotypes were developed to 
mark certain elements of the model as targets for queries to 
and from the core parameter database.  In the same style as 
the other workbooks, the custom software works in a 
publish-and-subscribe approach.  The ability to make these 
connections lowers the bar for adaptation dramatically, 
since various participants in Team X studies can now opt to 
use the workbooks or the MagicDraw interface to specify a 
design. 

8. INTERMEDIATE RESULTS: FEEDBACK FROM 
SPECIALIST CHAIRS 

The pilot was started with the participation of the chair lead 
for propulsion in Team X, who worked with the other 
authors to lay out the requirements for the tool.  Later, leads 
for the telecom and command and data systems (CDS) 
chairs also joined the piloting effort.  While all of the 
authors had experience in Team X studies and process, there 
are insights that the specialist chairs immediately provided. 

One of the first, and in retrospect most obvious insights, is 
that the specialist chairs always feel rushed to provide initial 
estimates for global design parameters like mass and power.  
These are needed to see if a given design is likely to even be 
in the ballpark for what a customer needs.  To this end, there 
was a great interest not only in a library of basic parts, but in 
a library of finished subsystem designs that could be quickly 
reused or adapted to a given study.  If a subsystem does not 
have strong requirements to a new design, these templates 
can help accelerate the study and focus attention on the 
aspects of the design that are driven by unique requirements.  
If the new mission drives an innovative response, the time 
pressure is reduced and design capture is deferred until the 
concept has been developed in session. “Freeform” elements 
can be used then to capture resource requirements for the 
purposes of the study and then described in detail later.  At 

the very least, the template designs can be offered as a 
“guess” to start up other design work while the domain 
expert has time to think more upon better approaches. 

Another interesting aspect that came up is that while only 
one chair may be responsible for the specification of a given 
component in the shared design, said chair will often require 
significant interface with other related subsystems.  This 
was very apparent in PowerPoint diagrams offered as input 
from CDS, where the avionics were shown to be connected 
to telecom, power, and attitude control electronics, as well 
as the instrumentation suite.  Before the pilot was started, 
the team thought that these cross-connects could be 
provided by the systems chair.  After consultation with the 
specialist, it became clear that each specialist would need to 
be able to give cross-cutting views of the whole system 
from their perspective.  That is, the CDS chair would do a 
data flow diagram, while power would focus on power 
connections and distribution. 

This poses an interesting problem.  The challenge is to allow 
multiple engineers to make intertwined contributions to the 
overall model in a concurrent way while keeping individual 
concerns and domain considerations separated.  A fuller 
appreciation of view, viewpoint, and their expression in 
SysML should provide a way forward, but there are still 
multiple implementation issues at hand to address.  This 
may lead into the general problem of model merging, which 
is akin to software code merging, but involves much more 
complex structures. 

Additional feedback provided to the team is that the 
processes employed by any given domain engineer were a 
little different than expected by the systems engineers; 
having the domain expert was thus essential for a useful tool 
to be developed.   

A totally unexpected, but highly encouraging result was an 
interest in learning more about SysML itself by one of the 
subsystem chairs  that was previously unaware of the 
language and subsequently became a co-author of this 
paper.  When the language itself is presented as something 
that leads the way to better data transfer, validation rules, 
etc., there is often a great deal of concern expressed in the 

Figure 6. Visual comparison between PowerPoint (left) and MagicDraw (right) iconography. 
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audience about dealing with the large language.  On the 
other hand, if a potentially useful and not overly 
burdensome tool is presented, there seems to be some 
interest in learning more about its underpinnings.  There is a 
lesson here in how the value proposition of modeling must 
be shown, not told, for increasing its acceptance.  Of course, 
this provides much more burden on the advocates of 
modeling to stay in touch with hoped-for users of their 
work. 

To balance the optimism in the above paragraph, working 
with the specialists has made it clear that the version of 
these tools that enter production must have a convenient 
user-interface, generate useful results in a rapid fashion, and 
address the key issues for all subsystem (i.e., approach 
professional-grade in user experience, reliability, and 
quality of the final product).  A user of MagicDraw and 
advocate of MBSE is delighted when he or she can hide the 
“boxology” of SysML for better icons.  A user of tools like 
Microsoft Visio quickly zeros in on misrendering artifacts 
and gaps in the illusion like whitespaces in the middle of 
lines as signs of inferior quality.  A side-by-side comparison 
of different drawing tools can be seen in Figure 6.  The 
artifacts are minimal, but there are still some whitespaces 
between lines and icons that can be seen with a sharp eye.  
These must be eliminated eventually, although they are not 
a show-stopper in the near term if offsetting benefits are 
identified.  Those benefits are, of course, a machine-
readable data structure behind the diagrams and a proper 
encoding of routing semantics (e.g., proper fluid junctions 
rather than overlapping lines) for later analysis. 

9. INTERMEDIATE RESULTS: ADDRESSING 
EARLIER RISKS 

The risk of interoperating with existing Team X 
infrastructure has been bought down through connecting the 
prototype tools to Team X’s back-end database.  This 
database makes data from MagicDraw appear identical to 
data that is passed between the workbooks currently used in 
Team X.  Thus, work best done with the existing tools can 
be performed with them, while new capability can be rolled 
out incrementally. 

The use of domain-specific languages brings the visual 
semantics of known icons to the prototype.  Further, careful 
use of these icons and pre-built libraries helps to reduce the 
amount of added SysML concepts that are required to 
properly operate this tooling. 

The sensitivity of information can actually be better assured 
through model-based tooling than through hand 
transcription.  Library properties can be tagged according to 
their sensitivity – proprietary, ITAR-sensitive, etc. through 
proper stereotypes.  These stereotypes can be used as targets 
for transformations like those used in other model-based 
efforts [13], [14].  These transformations can redact 
sensitive information automatically. 

Another demonstration made during the pilot was of 
connecting the MagicDraw-based tooling to the Team X 
database.  This is a highly effective lever for gradually 
introducing the tooling into the environment rather than 
being forced to replace the entire set wholesale. 

While the work presented in this paper does not make Team 
X operationally model-based, it does demonstrate that many 
of the advantages of model-based systems engineering can 
be captured and the perceived risks are entirely manageable. 

10. FUTURE WORK: DESIRED IMPROVEMENTS TO 
SYSML OVERALL 

There is a great deal of work ahead to transition from this 
prototype to a fully functioning capability for using SysML 
regularly in studies.  Some of these are improvements that 
need to be made to the prototype, others to individual 
authoring tools, and finally some improvements that need to 
be made to the standard itself. 

On the prototype side there are still a variety of mechanisms 
that could be streamlined.  There are several functions that 
are still “heavy” in terms of the number of mouse-clicks and 
menus that must be navigated to do “simple” things in the 
tooling.  More thought must also be given to the interaction 
between these tools and the Team X database in order to 
assure that they provide as robust a connection as the 
individual spreadsheet tools currently do. 

The SysML standard would benefit greatly from the 
concepts of diagram interchange.  Diagram interchange is 
the idea of various modeling tools being able to interchange 
not only model data, but the layout of drawn diagrams as 
well.  Further, the idea of “diagram interchange” should 
include specialized icons as well as the basic UML / SysML 
versions.  It is understandable that this is a major 
undertaking; it is still a major undertaking for the various 
authoring tools to exchange just model database 
information.  The Model Interchange Working Group has 
been making great strides in this area, so it should only be a 
matter of time. 

UML currently offers the profiling mechanism for extending 
the meaning of the language, and in fact was leveraged to 
craft SysML.  In addition to refining semantics via 
stereotypes, this prototyping work has shown the value of 
refining semantics visually as well. 

Another need that is becoming apparent is some concept of 
grouping of model elements that are not pure Classifiers.  In 
general, elements like Class, Activity, State Machine, etc. 
can be contained directly in Packages, which serve to 
organize models.  Working with this prototype has shown 
the usefulness of an entity that can organize model elements 
that are composite properties such as Features, Actions, 
States, etc.  These organizing elements further should serve 
to project constraints or modifiers on each of the members.  
This idea arose when working with the specification of 
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power modes in the prototype, and a strong desire by 
specialists to be able to set up groups of elements to be 
turned on or off at a given time.  Groups would allow for a 
collection of State Invariants for example to have their 
constraints updated after a single group has been updated.  
The groups could also be leveraged (by having Connectors, 
etc. that are associated with properties packaged into the 
same group as them) to allow for safe copy-and-paste 
operations on groups of elements, such as the left-hand 
branch of a propulsion system’s plumbing. 

11. SUMMARY 
A prototype has been developed using the MagicDraw tool 
to bring Model-Based Systems Engineering techniques to 
concurrent engineering.  This prototype has been applied to 
multiple specialist chairs in Team X, which has led to new 
insights along with way.  This has also provided a series of 
opportunities for feedback from specialist chairs in order to 
increase the likelihood of eventual deployment.  Various 
risks were identified before the prototype was built, and 
have now been addressed.  Along the way, there have been 
new insights developed about the practical use of MBSE in 
even fast-paced environments like Team X. 
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