
Model Based Document and Report Generation for
Systems Engineering

Christopher Delp, Doris Lam, Elyse Fosse, Cin-Young Lee
Jet Propulsion Laboratory, California Institute of Technology

4800 Oak Grove Drive
Pasadena, CA 91109

(818)319-3251
Christopher.L.Delp@jpl.nasa.gov

Abstract—As Model Based Systems Engineering (MBSE) prac-
tices gain adoption, various approaches have been developed
in order to simplify and automate the process of generating
documents from models. Essentially, all of these techniques can
be unified around the concept of producing different views of
the model according to the needs of the intended audience. In
this paper, we will describe a technique developed at JPL of
applying SysML Viewpoints and Views to generate documents
and reports. An architecture of model-based view and document
generation will be presented, and the necessary extensions to
SysML with associated rationale will be explained. A survey of
examples will highlight a variety of views that can be generated,
and will provide some insight into how collaboration and inte-
gration is enabled. We will also describe the basic architecture
for the enterprise applications that support this approach.

TABLE OF CONTENTS

1 MBSE AND THE STATE OF THE PRACTICE OF
DOCUMENT GENERATION . 1

2 THE PRINCIPLE OF COMMUNICATION 2
3 ARCHITECTURE FOR EXTENDING SYSML

VIEWPOINT AND VIEW . 2
4 MODEL BASED ENGINEERING ENVIRONMENT . 6
5 REALIZING SOFTWARE AND APPLICATIONS . . . 7
6 CONCLUSION . 10

ACKNOWLEDGMENTS . 10
REFERENCES . 10
BIOGRAPHY . 11

1. MBSE AND THE STATE OF THE PRACTICE
OF DOCUMENT GENERATION

Several projects at JPL have now embraced Model Based
Systems Engineering (MBSE). As a result, JPL has developed
an institutional approach to MBSE. This approach is based
on SysML and formal ontology expressed in the terminology
and lexicon of each engineering domain. MBSE promises
to alleviate the difficulty systems engineers face in commu-
nicating across engineering disciplines primarily in terms of
completeness and consistency. By describing these systems
in a formal way using domain specific terms, models can be
checked for completeness and consistency. These models can
also be analyzed to answer questions about the system such
as input to simulations or other other engineering analysis.

978-1-4577-0557-1/12/$26.00 c©2012 IEEE.
1 IEEEAC Paper #2233, Version 2, Updated 5/1/2013.
Copyright 2012 California Institute of Technology. Government sponsorship
acknowledged.

At the core of realizing these benefits is effective commu-
nication between Systems Engineers and other engineering
disciplines. Since other engineering disciplines are not versed
in Systems Engineering models, Systems Engineers still need
to produce documents and reports as the primary way to com-
municate with stakeholders and other engineering disciplines.
One of the keys to MBSE adoption at JPL has been the
practice of generating documents from systems engineering
models. This allows systems engineers to easily update and
ensure consistency among a set of documents as updates are
made to the model.

This document generation technique originated from other
JPL efforts including Ops Revitalization [1]. Since these
initial innovations, MBSE at JPL has flourished in a number
of projects. In particular, the Ops Revitalization Task [2], the
Europa Study [3] and the Integrated Model-Centric Engineer-
ing effort [4] have been crucial drivers for the development
of models, architecture, technology and applications that
provide this capability.

As MBSE practice has begun to move into the mainstream,
several homegrown approaches have been developed around
the use of the DocBook standard for publishing [5], [6].
In general, these approaches involve the use of a SysML
profile for DocBook to produce a model of a document. The
document model is then linked to other SysML models and
diagrams to produce the document.

These approaches are effective at generating the basic struc-
ture of the document with injected model information. How-
ever, they lack the semantics and patterns to describe how the
model is projected into a document structure. Each existing
implementation has attempted different ways to support this,
but none of these applications provides a comprehensive set
of capability. They also lack a more fundamental concept
and foundational support for describing how to extract infor-
mation from the model in such a way so that analysis and
editing of that information can be integrated with external
applications.

MGSS Ops Revitalization [7] and the Europa Mission Study
[8] have deployed full-scale project models in SysML. This
is true for these efforts across industry as well [9]. This
requires capability compatible with an enterprise modeling
environment. The use of generally scalable web technologies
have been used extensively in these efforts.

This paper describes the fundamental concept of Viewpoint
and View as the foundation for providing a comprehensive
capability for generating Views of models. The architecture
for Viewpoint and View and its extensions in SysML are
described using examples from the projects at JPL spon-
soring this work. Models of this size require enterprise

1

scalability.Finally we describe the current implementation of
a Model Based Engineering Environment and the document
generation support and applications for generating documents
and reports for Systems Engineering.

2. THE PRINCIPLE OF COMMUNICATION
Systems Engineers and Architects produce products that must
communicate with different engineering disciplines, man-
agers, organizational and business roles. This motivates a
principle of communication that captures the stakeholders
expectations as well as the engineering artifacts that respond
to the specific concerns of the stakeholder. The ISO/IEC
42010 [10] definition of Viewpoint and View is consistent
with this principle. The result is that we can describe what
stakeholders feel is important as a Viewpoint. Following
the standard we can use that definition to create Views of
systems that respond to stakeholder concerns. Viewpoint and
View provide a platform that can describe the serialized story
of the model for a given purpose. Figure 1 illustrates the
semantics for importing elements of the model into the model
representation of the View. The conformance to the View-
point provides the instructions for rendering the View. The
current technique employed at JPL uses SysML Viewpoint
and View [6] to specify a model for communicating different
aspects of a system model. The intent of this model is to
capture the point of view of stakeholders as represented by
their particular concerns. This model should also capture the
rules necessary to effectively communicate the model. This
information is captured in the Viewpoint model. A Viewpoint
is a specification for a View. It describes what the View
must contain and how it speaks to its intended audience. The
View is the representation of the System Model as specified
by the Viewpoint. Each View describes a particular facet
or the system, such as functions, features, or performance
characteristics in domain-specific terms as specified by the
viewpoint.

Figure 1. Metamodel of Basic Viewpoint and View

Another key aspect of communication is how views are
ordered for reading. Individual Views are collected and
organized in terms of how they should be be read. These
collections are mapped to familiar document structures such
as sections and sub sections but they can also be different
slides, worksheets or other forms of reporting. Generating
documents and reports form Viewpoints and Views have al-
lowed us to effectively communicate across disciplines using
models to ensure completeness and consistency of the system
architecture and design.

The semantics of Viewpoint and View are represented mathe-
matically by stating that a Viewpoint morphs the elements of
a model into contents of the View as seen in Figure 2.

Figure 2. Mathematical representation of Viewpoint and
View

If VP is defined to be the homomorphism that represents a
viewpoint then:

VP : D(VP) → R(VP)

where D(VP) is the set of integrated model elements that
are within scope for the Viewpoint (e.g., the domain of the
Viewpoint) and R(VP) is set of view elements that is the
image of D(VP). (e.g., the range of the Viewpoint). It follows
then that:

View : {VP(ME) : ME in D(VP)}

where ME corresponds to a model element. In other words, a
Viewpoint is the morphism that transforms a subset of model
elements into View elements.

Representing Viewpoint and View mathematically provides
a theoretical foundation for the semantics - the implication
being that the mathematical theory provides constraints for
the implementation.

3. ARCHITECTURE FOR EXTENDING SYSML
VIEWPOINT AND VIEW

Using the Viewpoint and View definitions in SysML it is pos-
sible to define a model of Views that will provide a linearized
description of the SysML and other models referenced by the
Views. SysML Viewpoint and View have roots in ISO 42010.
Table 1 identifies the concepts in SysML related to Viewpoint
and how they are expanded to facilitate View generation.

Models, Views and Viewpoints

Most MBSE practitioners at JPL link their Views together
to linearize a particular description of a model or models.
Modeling the relationships between Views in this way allows
for a clickable navigation through the model as well as
provides a structure that can be used to generate documents
and other formatted output based on the content of the model.

Figure 3 illustrates how Views can be linked together with
dependencies to model the precedence order for reading the
Views. Views import models of any sort or type. These
models may be SysML models, ontologies, structured data
from a database or website, and notional illustrations, just
to name a few. In principle, the Viewpoint is even capable
of describing Views that exist outside of software such as
renderings from a 3D printer or clay models of a concept
automobile or building.

2

Table 1. Extensions to SysML

SysML Element Metaclass Metaclass Change Description
Viewpoint (Existing) Class No Change The element that embodies the rules for

describing a view
View (Existing) Package No Change The element representing the View pro-

duced from the model
Conforms (Existing) Dependency No Change Represents the relationship between the

View and the Viewpoint that the View is
required to conform to.

Import (Existing) Dependency No Change Links the model(s) to the Viewpoint
through the View

Stakeholder
(Existing)

Tag Value (String) Actor The elements that represent stakeholders
for the View

Concern (Existing) Tag Value (String) Tag Value or Class A subject of interest being addressed by the
View

Purpose (Existing) Tag Value (String) No Change A narrative description of the purpose of
the Viewpoint

Method (Existing) Tag Value (String) Activity Class Behavior model that defines the ordered
steps to making the View

Analysis Model
(New)

N/A Constraint Property The individual analysis definitions used by
the Viewpoint Method

View Format (New) N/A Property The rules for outputting the View in speci-
fied formats

View Presentation
(New)

N/A Property The styles used to present the View

Imported Model
(New)

Tag Value from Con-
form Dependency

Reference Property The parameter that is assigned the list of
models described by the import

Model Language
(Existing)

Tag Value (String) Property The Modeling language(s) used in the im-
ported model.

Figure 3. View Tree

As illustrated in Figure 4, the Viewpoints can be composed to
create a template for a particular set of Views in a particular
order. This has the effect of instantiating the Viewpoint
tree. It also allows a particular View tree to be compared for
conformance to the Viewpoint tree.

For example, Ops Revitalization is building a series of
documents that describe processes for different engineering
disciplines in mission operations. The precedence and Views
are the same for each discipline. The only variable are the
process models. Figure 5 illustrates an example of 2 different

Figure 4. Viewpoint Templates

View models that use composite Viewpoints to assert the
same precedence order.

Viewpoint and View

A Viewpoint is a specification of the conventions and rules for
constructing and using a View for the purpose of addressing
a set of stakeholder concerns. The Viewpoint model as

3

Figure 5. Ops Revitalization Process Documents

Figure 6. Viewpoint Model

illustrated in Figure 6 defines the properties and constraints
used to define the View. The Viewpoint also defines the
Method, which is the process for constructing the View.

The Purpose, Concern and Stakeholder elements are prop-
erties that describe the point of view of the stakeholder.
The Method describes the systematic process in which the
model will be used to create the View. The Imported Models
represent the models that the Viewpoint operates on for a
given View. The View in these models is just a proxy
for attaching properties and relationships. Execution of the
method is necessary to render the View.

An example from Ops Revitalization is illustrated in Figure 7.
This Viewpoint is defined to render a 2 dimensional Cartesian
plot of an Ops Scenario model, such that the scenario function
calls are plotted against time. The Ops Scenario Model is
a SysML sequence model with domain specific semantics
from The Mission Service Architecture Framework (MSAF).
In this illustration the scenario models as well as all of the
languages that are used in rendering the View are shown.
The Viewpoint is defined in terms of the analyses, method,
format and presentation necessary to produce the View. These
elements are defined in Table 2.

An example from the Europa Mission Study [11] is the Mass
Properties Viewpoint as illustrated in Figure 8 and Table 3.

Figure 7. Scenario Timeline Plot Viewpoint

The purpose of this Viewpoint is to calculate the dry mass
of the Fight System and show a table of components and
their masses. Operating on the composite model of the Fight
System through the Viewpoint renders this table. This model
describes all the component composition of the Flight System
as well as the value and behavioral properties of the system.

Domain Specific Models and Languages

A key piece of effectively communicating with Views is
specifying the language the model is written in. Modeling
Languages provide the patterns and syntax used in the de-
scription of the View. Domain Specific Modeling Languages
They specify the elements expected to be represented in the
View, and may be formally or informally defined. Views are
descriptions intended to communicate, thus it is necessary to
assert the allowable syntax and syntactic environments that
can be used to describe them. For Viewpoint the Language
specified is allowed to be anything from natural language
English to SysML to a Domain Specific Modeling Language
to a formal Mathematical notation such as MathML. Unless
explicitly prohibited, natural language documentation and

4

Table 2. Scenario Viewpoint Elements

Viewpoint
Element

Description

Scheduling
Analysis

This analysis reasons out the temporal
ordering from The model

Scenario
Coordinates
Model Trans-
formation

Transformation from SysML Scenario
model to 2D coordinates trajectories

Scenario Veri-
fication Rules

Completeness and Correctness rules
for verifying

Scenario Plot
Method

The order for executing each analysis
that ultimately produces the View

Figure 8. Mass Properties Table Viewpoint

narration are always expected to be included.

An example of a Domain Specific Modeling Language can
be found in the Ops Revitalization project at JPL. Ops Re-
vitalization has developed the Mission Service Architecture
Framework (MSAF) [12] for the purposes of modeling Mis-
sion Operations Systems. The MSAF is a set of modeling
elements and relationships for describing the interfaces, func-
tions and process that make up an MOS using the lexicon of
Mission Operations. The MSAF also defines patterns that
reflect the allowable combinations of these domain specific
terms. The MSAF is a Domain Specific Modeling Lan-
guage and as such is built as an extension to BPMN and
SysML. Viewpoints defined for the Ops Revitalization Task
are typically specified in the language of the MSAF, however
sometimes SysML or BPMN are used.

Model Analysis

In order to generate a View of a model, it is necessary to an-
alyze the model. The Viewpoint also defines a set of analysis
that can be specified. These rules provide the means to check
and/or operate on the model as part of creating the View.
This property can be used to describe any kind of analysis
to be performed on the Model. Some common uses include

Table 3. Mass Properties Viewpoint Elements

Viewpoint
Element

Description

Composite
Mass
Constraint

The constraint that asserts that the
mass of a component is the sum of the
masses of its child components

Component
Tree Model
Transforma-
tion

Model Transformation that transforms
the SysML flight system model into a
tree of flight system components

Value Tree
Model Trans-
formation

The model transformation that trans-
forms the flight system model into a
tree of mass properties

Component
Properties
Table Map

The model transformation that trans-
forms the flight system model into a
map of the trees described above

Mass Analy-
sis Method

The ordered steps for performing the
mass analysis

model querying and filtering, asserting model verification,
asserting mathematical formula and model transformations.
These examples illustrate the broad range of the types of
analysis that can be defined as part of the Viewpoint. It is
important to note that the Method property described later
defines how these different suites of rules may be applied in
the course of generating the View.

The Europa study has found utility in this aspect of the
Viewpoint [13]. The Viewpoints for the Flight System Mass
Equipment List (MEL) define tables that describe the mass
needs and constraints for the Mission. Using the model
of a candidate Flight System, these Viewpoints are used to
render a View of the Flight System in terms of the MEL. The
Viewpoint defines analysis for verifying the correctness of the
model, verifying the mass calculation, and transforming the
model into a simpler model of hierarchical components and
mass properties.

Transforming the model into a simpler model of hierarchi-
cal components and mass properties is an example of an
Analysis that performs a Model Transformation. The Europa
Flight System Model is built in SysML. It has a hierarchical
component structure decorated with many properties and
behaviors. In order to calculate the mass of a Flight System,
the Flight System Model is transformed into a simpler model
that consists of components, mass constraints and mass prop-
erties. This new structure can then be used to solve the mass
constraints and calculate the mass of the Flight System as
defined in the Mass Calculation analysis.

Another analysis example from Ops Revitalization involves
pattern analysis. The MSAF mentioned earlier describes the
fundamental architectural patterns for a Mission Operations
System. Viewpoints defined for the MSAF all include rules
that verify usages of the framework patterns. These rules
compare models that have been built using the MSAF and
identify conditions that are not consistent or complete with
respect to the pattern.

View Format and Presentation

Stakeholders may have conventions, organizational or institu-
tional practices and standards that influence how the View is
to be rendered. Views of the system model that are created by

5

Systems Engineers usually have very customized styles and
presentation requirements. Different organizations may addi-
tionally prefer a variety of formats. Some views are generated
in power point slides others are tables or documents or HTML
web pages or 3D CAD Generated animations. Additionally
conventions may dictate the use of certain diagrams, tables
color codes etc.

Utilizing these rules is key to communication. The For-
mat and Presentation properties can be used to capture the
specific rules for the View as part of the overall Viewpoint
specification. The Format and Presentation properties of
Viewpoint provide the means of describing the styles in which
the View will be presented and the formats of the output.
Different Views require different formats and presentation
styles depending on the stakeholder and the information
being communicated. The examples that describe this are
best discussed as part of the Method.

Method

The method is probably the most significant expansion of
this approach. The Method is the behavior model of the
Viewpoint. It describes the ordered steps required to process
the model and render the View of the model according to the
properties of the Viewpoint. This includes when and where
to execute the analysis specified by the Viewpoint and how to
apply the format and presentation specifications. The Method
is also extensible to any other step necessary to generate the
View.

Figure 9. MEL Viewpoint

For example, the Method for the Europa Mission Study MEL
Viewpoint is illustrated in Figure 9. It describes the steps
of expressing a SysML model of Flight System components
and properties as a table of components and properties. This
is accomplished by using model transformations to build a
tree of components and a tree of Mass properties and a map
that relates each set of mass properties to the corresponding
component. These transformations abstract out all the parts
of the flight system model that have nothing to do with the
Mass Analysis. The Mass Analysis asserts the constraint that
the Mass of a component is the sum of the components that
compose the component. This model is then transformed
into a table model. Once in the table model, the format and
presentation rules are applied. In this example, these tables

have a long list of applied formats and presentations. For
reporting, the Docbook format is used to produce a static
output of the table in HTML and PDF. The Viewpoint also
defines rules for rendering the table in an editable format for
web browsers and java applications. In this rule the mass
values and component names are editable so that they can be
easily updated without having to open the thick model editor
to change certain parameters in a light-weight fashion.

Similarly, Figure 10 from Ops Revitalization shows the
Method for transforming a scenario Model expressed using
a SysML sequence diagrams as a plot of events and states
over time. First the rules for a complete and correct scenario
model are executed. Then a model transformation is used
to transform the SysML Sequence model into a precedence
ordered table of events. Then an analysis is performed to
determine the explicit and relative times for each event within
the table. Finally the plot is produced according to the format
and presentation rules. The plot is currently produced in
excel, but ideally the Viewpoint will be able to utilize more
robust tools such as Mathematica, Matlab and Maple.

Figure 10. Scenario Viewpoint

4. MODEL BASED ENGINEERING
ENVIRONMENT

For any non-trivial system to be successfully engineered, sig-
nificant collaboration is required amongst Systems Engineers,
Domain Engineers, Project Managers, and other related
stakeholders. Views and Viewpoints form the foundation for
collaboration in a model-based engineering environment as
they describe how to communicate relevant aspects of the
system to particular stakeholders. While the Views generated
from Viewpoints can take the form of familiar documents
(e.g., Interface Control Documents, Software Requirements
Documents, etc.), a Viewpoint method can just as easily
describe how to generate editable web views or Mathematica
notebooks. As one can imagine, these dynamic views are a
much more effective means for collaboration between engi-
neers than static documents.

No tools currently support the vision of Views and View-
points as the cornerstone for facilitating collaboration and
communication between systems and domain engineers for
model based engineering. Figure 11 illustrates the Model
Based Engineering Environment or MBEE, that is currently
being developed by the Operations Revitalization and Europa
Mission tasks. The MBEE consists of a model repository

6

that serves as the single source of truth of for system models.
The repository exposes all the model elements on the web via
RESTful (REpresentation State Transfer) APIs. Any client,
be it a SysML modeling tool, Mathematica, or whatever else,
can then easily retrieve and update model information based
on said APIs. This approach parallels the View/Viewpoint
architecture, as the repository provide the model data, clients
have viewpoints of interest, e.g., a Mathematica power usage
viewpoint, which the client can then use to query out an ap-
propriate view, say for a particular flight system. The choice
of a RESTful architecture enables the enterprise scalability
necessary for the largest and most complex projects.

Figure 11. Model Based Engineering Environment

As with other web technologies, mashups of client services
can be orchestrated and combined to achieve more sophisti-
cated analysis and simulation than any single client by itself
can accomplish; for example, results of power simulations
can be used to inform thermal simulations.

The capabilities provided by this environment allow systems
engineers and modelers to build the model using commercial
SysML tools as well as domain engineers to input their data
using more domain specific Views. For example, using the
same techniques of View generation from Viewpoints, we
can generate table Views of the model, which can then be
edited online or used for analysis with Mathematica, Excel,
NX, Maple, etc. and the results of such analysis can be fed
back into the model as necessary.

This interplay between systems and domain engineers needs
to be a managed and repeatable process. As the tooling
and software infrastructure for MBEE has been developed
at JPL, multiple projects have converged on the process
shown in Figure 12. Initially, the systems engineers create
a preliminary system model. Then, with inputs from domain
engineers and other stakeholders, experienced modelers de-
fine the Viewpoints that express the aspects of interest to the
stakeholders. For example, a Power Equipment List (PEL)
Viewpoint can be defined that exposes the power charac-
teristics to power subsystem engineers. Systems engineers
then create View definitions that conform to the defined
Viewpoints as the starting point of collaboration with domain
engineers. Continuing the PEL example, systems engineers
may specify a View that only imports the avionics model
elements, resulting in a PEL for the avionics subsystem.
Domain engineers then take this information and do a more
detailed analysis of the power characteristics (perhaps adding
time based loading and discharging) that requires updates to
the system model. The updates can be pushed back into

Figure 12. Simplified Workflow

the MBEE federated repository via web editors or directly
through an integrated tool. The systems engineers then create
a document View model (e.g., a requirements or architectural
description) that is used as the vehicle of communication
with other stakeholders such as project management. The
review process then follows the typical document review
processes with the only difference being that rather than
making changes directly to the document, changes are made
to the system model and the document regenerated. Not
captured in Figure 12 is the iterative nature of collaboration
and document generation, as model changes from one domain
may necessarily impact other domains, which requires addi-
tional collaboration cycles.

5. REALIZING SOFTWARE AND
APPLICATIONS

Figure 13. Current MBEE Components

At JPL we have developed several tools and applications that

7

implements the first version of this enterprise environment,
with Viewpoint and View as core concepts. An overview is
shown in Figure 13. While these tools were constructed in
an exploratory fashion, many projects have already incorpo-
rated them in their document generation workflows as they
adopt MBSE practices. In particular, the Ops Revitalization
project, sponsored by MGSS, generates all of its architectural
documents from models using this framework and software
that supports it.

DocGen

Figure 14. DocGen Components

Figure 15. Example of a generated table of key term defi-
nitions for Ops Revitalization’s Mission Service Architecture
Framework

DocGen is a plugin for the MagicDraw [14] modeling tool
used at JPL. The major components involved and the artifacts
produced is shown in Figure 14. It provides a profile that
implements the Viewpoint method specifications described in
Section 3 and the capability to parse and execute Viewpoint
models constructed using this profile. As shown in Figure 1, it
uses existing UML import semantics to indicate which model
elements should be imported by the View, which would then
be passed to the Viewpoint it conforms to.

An activity model captures the Viewpoints method, where
a sequence of stereotyped actions specify how to analyze,
transform, and present the elements imported from the View.
All stereotypes are defined in the DocGen profile as part

Figure 16. Viewpoint Method that generates a list of model
elements and their documentation

of the DocGen plugin, and the activity is essentially the
behavior of the Viewpoint. An example is shown in Figure
16. This simple Viewpoint results in a View that is an ordered
list, where each list item would show the documentation of
some model element that is an ”Essential” class, which can
be found under the namespace of elements imported from
the View that conforms to this Viewpoint. The stereotypes
on these actions effectively map to the rules, analyses, or
transformations for that Viewpoint. For example, filtering
actions can be interpreted as a rule that only certain elements
that pass a test will be shown in the View. Since we are using
UML activities to model the method, we have reused certain
UML elements like Fork, Join, and Merge to represent actions
with those same semantics. Given a library of these actions,
one can then build up a library of Viewpoints for specific
documents. These Viewpoints would essentially become the
document templates. When one wants to generate a document
from a model using a specific template, one can simply create
a conforming view that imports the desired model elements as
arguments to the template.

The library of actions can include any type of analysis or
transformation relevant to the organization. We have found
that the most basic actions include following model rela-
tionships or properties to other elements, filtering collections
of model elements by metaclasses or stereotypes, running
custom analyses and validation rules, and displaying tables,
paragraphs, lists, or images. One very common viewpoint
is generating a table of model elements and their documen-

8

tation, whose resulting HTML output is shown in Figure
15. More sophisticated transformations can include parsing
a model structure like composition or inheritance trees into
graphs for further processing. The stereotypes are defined
with tags that provide options that are relevant to that action,
for example, depth, include or exclude flags, etc. Example of
these tags are also shown in Figure 16. Projects can also add
actions that can call user specified scripts that contain more
project specific rules for checking the model and constructing
a custom display, like doing mass or power rollups for flight
systems and reporting on errors found.

Since a document is composed of Views, Figure 3 shows how
a View hierarchy can be modeled and interpreted. From the
”Root View” package, which denotes the root of a document,
linked list semantics are used to indicate the first child View
and subsequent Views, where by default each View will be
interpreted as a section in the resulting document. Given a
library of Viewpoints, one can easily string together the View
model and conform each View to an appropriate Viewpoint
according to the needs of each document.

Currently, the most common use case for DocGen is to output
the results of viewpoint execution into DocBook XML, but
given the right specifications it can also show editable tables
within the modeling application and publish editable views
to the web. In the case of tables, since the content in table
cells ultimately come from some property of model elements,
DocGen provides an edit mode - instead of rendering a static
table, a pop up table is displayed where users can directly
edit those model properties. Figure 17 shows an example of
editing mass properties of a system composition.

Figure 17. An Editable Table

As this illustrates, Views are not restricted to being parts in
a static document. They can be outputted in any format,
limited only by the format and presentation options specified
in the Viewpoint. A dynamic View like the editable table
significantly eases collaboration with domain engineers and
other stakeholders who provide inputs to the model.

It is important to note that the DocGen implementation is
not the only way to realize the View-Viewpoint paradigm.
Although we primarily work with SysML models, the View-
point specification can theoretically be implemented in any
language and a set of rules and transformations defined for
the target language. The steps in the Viewpoint method can
operate on a heterogeneous set of models, such as ontological
models, CAD models, as well as SysML models, as long as
there exists a unified way of describing these models.

DocWeb

Complementing DocGen are various web applications that
facilitate communication with domain engineers and stake-
holders. To facilitate document generation and review, we
have developed a web application for requesting, scheduling,
and archiving artifacts generated from the model. Again,

Figure 18. DocWeb Components

Figure 19. DocWeb Example - A generated document with
navigation on the left and section content on the right

the web interface and necessary additions are built around
the core DocGen plugin and the Viewpoint/View framework,
as shown in Figure 18. The output format is DocBook
XML, which can then be transformed into HTML and PDF.
CSV files from any relevant tables can also accompany the
generation, and possibly more in the future. These artifacts
are archived and tagged with a timestamp and can be retrieved
through a web interface, as shown in Figure 19. Options for
on demand generation or scheduled generation, like nightly or
weekly, allow system engineers to monitor the general state
of the model and documents and be alerted in a timely manner
if any problems arise, such as failed generations or failed val-
idations. Since the model repository houses both the system
models and Viewpoint models that describe how to create
Views, the entire generation chain can be automated to ensure
that documents will always be up to date and consistent with
respect to the model, no matter how frequently the model gets
updated.

9

Figure 21. View Editor Example - A view showing editable text and view navigation on the left

Figure 20. View Editor Components

View Editor

The View Editor is an example where domain engineers can
update the model online through HTML formatted Views
that are specific to their discipline. Figure 20 shows how
this capability is built around the existing DocGen plugin
by outputting the interpreted View information in different
formats. Instead of outputting to DocBook XML, DocGen
can instead serialize and package the same information to a
database through a REST interface. By having the software
keep track of where the content of a View comes from in the
model repository, users can update specific parts of the model
without having to know the details of how the model is put
together or even open the modeling application. Figure 21
shows the web page of a View, where users can directly edit
the contents. The View tree is also shown on the left as a
navigation to each of the document’s sections.

To achieve this, DocGen packages and upload subsets of the
model and View information to a database that the View
Editor operates on. Users can then update selected model in-
formation through the web that gets persisted in the database.
Cognizant system modelers will then import these changes
back into the model. Currently this extra layer is necessary
because of the lack of a central and accessible model reposi-

tory. Imagine then, if any tool can access model information
directly through a repository that houses all model, Viewpoint
and View information. Without the middleman, tools can
interpret Viewpoints directly and produce appropriate Views
according to the formats and presentation defined for that
tool. This technique can be used to integrate with existing
or new analysis tools. By adjusting the View format, we
are essentially defining an interface that can transmit subsets
of model data back and forth with applications like Excel,
Mathematica, Matlab, and more.

6. CONCLUSION
As MBSE becomes mainstream, the need for a more auto-
mated and streamlined approach to model based document
generation increases. We have extended the SysML concepts
of View and Viewpoint in order to create a foundation to
address this need. This allows systems engineers to use View-
point models to describe how to extract, analyze, and present
specific information from the system model to stakeholders
and domain engineers. In addition to generating just static
artifacts, the format option in the extension also supports a
way to specify integration with other software that can ma-
nipulate model information. We envision that a model based
engineering environment with a central repository of model
and Viewpoint information will be the key to integrating all
the pieces needed to execute successfully in a model based
project. We have developed software like DocGen, View
Editor, and DocWeb to pave the way to realizing this vision.

ACKNOWLEDGMENTS
The work described in this paper was performed at the Jet
Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space
Administration. Copyright 2012 California Institute of Tech-
nology. Government sponsorship acknowledged.

REFERENCES
[1] M. Jackson, C. L. Delp, D. Bindschadler, M. Sarrel,

R. Wollaeger, and D. Lam, “Dynamic Gate Product and
Artifact Generation from System Models,” in Proceed-

10

ings of Aerospace Conference. Big Sky, Montana:
IEEE, 2011.

[2] D. Bindschadler, C. L. Delp, and M. McCullar, “Prin-
ciples to Products: Toward Realizing MOS 2.0,” in
Proceedings of SpaceOps Conference. Stockholm,
Sweden: AIAA, 2012.

[3] T. Bayer, S. Chung, B. Cole, B. Cooke, F. Dekens,
C. Delp, I. Gontijo, and D. Wagner, “Update on the
Model Based Systems Engineering on the Europa Mis-
sion Concept Study,” in Proceedings of Aerospace Con-
ference. Big Sky, Montana: IEEE, 2013.

[4] T. Bayer, M. Bennett, C. L. Delp, D. Dvorak, J. S.
Jenkins, and S. Mandutianu, “Update - concept of oper-
ations for integrated model-centric engineering at JPL,”
in Proceedings of Aerospace Conference. Big Sky,
Montana: IEEE, 2011.

[5] DocBook Technical Committee, “DocBook 5,” OASIS,
Tech. Rep., 2009, http://docbook.org.

[6] OMG Technical Meeting, June 2012,
http://www.omg.org/news/meetings/tc/ma-12/info.htm.

[7] MGSS, “Advanced Multi-Mission Operations System,”
http://ammos.jpl.nasa.gov/.

[8] OPFM, “Europa Jupiter System Mission,”
https://opfm.jpl.nasa.gov/europajupitersystemmissionejsm/.

[9] C. Delp et al., “Scalability of Enterprise Engineering
Modeling,” JPL Internal, 2012.

[10] ISO/IEC/IEEE, “Systems and software engineering -
architecture description,” ISO/IEC/IEEE, Tech. Rep.
ISO/IEC/IEEE 42010, December 2011.

[11] Europa Study Team, “Europa Study 2012 Report,” Na-
tional Aeronautics and Space Administration, May 1
2012.

[12] C. Delp et al., “Model Based Mission Operations Sys-
tems Engineering and the Mission Service Architecture
Framework,” To be published, 2013.

[13] S. Chung, T. Bayer, B. Cole, B. Cooke, F. Dekens,
C. Delp, and D. Lam, “Model-Based Systems Engi-
neering Approach to Managing Mass Margin,” in 5th
International Workshop on Systems and Concurrent En-
gineering for Space Applications. Lisbon, Portugal:
ESA, 2012.

[14] NoMagic, “MagicDraw,” http://www.nomagic.com/.

BIOGRAPHY[

Christopher Delp is the Systems Ar-
chitect for the Ops Revitalization task in
MGSS and a Lead Systems Engineer for
MBSE on the Europa Mission. He is a
founder of the Modeling Early Adopters
grass roots Model Based Engineering
working group. Chris continues to lead
the INCOSE Space Systems Working
Group MBSE Challenge Team for the
INternational Council On Systems Engi-

neering. Previously he served as Flight Software Test Engi-
neer for MSL and Software Test Engineer for the Tracking,
Telemetry, and Command End-to-End Data Services. He also
leads the INCOSE Space Systems Working Group’s entry
in the Model Based Systems Engineering Grand Challenge.
Additionally, he has performed research on software verifica-

tion and tools for Service-Oriented Architecture in support of
the Deep-space Information Services Architecture. Prior to
coming to JPL, he worked as a software engineer performing
DO-178b Level FAA flight qualified software development
and testing on Joint Tactical Radio System (JTRS) and the T-
55 Full Authority Digital Engine Controller (FADEC). Chris
earned a Master of Science in Systems Engineering from
the University of Arizona where he studied Model Based
Systems Engineering, Simulation and Software Engineering.
Previous to graduate studies, Chris performed his duties
as a systems engineer on Missile Systems Verification and
Validation.

Doris Lam is currently a Software Sys-
tems Architect working in the Model
Based Engineering Environment team at
JPL. She earned her B.S. in computer
science from UCLA in 2008 and joined
JPL after graduating. She has worked
on various UML and SysML model-
ing projects and software modernization
tasks for the ground system.

Elyse Fosse is a Software Systems En-
gineer for the Ops Revitalization task
in MGSS. She also develops ground
system cost models for deep space and
Earth missions. She is also a member of
the Multimission Ground Data System
Engineering group at the Jet Propulsion
Laboratory. Her interests include soft-
ware and systems architecture, applica-
tions of model-based system engineer-

ing, and cost model implementation and analysis. Elyse is
also a part of the INCOSE Space Systems Working Group’s
entry into the Model Based Systems Engineering Grand Chal-
lenge. Elyse earned her M.A. in Applied Mathematics from
Claremont Graduate University and her B.S. in Mathematics
from the University of Massachusetts Amherst.

Cin-Young Lee is a Senior Software
Engineer in the Mission Information
Systems and Technology Development
Group at the Jet Propulsion Laboratory.
He earned his Ph.D. from Caltech in
Mechanical Engineering.

11

