
Domain-Specific Languages and Diagram Customization
for a Concurrent Engineering Environment

Bjorn Cole1, Greg Dubos1, Payam Banazadeh1, Jonathan Reh1, Kelley Case1 , Yeou-Fang Wang1, Susan Jones1, Frank Picha1

1 Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109.

ABSTRACT
Abstract --- A major open question for advocates of Model-
Based Systems Engineering (MBSE) is the question of how
system and subsystem engineers will work together. The
Systems Modeling Language (SysML), like any language
intended for a large audience, is in tension between the desires
for simplicity and for expressiveness. In order to be more
expressive, many specialized language elements may be
introduced, which will unfortunately make a complete
understanding of the language a more daunting task. While
this may be acceptable for systems modelers, it will increase
the challenge of including subsystem engineers in the modeling
effort. One possible answer to this situation is the use of
Domain-Specific Languages (DSL), which are fully supported
by the Unified Modeling Language (UML). SysML is in fact a
DSL for systems engineering.

The expressive power of a DSL can be enhanced through the
use of diagram customization. Various domains have already
developed their own schematic vocabularies. Within the space
engineering community, two excellent examples are the
propulsion and telecommunication subsystems. A return to
simple box-and-line diagrams (e.g., the SysML Internal Block
Diagram) are in many ways a step backward. In order allow
subsystem engineers to contribute directly to the model, it is
necessary to make a system modeling tool at least approximate
in accessibility to drawing tools like Microsoft PowerPoint and
Visio.

The challenge is made more extreme in a concurrent
engineering environment, where designs must often be drafted
in an hour or two. In the case of the Jet Propulsion
Laboratory’s Team X concurrent design team, a subsystem is
specified using a combination of PowerPoint for drawing and
Excel for calculation. A pilot has been undertaken in order to
meld the drawing portion and the production of master
equipment lists (MELs) via a SysML authoring tool,
MagicDraw.

Team X currently interacts with its customers in a process of
sharing presentations. There are several inefficiencies that
arise from this situation. The first is that a customer team must
wait two weeks to a month (which is 2-4 times the duration of
most Team X studies themselves) for a finalized, detailed
design description. Another is that this information must be
re-entered by hand into the set of engineering artifacts and
design tools that the mission concept team uses after a study is
complete. Further, there is no persistent connection to Team X
or institutionally shared formulation design tools and data
after a given study, again reducing the direct reuse of designs
created in a Team X study. 1

1 978-1-4673-1813-6/13/$31.00 ©2013 IEEE

This paper presents the underpinnings of subsystem DSLs as
they were developed for this pilot. This includes specialized
semantics for different domains as well as the process by which
major categories of objects were derived in support of defining
the DSLs. The feedback given to us by the domain experts on
usability, along with a pilot study with the partial inclusion of
these tools is also discussed.

CONTENTS
ABSTRACT ... 1

1. BACKGROUND: CONCURRENCY AND NON-
CONCURRENCY REVISITED .. 1

2. BACKGROUND: REQUIREMENTS UPON MODEL-
BUILDING IN A CONCURRENT ENVIRONMENT 3

3. BACKGROUND: DOMAIN-SPECIFIC LANGUAGES 4
4. APPROACH: BUILDING DSL’S IN SYSML 5
5. APPROACH: LIMITING USE OF SYSML CONCEPTS ... 5
6. APPROACH: THE PROTOTYPE BUILD AND PROFILES 7
7. APPROACH: CONNECTING TO PARAMETER

DATABASE ... 7
8. INTERMEDIATE RESULTS: FEEDBACK FROM

SPECIALIST CHAIRS.. 8
9. INTERMEDIATE RESULTS: ADDRESSING EARLIER

RISKS .. 9
10. FUTURE WORK: DESIRED IMPROVEMENTS TO

SYSML OVERALL ... 9
11. SUMMARY ... 10

ACKNOWLEDGEMENTS ... 10
REFERENCES ... 10
BIOGRAPHIES .. 11

1. BACKGROUND: CONCURRENCY AND NON-
CONCURRENCY REVISITED

Concurrent engineering is contrasted with non-concurrent
engineering by looking at multi-domain problems like
spacecraft design. The non-concurrent approach is
characterized by work in series, with the answers to one

1

engineering question used to frame another. Meetings are
held to synchronize work and the process is often quite
iterative. Concurrent processes are also iterative, but the
approach is to co-locate a variety of engineers and run a
series of parallel threads with constant communication in
order to converge at a feasible design. The result of this is a
great reduction in time to converge designs [1], and a side-
effect of this improvement in speed is often a greater
understanding of the fundamentals of how a given space
mission is framed.

Team X has been greatly successful within JPL, and has
generated over 1000 space science and technology studies.
Its success, and the limits of its scope that have been
discovered, have led to the development of new concurrent
teams to address missions of different maturity [2]. What
this suggests is that there is a need for multiple interchanges
between different teams as they work together to create and
mature mission concepts. However, there are challenges in
doing so, owing to limitations in current engineering tools.

There are three major groups of issues with the computing
infrastructure of concurrent teams. The first is the stark
contrast between the level of integration that is often
available to engineers working in concurrent and non-
concurrent environments. While databases for coordinating
parameter value updates are common in concurrent teams,
the availability of such middleware is not guaranteed to non-

concurrent teams during formulation. The second is the
very manual process of moving information between
concurrent and non-concurrent teams, which results in part
from the first group of issues. The final group of issues
(which this paper does not address) is the tension between a
need to pre-configure tools for speed but to remain flexible
to new types of missions.

Understanding the contrast in information interchange
support made available to concurrent and non-concurrent
teams is best done through the lens of facilities. Concurrent
engineering is often performed in specialized facilities with
specialized tools made available. A combination of room
arrangement, preconfigured workstations, and supporting
infrastructure are dedicated to this mode of work. As a
radical form of team collocation, they are well-built to
provide multiple ways for team members to share
information - by gesture, voice, or computer link. A sign of
the centrality of these facilities is that every team will show,
as part of their self-description, a room layout. An example
is below in Figure 1.

It can be clearly seen that tool integration is an enabler for
effective concurrency. This enabling is done through a set
of curated, standardized, and well-understood parameters
that are shared between domain experts that specialize in a
given study role, or chair. This parameter set is housed
within some form of custom software (e.g., ICEMaker [3]

Figure 1. Layout of JPL Project Design Center (PDC); typical of concurrent design centers.

2

developed at Caltech and JPL, or xIDEA [4], developed at
Aerospace Corporation and adapted to Team X) that is
designed to find values input by concurrent session
participants. These values are then routed to other
participants at their workstations to propagate design
updates. The software is often built around Microsoft Excel
spreadsheets in some way or another. Further, there is often
a publish-and-subscribe approach to the timing of
interchange that is used to allow individual participants to
have time to work separately as needed.

The integration between spreadsheets breaks down after a
concurrent study is completed and the mission concept is
further developed by the concept team. New or different
parameters may be required, nullifying the well-controlled
interfaces of the concurrent environment. It becomes harder
to provide the controlled infrastructure that enables the
custom software to function. Finally, there is a host of
additional tools or calculators the nonconcurrent team may
wish to employ that are outside the purview of concurrent
team toolsmiths.

The difference in environments often available to concurrent
and nonconcurrent teams heightens the problem of data
transfer. Currently, the handoff is done with documents and
presentations. If it is the case that both concurrent and
nonconcurrent teams have members in common, this can
greatly improve the transition, because design models in the
form of spreadsheets can be handed off directly. If this is
not the case, teams are often left to "hit the highlights,"
leaving behind many details of design work that are buried
in spreadsheets. In either case, the spreadsheet-based
models can be hard to grow organically with increasing
detail. Also, convolutions between generic design models
and sets of proprietary data or sensitive (e.g., cost) models
make it much less likely that the spreadsheets will simply be
passed from team to team. Spreadsheets simply make it too
challenging to restrict passed information only to that
relevant to the receiving team.

All of these considerations have led to an interest in using
much more durable and capable expressions of engineering
models in JPL's Team X. One such platform is that
provided by the Systems Modeling Language (SysML)
standard and its supporting toolset. SysML models can be
exchanged, expanded, audited, and marked for
interconnections between parameters easily and robustly.
They appear to be a natural solution for handling both the
disparity in concurrent vs. non concurrent tool integration
and the issues of data transfer between teams.

2. BACKGROUND: REQUIREMENTS UPON
MODEL-BUILDING IN A CONCURRENT

ENVIRONMENT
Models written in languages like SysML can be to the
systems engineer as CAD models are to mechanical
engineers. They can convey large quantities of information
at a more or less arbitrary level of detail. They are expressed

in increasingly standardized languages with improving
support tools.

There are many issues in systems engineering that could
benefit from software support including: tracing out lines of
causality, cycle detection, graph-based metrics of
complexity, and simple verification of system composition
rules. This support is often offered by formal modeling.
SysML is a language that provides a modeling platform
under graphical view creation. SysML is not formal in the
sense of semantic languages like OWL but it does provide
standardization of multiple diagrams. Also, when combined
with frameworks like the Object Constraint Language
(OCL) to implement rules and logical queries on user-
created profiles, it can approach OWL in formality.

While the possibilities of formal modeling are attractive, it
is not to say that the employment of formal models for
concurrent engineering is without risk.

The clearest risk is that the use of formal models by systems
engineers is relatively new. The discussion above about the
degree of SysML’s formality highlights a good deal of
frustration and confusion in the MBSE community; SysML
is not formal enough for those fluent in mathematically-
backed semantics but is intimidatingly complex to
traditional systems engineers. Formal models have made
even less penetration into domains such as mechanical or
electrical engineering (outside those directly connected to
analytical contexts). Thus, the "standard language" is really
not so standard in day-to-day practice. For an interchange
between teams via these models to be useful, both teams
must have members able to read them.

Another risk especially relevant to concurrent engineering is
the potential threat of formal modeling to timeliness and
agility. So much time can easily be spent in model-building
that there is no time left over to work the actual engineering
issues. SysML models can easily become complicated and
employ a wide variety of modeling elements and
diagrams. Many authoring tools have yet to fully streamline
mouse clicks or make finding model attributes entirely
intuitive.

Another issue is that SysML was designed to be a general
language for system description. Its representation of
systems via boxes and lines is very bland in comparison to
the rich schematics available to some domains. Engineers in
the propulsion or telecommunications areas, for example,
would lose a great deal of descriptive power in their
diagrams using SysML Internal Block Diagrams.

These risks and others not so well articulated motivated the
performance of a pilot task of infusing SysML-based tools
into Team X. One key was to get feedback on tools under
development from domain experts that participated in Team
X as specialist chairs. Another was to assure that this new
tooling could be made compatible with the existing
infrastructure of Team X to enable incremental deployment.

3

Eclipse Foundation. The Eclipse Modeling Framework [11]
and XText [12] project now have several tools for
metamodel definition, custom grammar creation, and the
crafting of language interpreters. Microsoft has spent a
great deal of effort trying to convince the development
community to look toward DSL’s for modeling rather than
general-purpose frameworks like UML. While Microsoft
tools now incorporate UML ideas, they do still promote the
domain-specific approach. The approach of using both the
domain-specific language while anchoring it on a generally
applicable language is a good one, and is promoted by the
Open Modeling Group (OMG).

OMG offers multiple approaches to deriving domain-
specific models while utilizing a generic framework. Two
of the best known are the leveraging of the metametamodel
called the Meta-Object Facility (MOF) (aka, M3) and
extended UML through profiles. The latter approach is how
SysML itself was defined.

4. APPROACH: BUILDING DSL’S IN SYSML
The SysML authoring tool MagicDraw has a feature set
dedicated to building domain-specific languages. Various
modeling elements are dedicated to controlling how various
model elements are seen by the tool. Custom diagrams can
be created by the user with customized context, side, and
title menus. There are also a variety of entry points to the
API for further customization. The use of DSL’s in
defining an appropriate library for domain engineers is
presented in Figure 2.

There are three major places that these customization points
can be used. The first is to restrict the interface so that only
a controlled subset of modeling concepts is available to the
user. The second is to change the look and feel of the
modeling tool so that it is more appropriate to the domain
that a given user is comfortable with. Finally, the third way
is to set certain defaults (such as menu items or the
placement of Ports when an icon is first drawn) to facilitate
faster use of the tool. While all three of these options have
been investigated, the last two in the list appear to be the
most useful.

The default behavior of MagicDraw was altered via the
Application Programming Interface (API) in order to make
a true drag-and-drop feel from libraries. This was the first
foray into a series of customizations to be made in order to
streamline custom tools for concurrent engineering teams.
The customization overrides the default behavior, where
MagicDraw attempts to size Part Properties according to the
length of the name and classifier at a given text size, and
then add relevant Ports in either a left / right (all along the
left side and right side) or top / bottom configuration. Many
of the DSL icons the team used did not obey this
convention, but had a different set of locations to fix
connections to. Thus, specialized functions were added via
MagicDraw’s API to resize icons to predetermined values
(since thrusters are usually emphasized over temperature

sensors, for example) and place Ports in the correct
locations.

One final aspect of building the DSL in MagicDraw should
be highlighted. While SysML modeling tends to focus on
point-to-point connections between components, there are
also buses, junctions, and manifolds that must be addressed
in engineering schematics. Specialized icons were added
for these as well to be added to diagrams for
interconnections. This allows for rapid adjustment of
layouts, as well as a proper semantic capture of routing. A
plumbing fork, for example, does not merely connect
multiple components. It also is a place where a common
pressure and flow rate is known, and can be leveraged to
analyze the properties of the circuit at large. While a similar
look can be made by overlaying lines that connect
components point-to-point, this would lead to improper
information being captured in the model database.

5. APPROACH: LIMITING USE OF SYSML
CONCEPTS

An important goal of the prototyping effort was to minimize
the number and scope of concepts from SysML that would
be required to work with the various chair-specialized tools.
The quantity and rate of Team X work can be highly
variable depending on the demand for concepts (e.g., for
peaks to support national Decadal Survey analysis requests).
There is potentially a long period of time between when a

Figure 3. Inheritance path from specific component to
generic idea of Product.

5

given specialist will use the Team X tools, and so there is a
need for them to be intuitive to minimize retraining
demands. Further, many specialist chairs do not have the
mastery of SysML on the list of critical skills that they must
maintain in order to be effective in their various roles within
the organization.

In discussing this area, it is worth noting that the UML
superstructure and SysML specification together specify
about 300 first-class metamodel elements. Many of these
are abstract base metaclasses for other metaclasses, which
means that inheritance must be considered when attempting
to understand the language as a whole. This means that
UML / SysML currently requires much study and practice to
truly master. Even to comprehensively understand the
basics requires many days of class time. While this is
perhaps an acceptable training requirement for systems
engineers, who will leverage the concepts of the language
daily, it is hard to justify training intermittent users.

The traditional way of presenting the major components of a
system or subsystem provide the starting point for required
SysML elements to be used. The typical box-and-line (or
more schematically interesting icon-and-line) drawings that
are presented correspond nicely to the contents of a SysML
Internal Block Diagram (IBD). This then requires at least
the metaclasses of Property and Connector to be introduced.
In addition, Ports should also be included to properly
ground the connections between major participating
elements in a design.

The structure of the model requires some more ideas to be
introduced. The notion of TypedElement and Type in
general need to be described. Rather than precise SysML
semantics, however, this manifests more in the generic
“what does it mean to have a ‘type’” question. The modular
development and semantic refinement of various elements
also requires a description of the ideas of inheritance and its
relationship to steadily more restrictive classifications. The

classification progression of a bipropellant thruster, for
example, is Product -> Powered Hardware Product ->
Thruster -> Bipropellant Thruster. As the classification is
refined, the SysML relationship of Generalization is used to
imply that new properties are inherited. Thrusters, for
example, will need a property to describe thruster
performance, while bipropellant thrusters will need to
discuss mixture ratios. The relationships of Generalization
and addition of parameters is shown below in Figure 3.

As more work was done on the toolset, it became clear that
behavioral descriptions of the spacecraft would also be
required. Although detailed scenario development and
definition could be left to systems engineers (who would
hopefully be stronger practitioners of SysML), there is still
the need to define basic system states. The definitions are
required to properly anchor the descriptions of power use
and data generation. There are likely other dynamic states
that may also be added to the general design framework, but
power and data are the only considerations for now.

The initial pattern for defining states is to use SysML State
Machines as containers for state value constraints. This is
illustrated in Figure 4. In it, the higher Block “Power” is
specialized into two State Machines called On and Off.
They redefine power estimate properties for the times that
they are active. This pattern represents the most challenging
pattern developed to date to place behind the more user-
friendly façade that this pilot is creating.

The states are then aggregated into relevant “power modes”
that can be referred to in scenarios through the use of
Sequence Diagrams. This threatens to quickly expand the
scope of required concepts. State, State Machine, Lifeline,
Interaction, State Invariant, Duration Constraint, and Time
Constraint quickly enter the picture.

An approach to keep the concept list small has been to
construct the relevant parts of the behavior model

Figure 4. Definition for power consumption of hardware in given states.

6

infrastructure were opportunistically leveraged. As
described in [4], the Team X infrastructure works with a
Web Service to collect and curate the analysis variable
values for a given study. This Web Service makes an
excellent target for various programming languages,
including those accessible to the MagicDraw API.

Specialized functions and stereotypes were developed to
mark certain elements of the model as targets for queries to
and from the core parameter database. In the same style as
the other workbooks, the custom software works in a
publish-and-subscribe approach. The ability to make these
connections lowers the bar for adaptation dramatically,
since various participants in Team X studies can now opt to
use the workbooks or the MagicDraw interface to specify a
design.

8. INTERMEDIATE RESULTS: FEEDBACK FROM
SPECIALIST CHAIRS

The pilot was started with the participation of the chair lead
for propulsion in Team X, who worked with the other
authors to lay out the requirements for the tool. Later, leads
for the telecom and command and data systems (CDS)
chairs also joined the piloting effort. While all of the
authors had experience in Team X studies and process, there
are insights that the specialist chairs immediately provided.

One of the first, and in retrospect most obvious insights, is
that the specialist chairs always feel rushed to provide initial
estimates for global design parameters like mass and power.
These are needed to see if a given design is likely to even be
in the ballpark for what a customer needs. To this end, there
was a great interest not only in a library of basic parts, but in
a library of finished subsystem designs that could be quickly
reused or adapted to a given study. If a subsystem does not
have strong requirements to a new design, these templates
can help accelerate the study and focus attention on the
aspects of the design that are driven by unique requirements.
If the new mission drives an innovative response, the time
pressure is reduced and design capture is deferred until the
concept has been developed in session. “Freeform” elements
can be used then to capture resource requirements for the
purposes of the study and then described in detail later. At

the very least, the template designs can be offered as a
“guess” to start up other design work while the domain
expert has time to think more upon better approaches.

Another interesting aspect that came up is that while only
one chair may be responsible for the specification of a given
component in the shared design, said chair will often require
significant interface with other related subsystems. This
was very apparent in PowerPoint diagrams offered as input
from CDS, where the avionics were shown to be connected
to telecom, power, and attitude control electronics, as well
as the instrumentation suite. Before the pilot was started,
the team thought that these cross-connects could be
provided by the systems chair. After consultation with the
specialist, it became clear that each specialist would need to
be able to give cross-cutting views of the whole system
from their perspective. That is, the CDS chair would do a
data flow diagram, while power would focus on power
connections and distribution.

This poses an interesting problem. The challenge is to allow
multiple engineers to make intertwined contributions to the
overall model in a concurrent way while keeping individual
concerns and domain considerations separated. A fuller
appreciation of view, viewpoint, and their expression in
SysML should provide a way forward, but there are still
multiple implementation issues at hand to address. This
may lead into the general problem of model merging, which
is akin to software code merging, but involves much more
complex structures.

Additional feedback provided to the team is that the
processes employed by any given domain engineer were a
little different than expected by the systems engineers;
having the domain expert was thus essential for a useful tool
to be developed.

A totally unexpected, but highly encouraging result was an
interest in learning more about SysML itself by one of the
subsystem chairs that was previously unaware of the
language and subsequently became a co-author of this
paper. When the language itself is presented as something
that leads the way to better data transfer, validation rules,
etc., there is often a great deal of concern expressed in the

Figure 6. Visual comparison between PowerPoint (left) and MagicDraw (right) iconography.

8

audience about dealing with the large language. On the
other hand, if a potentially useful and not overly
burdensome tool is presented, there seems to be some
interest in learning more about its underpinnings. There is a
lesson here in how the value proposition of modeling must
be shown, not told, for increasing its acceptance. Of course,
this provides much more burden on the advocates of
modeling to stay in touch with hoped-for users of their
work.

To balance the optimism in the above paragraph, working
with the specialists has made it clear that the version of
these tools that enter production must have a convenient
user-interface, generate useful results in a rapid fashion, and
address the key issues for all subsystem (i.e., approach
professional-grade in user experience, reliability, and
quality of the final product). A user of MagicDraw and
advocate of MBSE is delighted when he or she can hide the
“boxology” of SysML for better icons. A user of tools like
Microsoft Visio quickly zeros in on misrendering artifacts
and gaps in the illusion like whitespaces in the middle of
lines as signs of inferior quality. A side-by-side comparison
of different drawing tools can be seen in Figure 6. The
artifacts are minimal, but there are still some whitespaces
between lines and icons that can be seen with a sharp eye.
These must be eliminated eventually, although they are not
a show-stopper in the near term if offsetting benefits are
identified. Those benefits are, of course, a machine-
readable data structure behind the diagrams and a proper
encoding of routing semantics (e.g., proper fluid junctions
rather than overlapping lines) for later analysis.

9. INTERMEDIATE RESULTS: ADDRESSING
EARLIER RISKS

The risk of interoperating with existing Team X
infrastructure has been bought down through connecting the
prototype tools to Team X’s back-end database. This
database makes data from MagicDraw appear identical to
data that is passed between the workbooks currently used in
Team X. Thus, work best done with the existing tools can
be performed with them, while new capability can be rolled
out incrementally.

The use of domain-specific languages brings the visual
semantics of known icons to the prototype. Further, careful
use of these icons and pre-built libraries helps to reduce the
amount of added SysML concepts that are required to
properly operate this tooling.

The sensitivity of information can actually be better assured
through model-based tooling than through hand
transcription. Library properties can be tagged according to
their sensitivity – proprietary, ITAR-sensitive, etc. through
proper stereotypes. These stereotypes can be used as targets
for transformations like those used in other model-based
efforts [13], [14]. These transformations can redact
sensitive information automatically.

Another demonstration made during the pilot was of
connecting the MagicDraw-based tooling to the Team X
database. This is a highly effective lever for gradually
introducing the tooling into the environment rather than
being forced to replace the entire set wholesale.

While the work presented in this paper does not make Team
X operationally model-based, it does demonstrate that many
of the advantages of model-based systems engineering can
be captured and the perceived risks are entirely manageable.

10. FUTURE WORK: DESIRED IMPROVEMENTS TO
SYSML OVERALL

There is a great deal of work ahead to transition from this
prototype to a fully functioning capability for using SysML
regularly in studies. Some of these are improvements that
need to be made to the prototype, others to individual
authoring tools, and finally some improvements that need to
be made to the standard itself.

On the prototype side there are still a variety of mechanisms
that could be streamlined. There are several functions that
are still “heavy” in terms of the number of mouse-clicks and
menus that must be navigated to do “simple” things in the
tooling. More thought must also be given to the interaction
between these tools and the Team X database in order to
assure that they provide as robust a connection as the
individual spreadsheet tools currently do.

The SysML standard would benefit greatly from the
concepts of diagram interchange. Diagram interchange is
the idea of various modeling tools being able to interchange
not only model data, but the layout of drawn diagrams as
well. Further, the idea of “diagram interchange” should
include specialized icons as well as the basic UML / SysML
versions. It is understandable that this is a major
undertaking; it is still a major undertaking for the various
authoring tools to exchange just model database
information. The Model Interchange Working Group has
been making great strides in this area, so it should only be a
matter of time.

UML currently offers the profiling mechanism for extending
the meaning of the language, and in fact was leveraged to
craft SysML. In addition to refining semantics via
stereotypes, this prototyping work has shown the value of
refining semantics visually as well.

Another need that is becoming apparent is some concept of
grouping of model elements that are not pure Classifiers. In
general, elements like Class, Activity, State Machine, etc.
can be contained directly in Packages, which serve to
organize models. Working with this prototype has shown
the usefulness of an entity that can organize model elements
that are composite properties such as Features, Actions,
States, etc. These organizing elements further should serve
to project constraints or modifiers on each of the members.
This idea arose when working with the specification of

9

power modes in the prototype, and a strong desire by
specialists to be able to set up groups of elements to be
turned on or off at a given time. Groups would allow for a
collection of State Invariants for example to have their
constraints updated after a single group has been updated.
The groups could also be leveraged (by having Connectors,
etc. that are associated with properties packaged into the
same group as them) to allow for safe copy-and-paste
operations on groups of elements, such as the left-hand
branch of a propulsion system’s plumbing.

11. SUMMARY
A prototype has been developed using the MagicDraw tool
to bring Model-Based Systems Engineering techniques to
concurrent engineering. This prototype has been applied to
multiple specialist chairs in Team X, which has led to new
insights along with way. This has also provided a series of
opportunities for feedback from specialist chairs in order to
increase the likelihood of eventual deployment. Various
risks were identified before the prototype was built, and
have now been addressed. Along the way, there have been
new insights developed about the practical use of MBSE in
even fast-paced environments like Team X.

ACKNOWLEDGEMENTS
The authors provide their thanks to the support and
consultations of Team X specialist chairs involved in this
pilot. The research was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space
Administration.

REFERENCES
[1] Wall, S., “Use of Concurrent Engineering in Space

Design.” European Systems Engineering
Conference. Munich, Germany. September 13,
2000.

[2] Warfield, K., “Addressing Concept Maturity in the
Early Formulation of Unmanned Spacecraft.”
Proceedings of the 4th International Workshop on
System and Concurrent Engineering for Space
Applications (SECESA 2010). Lausanne,
Switzerland, October 13-15, 2010.

[3] Parkin, K., Sercel, J.C., Liu, M.J., Thunnissen,
D.P., “ICEMaker: An Excel-Based Environment
for Collaborative Design.” Proceedings of the
IEEE Aerospace Conference 2003. Big Sky, MT,
March 8-15, 2003.

[4] Nigg, D., Kinsey, R., Lewis, B., Vaughan, R.
Expanding Concurrent Engineering Design Center
Capabilities to Meet Future Challenges. 4th
International Workshop on System and Concurrent
Engineering for Space Applications (SECESA
2010). Lausanne, Switzerland, October 13-15,
2010.

[5] Khan, Sievers, Standley, “Model-Based
Verification and Validation of Spacecraft

Avionics,” Infotech@Aerospace 2012 Conference,
Santa Ana, CA, May 2012.

[6] Ingham, Day, Donahue, Kadesh, Kennedy, Khan,
Post, Standley, “A Model-Based Approach to
Engineering Behavior of Complex Aerospace
Systems,” Infotech@Aerospace 2012 Conference,
Santa Ana, CA, May 2012.

[7] Khan, Dubos, Tirona, Standley, “Model-Based
Verification and Validation.” Submitted to IEEE
Aerospace Conference 2013, Big Sky, Montana,
Mar 2 –Mar 9, 2013.

[8] Jackson, M., Delp, C., Bindschadler, D., Sarrel, M.,
Wollaeger, R., Lam, D., , "Dynamic gate product
and artifact generation from system models,"
Aerospace Conference, 2011 IEEE , vol., no., pp.1-
10, 5-12 March 2011.

[9] Cole, B., Chung, S., " Getting a cohesive answer
from a common start: Scalable multidisciplinary
analysis through transformation of a systems
model," Aerospace Conference, 2012 IEEE, 3-10
March 2012.

[10] Cole, B., Delp, C., Donnahue, K., “Piloting model
based engineering techniques for spacecraft
concepts in early formulation.” 20th annual
INCOSE International Symposium 2010.

[11] Vogel, L. “Eclipse Modeling Framework (EMF) –
Tutorial.” Accessed October 3, 2012.
http://www.vogella.com/articles/EclipseEMF/articl
e.html

[12] “XText 5 Minute Tutorial.” Accessed October 3,
2012.
http://www.eclipse.org/Xtext/documentation.html#
FirstFiveMinutes.

[13] Cole, B.; Chung, S.H.; , "Getting a cohesive
answer from a common start: Scalable
multidisciplinary analysis through transformation
of a systems model," Aerospace Conference, 2012
IEEE, 3-10 March 2012.

[14] Cornford, S.; Shishko, R.; Wall, S.; Cole, B.;
Jenkins, S.; Rouquette, N.; Dubos, G.; Ryan, T.;
Zarifian, P.; Durham, B.; , "Evaluating a
Fractionated Spacecraft system: A business case
tool for DARPA's F6 program," Aerospace
Conference, 2012 IEEE, 3-10 March 2012.

[15] Delp, C., Lam, D., “Model Based Document and
Report Generation for Systems Engineering.”
Aerospace Conference, 2013 IEEE, 2-9 March
2013. In press.

10

http://www.eclipse.org/Xtext/documentation.html%23FirstFiveMinutes
http://www.eclipse.org/Xtext/documentation.html%23FirstFiveMinutes

BIOGRAPHIES

Bjorn Cole is a systems engineer in
the Mission Systems Concepts
section of the Jet Propulsion
Laboratory. His research interests
are in the fields of design space
exploration, visualization,
multidisciplinary analysis and
optimization, concept formulation,
architectural design methods,
technology planning, and more

recently, model-based systems engineering. He has
participated in multiple early concept studies and is a
Deputy Systems chair in Team X. His most recent body of
work concerns the infusion of systems modeling as a data
structure into multidisciplinary analysis and architectural
characterization. He earned his Ph.D. and M.S. degrees in
Aerospace Engineering at the Georgia Institute of
Technology and his B.S. in Aeronautics and Astronautics at
the University of Washington.

Gregory F. Dubos is a Systems
Engineer in the Mission Systems
Concept Section at the Jet Propulsion
Laboratory (JPL). His current work at
JPL focuses on system modeling and
simulation during mission formulation
activities. He regularly serves as the
Risk and Programmatics Chair for Team

X, JPL’s concurrent engineering environment, and he
recently supported the development of SysML models for
Verification & Validation (V&V). He received his B.S and
M.S degrees in Aeronautics from SUPAERO, Toulouse,
France, and his M.S and Ph.D. in Aerospace Engineering
from the Georgia Institute of Technology, Atlanta, GA.

Payam Banazadeh is a graduating
senior from the University of Texas at
Austin in Aerospace Engineering. He
expects to graduate in December
2012 with high honors. His research
interests are in interplanetary
trajectories, mission design, concept
formulation, Cubesat development,
and more recently, model-based
systems engineering. He has interned
at JPL for three summers working on

a variety of different projects from student concept
development for MoonRise mission to testing the flight
software on MSL and lastly Model Based Systems
Engineering for Team X. He is planning to work full time at
JPL before pursuing his PhD in Aerospace Engineering.

Kelley Case is the Concept Design Methods Chief for the
Innovation Foundry program office at the Jet Propulsion
Laboratory. She is responsible for managing Team X,

which is JPL's concurrent engineering team for rapid
design and analysis of novel space mission concepts.
Previously she was the technical supervisor of the
Collaborative Engineering group. Kelley joined JPL in
1992 in the Ocean Science Research Section. She was
involved with the science data development for the Jason-1
and Gravity Recovery And Climate Experiment (GRACE)
missions. In addition, she has managed various Earth
Science formulation activities and proposals. Kelley holds
an M.S. degree from Claremont Graduate University and a
B.S. degree from the University of California, Los Angeles
(UCLA) in mathematics.

Yeou-Fang Wang is a member
of the Planning & Execution
Software Systems Group in the
Planning & Execution Systems
Section at the Jet Propulsion
Laboratory. He has developed
methodologies and tools for
NASA’s Deep Space Network,
spacecraft ground data system,

and spacecraft concept study teams. His interests are in the
fields of systems analysis, software architecture, software
development process, collaborative engineering, and
computational intelligence. He has BS degree in Control
Engineering from the National Chiao-Tung University of
Taiwan and MS and PhD in Electrical and Computer
Engineering from the University of California, Irvine.

Susan Jones is a systems engineer in
the Mission Systems Concepts section
of the Jet Propulsion Laboratory.
Susan has 29 years of experience at
JPL including systems engineering and
architecture development for
collaborative engineering systems, pre-
project information systems,
technology management systems and
model-based systems engineering

(MBSE). She also managed the operations of JPL's Project
Design Center, a collaborative engineering facility. Earlier
in her career, she provided Mission Planning and Mission
Operations System (MOS) design for NASA projects such as
Magellan, Topex/Poseidon and the Shuttle Imaging
Radar/Synthetic Aperture Radar Project (SIRC/XSAR). She
is currently supporting the development of an integrated
model-centric development environment to support systems
engineering throughout the project lifecycle. She earned her
B.S. in Aeronautics and Astronautics at the University of
Illinois, Urbana-Champaign.

Frank Picha earned his
Bachelor of Science in
Mechanical Engineering from
Washington State University,
and he completed his Master of
Business Administration also
from WSU. He has previously

11

held positions at Sealed Air Corporation in Redmond
Washington, Aerojet Rocket Research Center in Redmond,
and in July 2001 joined the Propulsion Flight Systems
Group at JPL to support the Mars Exploration Rover
Propulsion team.

Frank’s expertise and experience include specialized
knowledge of monopropellant and bi-propellant rocket
engine design and analysis, and hydrazine/catalyst
familiarity. He was the Cognizant Engineer for the MER
cruise stage propulsion integration and functional testing,
as well as the test conductor for MER spacecraft propellant
loading and system functional testing at KSC. He was also
a Propulsion mission operations engineer for both MER
spacecraft initial acquisition, spindown, and TCMs.
Following MER, he was Cog-E for the Prometheus NEXIS
Xenon ion engine fabrication and integration. Frank joined
the Mars Science Laboratory project as the Propulsion
configuration and integration engineer, and was the
contract technical manager for the Cruise Stage and
Descent Stage rocket engines. He currently chairs the JPL
Team X Propulsion seat, leading early project formulation
in a concurrent mission design environment.

[Other biographies to come].

12

	Abstract
	1. Background: Concurrency and Non-Concurrency Revisited
	2. Background: Requirements Upon Model-Building in a Concurrent Environment
	3. Background: Domain-Specific Languages
	4. Approach: Building DSL’s in SysML
	5. Approach: Limiting Use of SysML concepts
	6. Approach: The Prototype Build and Profiles
	7. Approach: Connecting to Parameter Database
	8. Intermediate Results: Feedback from Specialist Chairs
	9. Intermediate Results: Addressing Earlier Risks
	10. Future Work: Desired Improvements to SysML Overall
	11. Summary
	Acknowledgements
	References
	Biographies

