
 978-1-4673-1813-6/13/$31.00 ©2013 IEEE
 1

Feeding People’s Curiosity: Leveraging the Cloud for
Automatic Dissemination of Mars Images

David Knight, Mark Powell
Jet Propulsion Laboratory, California Institute of Technology

4800 Oak Grove Dr.
Pasadena, CA 91109

{ 818-354-5460, 818-653-8012 }
{ david.s.knight@jpl.nasa.gov, mark.w.powell@jpl.nasa.gov }

Abstract—Smartphones and tablets have made wireless
computing ubiquitous, and users expect instant, on-demand
access to information. The Mars Science Laboratory (MSL)
operations software suite, MSL InterfaCE (MSLICE), employs
a different back-end image processing architecture compared
to that of the Mars Exploration Rovers (MER) in order to
better satisfy modern consumer-driven usage patterns and to
offer greater server-side flexibility. Cloud services are a
centerpiece of the server-side architecture that allows new
image data to be delivered automatically to both scientists
using MSLICE and the general public through the MSL
website (http://mars.jpl.nasa.gov/msl/).

At the core of the image processing architecture are Amazon
Simple Workflow (SWF), Simple Storage Service (S3), and
SimpleDB that respectively provide cloud-based workflow
orchestration, object storage, and metadata storage. As a
general rule, the cloud is used as a neutral ground where non-
sensitive data becomes available to worker machines
performing processing and ultimately the users that view the
data. From an image processing perspective, early cloud
availability of image data means that cloud machines can be
used for the bulk of image processing tasks and elastically
provisioned depending on need. From a data availability
perspective, S3 is a durable, highly available storage service
that does not depend on the availability of JPL’s internal
network.

The overall pipeline architecture is comprised of two separate
pipelines that operate in serial. The first pipeline processes
images for ingestion into MSLICE and requires certain
components to run on-lab at JPL. The second pipeline
prepares images from multiple sources for availability to the
MSL website. This second pipeline runs completely in the
cloud and does not directly depend on the availability of JPL
internal resources. This processing architecture allows greater
flexibility for how and where MSL data is processed and puts
less of a burden on the uptime of JPL’s internal resources.
Total processing capacity can be elastically increased or
decreased by provisioning workers on the cloud, and processes
that do need to be run at JPL can be run on smaller capacity
machines. The end result of this automation for the general
public is that many image types appear automatically on the
website in near real-time only minutes after they become
available to scientists.

TABLE OF CONTENTS
1. INTRODUCTION ... 1	
2. BACKGROUND ... 1	
3. TECHNOLOGICAL ANCESTRY 3	
4. MSLICE DATA INGESTION PIPELINE 4	

5. PUBLIC OUTREACH DISTRIBUTION PIPELINE . 7	
6. LESSONS LEARNED ... 9	
7. CONCLUSION ... 9	
8. ACKNOWLEDGEMENTS 9	
REFERENCES ... 10	
BIOGRAPHIES .. 10	

1. INTRODUCTION

One of the design goals of the Mars Science Laboratory
(MSL) mission was to include a multitude of
instrumentation onboard the Curiosity rover. However,
instrumentation on a remotely operated spacecraft involves
more than the direct integration with onboard flight systems.
Instrument data needs to make its way back to the eyes of
the spacecraft’s scientists and engineers on Earth, and high-
profile missions like MSL need to deliver enticing content
to the general public, as well.

Coinciding with this most recent Mars mission is the
introduction of more advanced consumer-centric
technologies ranging from smartphones to social networks.
Consequently, users expect new data to become available
on-demand. In the context of a deep space mission,
scientists, engineers, and the general public expect new
spacecraft data to be made available as quickly as possible
after it is terrestrially received.

This paper describes two related data processing systems to
designed to fulfill these expectations. The first system is a
tactical pipeline that ingests data into the back-end system
of the MSL operations software suite, enabling data
consumption by operations scientists and engineers. The
second system, downstream from the first system, is a
public outreach distribution pipeline that makes certain
types of captured Curiosity images available for public
consumption through the MSL public website.

2. BACKGROUND

MSL Operations Software

The operations software package fed by the tactical data
ingestion pipeline is the MSL InterfaCE (MSLICE) suite,
developed in JPL’s Ops Lab. MSLICE is designed to
provide an integrated environment for performing many of

 6

parts (and detail level) of the image that a user is currently
viewing.

The third activity creates an entry for this image product
within a product catalog table in Amazon SimpleDB. If the
image product is from either the Navcams or Mastcams, an
entry also gets created in an outdated mosaic table in
SimpleDB. This database table stores a list of mosaics that
need have become out of date and need to be regenerated
(see MSLICE Data Ingestion Pipeline; Data Product Types;
Mosaics).

Once the three primary activities are complete, an optional
fourth activity can trigger the automatic public release of the
image product. This signal gets sent for Hazcam, Navcam,
and Chemcam EDR image products, in which case a new
workflow execution is submitted to the public outreach
distribution pipeline (see Public Outreach Distribution
Pipeline).

Range Data—Since MSL is equipped with multiple stereo
camera pairs (see MSLICE Data Ingestion Pipeline; Data
Product Types; Images), OPGS infers range and normal
information for image products where a corresponding left-
right pairing exists. Range data is used in MSLICE to allow
users to select a point in an image product and receive an
estimate of the depth of that imaged surface from the
camera. The availability of this depth information is vital for
operations planning of many of the science instruments
simply because it informs operators of how far objects are
from the rover.

The Range Data Workflow uses the range and normal data
products to produce a series of 32 by 32 pixel tiles that hold
a 4-dimensional single-precision floating-point vector for
each pixel of the corresponding image product. This vector
represents the range of the surface normal from the camera
origin and the Cartesian direction of the surface normal.
Additionally, a JPEG2000 formatted range map is produced.
The tile and range map files are all uploaded to Amazon S3
after creation.

Reachability Data—Since many of Curiosity’s instruments
are mounted on the arm, operators need the ability to
estimate the extent of the rover’s surroundings that are
within reach of the arm. OPGS specifically produces an arm
reachability data product for whenever range data is
available from a camera stereo pair. MSLICE uses this
information to optionally draw an overlay on top of image
products that indicates what regions are within reach of
Curiosity’s arm.

The reachability maps provide reachability ratings for eight
different arm poses for every pixel of an image product. The
reachability rating is a 2-bit value where 0 means
completely unreachable. The set of ratings for an image
pixel is encoded as a 16-bit integer value, and the
Reachability Workflow encapsulates this data as a 16-bit
grayscale PNG image file that gets uploaded to Amazon S3.

Mosaics—Unlike images, range data, and reachability data,
mosaics are a derivative product that is generated by the
MSLICE data ingestion pipeline itself. A mosaic is a larger
image that is produced by stitching together many
individual images. The pipeline automatically produces
cylindrical (panoramic) and orthographic (overhead)
perspective mosaics from Navcam images taken from a
single location, and the pipeline can also produce similar
cylindrical mosaics from Mastcam imagery. Due to the
resulting high-resolution of Mastcam mosaic images, the
workflow executions to produce these products specifically
make use of the bigcloud task list. However, Navcam
mosaics are produced using workflow executions on the
regular cloud task list.

MSLICE presents mosaics with fluid zooming and panning
functionality in order to give users an unfettered view of the
rover’s surroundings. Additionally, points of interest from
individual image products are also displayed in the
cylindrical mosaic viewer. This visualization functionality
gives users a better spatial context of the rover’s
environment and also provides a central location for
scientists and engineers to refer to and discuss points of
interest.

Generation of mosaics is enabled by the fact that image
products contain a wealth of spatial metadata that allows for
an accurate 3D coordinate system to be established. Unlike
purely visual mosaicking methods that estimate geometric
transforms based on common key points in images, the data
ingestion pipeline uses the provided camera geometry
metadata to project all relevant images into a coordinate
system that provides accurate pointing and targeting relative
to the rover.

As mentioned previously, an Amazon SimpleDB database
table contains entries referring to outdated mosaics that
require regeneration (see MSLICE Data Ingestion Pipeline;
Data Product Types; Images). An entry is added to this table
whenever a new Navcam or Mastcam image product is
processed. A cron workflow called the Mosaic Scheduler
Workflow is responsible for reading this database table and
asynchronously submitting new workflow executions of
Cylindrical Mosaic Workflow and/or Overhead Mosaic
Workflow to Amazon SWF.

Because of the high resolution of cylindrical mosaics, the
Cylindrical Mosaic Workflow generates a mosaic in stripes
that are 256 pixels tall and as wide as the final image. The
processing of these stripes is performed using multiple
activities in parallel. After stripes have been created, another
phase of parallel activities repeatedly tiles and down
samples the individual mosaic stripes into a JPEG2000 tiled
image pyramid representation that is uploaded to Amazon
S3, enabling responsive viewing in MSLICE (see MSLICE
Data Ingestion Pipeline; Data Product Types; Images).

The resolution of the orthographic mosaics does not
necessitate generating the mosaic image piecemeal using
stripes. Consequently, the Orthographic Mosaic Workflow

 8

perform HTTP queries against the catalog. Similar to the
Maestro and MSLICE designs, the outreach image catalog
allows other applications to quickly discover what image
products exist in the system.

The distribution pipeline produces four different thumbnail
sizes, which are produced by a Thumbnail Workflow. The
resizing policy is based on width and height constraints, and
source images are downsampled such that the aspect ratio is
preserved and all dimensional constraints are met. When
both width and height constraints are present, for example,
the source image is essentially shrank to fit inside a
bouncing box. Source images that already meet all
constraints are not resized, disallowing the enlarging of
source images. Thumbnail image files inherit the format of
the source image (either JPEG or PNG) and are uploaded to
Amazon S3 using a programmatic filename suffix. The
different thumbnail sizes are shown below.

Table 2. Thumbnail size specifications for raw MSL
images released to the public

filename	 suffix	 width	 constraint	 height	 constraint	
“-‐br”	 500	 px	 none	
“-‐br2”	 1024	 px	 none	
“-‐thm”	 160	 px	 120	 px	
“-‐thm2”	 320	 px	 240	 px	

Finally, similar to the MSLICE data ingestion pipeline, cron
workflows are used to accomplish various tasks. The MSSS
Image Cataloger Workflow periodically checks if new
images submitted by MSSS need to be cataloged (see Public
Outreach Distribution Pipeline; MSSS Originating Images).
The Location Cataloger Workflow routinely updates a static
file on Amazon S3 with a list of rover locations. The
Weather Cataloger Workflow periodically uploads to
Amazon S3 static files containing Martian surface
conditions.

OPGS Originating Images

As indicated previously, certain image products processed
in the MSLICE data ingestion pipeline are sent to the
outreach distribution pipeline (see MSLICE data ingestion
pipeline; Data Product Types). Specifically, the outreach
distribution pipeline receives EDR image products taken by
the Navcams, Hazcams, or Chemcam, and it also receives
Navcam mosaic images generated upstream.

For images, the upstream processing of these specific types
of image products triggers the creation of an Image Copy
Workflow execution in the outreach distribution pipeline.
The first activity of this workflow is responsible for both
writing a publicly accessible JPEG file of an image product
and creating a corresponding entry in the image catalog. The
JPEG file is copied from an MSLICE-specific bucket of
Amazon S3 to a publicly accessible outreach bucket. The
catalog entry is created using PDS metadata loaded from the
image product’s corresponding LBL file located in the
MSLICE-specific Amazon S3 bucket, and the catalog entry

is written to an image catalog database table in Amazon
SimpleDB.

The second activity of the Image Copy Workflow involves
launching a child workflow execution of type Thumbnail
Workflow to produce thumbnails based on the input image
product.

Incoming mosaic images are processed similarly, except
that thumbnails do not get generated. Either a JPEG or PNG
copy of the image file is copied from the originating
MSLICE-specific bucket to a publically accessible bucket
on Amazon S3. The corresponding metadata from the
mosaic image is used to create an entry in a mosaic catalog
database table in Amazon SimpleDB.

MSSS Originating Images

Images captured from Curiosity’s Mastcams, MAHLI, and
MARDI cameras are processed by MSSS before being
submitted to the outreach distribution pipeline. Even though
the image products come from a different upstream source,
the outreach distribution pipeline performs the same
tumbnailing and cataloging operations, allowing for MSSS
image products to be accessed in the same manner as image
products generated with OPGS.

Because the MSSS image processing pipeline runs at a
different institution, ingestion of its output image products
is less tightly coupled with this pipeline compared to the
coupling between this pipeline and the MSLICE data
ingestion pipeline. When new image products are output at
MSSS, their image processing pipeline invokes a
submission script that directly uploads a JPEG file to the
publicly accessible outreach bucket on Amazon S3 and
makes an entry in a staging domain of Amazon SimpleDB.

A cron workflow in the outreach distribution pipeline polls
the staging database table in Amazon SimpleDB every five
minutes. When new entries are present in the staging
database table, a workflow execution of the Thumbnail
Workflow is run for each new MSSS image product, and
corresponding catalog entries are written to the image
catalog database table.

Implementation

Since access to JPL’s internal network resources is not
required, all infrastructure of the outreach distribution
pipeline runs in the cloud. Individual worker computers and
image catalog servers are provisioned on Amazon EC2.
Publicly accessible files are stored on Amazon S3, the
image catalog is stored in Amazon SimpleDB, and Amazon
SWF is used to dispatch tasks to worker computers.

Two m1.medium sized EC2 instances running Amazon
Linux 2012.09 act as worker computers for the pipeline.
These virtualized machines are equipped with 3.75 GiB of
RAM and a single 64-bit dual-core CPU [4]. The processing
daemon running on these machines is written in Java 6 with
the OSGi framework and the AWS SDK for Java.

 9

There are currently two image catalog servers running on
m1.small EC2 instances. These virtualized machines are
equipped with 1.7 GiB of RAM and a single single-core 64-
bit CPU [4]. These image catalog servers currently run
Amazon Linux 2012.09. Both of these machines run behind
an Elastic Load Balancer (ELB), which is the point of
access for downstream systems. The load balancer allows
for additional image catalog servers to be added and
removed dynamically based on the anticipated load from
downstream systems. The server software is written in Java
6 with the OSGi framework, AWS SDK for Java, and
Restlet framework.

The image catalog servers accept queries by Martian sol and
optionally allows for filtering by instrument. Queries are
executed against Amazon SimpleDB, and results are
delivered back to clients as XML documents. In particular,
this XML data is ingested by JPL’s Mars Science
Laboratory website servers and used to populate the Raw
Image Gallery, enabling the automatic release of images
taken by Curiosity to the general public.

6. LESSONS LEARNED

The path to implementing any moderately sized system
involves learning lessons along the way, and the
development of both the MSLICE data ingestion pipeline
and the public outreach distribution pipeline were no
exception.

First, while the use of a queue and workflow service, like
Amazon SWF, simplifies many synchronization issues
related to when and where code is executed, it does not
solve all synchronization issues. Workflows and activities
should be written to depend only on the input to the
workflow or activity, similar to static methods in Java. Use
of global state in the processing daemons can lead to
unintended race conditions and should be used carefully and
only when necessary to avoid inconsistent states across
worker computers that should be identical.

Second, while verbose, it was found to be a good pattern to
separate cron workflows from the payload that they are
intended to execute. In other words, a cron workflow should
only contain enough logic to launch a separate workflow on
a specific interval. The separate workflow should contain
the logic for the actual tasks that need to be executed. This
separation isolates the cron logic from failures in the
payload logic and can be thought of as forking a process in
UNIX.

Third, adjusting Amazon SWF’s timeout and retry policies
is an art and not a science. Short timeouts make workflows
and activities brittle in the face of variables like network
latency, and long timeouts impose excessive delays before
activities or workflows are retried.

Finally, based on usage patterns it actually seems like the
image catalog servers in the public outreach distribution

pipeline are unnecessary. Queries to the image catalog
servers only involve a single Martian sol at a time.
Consequently, the image catalog information could be
organized in a series of static XML files with systematic
filenames and a root manifest of what catalog files are
available and when they were last updated. Because the
image catalog would be read as a collection of static files it
would be vastly more scalable, with the hosting load
abstracted behind a storage service like Amazon S3. This
concept is a desirable future improvement that should be
implemented.

7. CONCLUSION

Both of the pipelines described in this paper are built upon
the same basic cloud services. Use of these cloud services
abstracts away the complexity of major functional blocks of
the pipeline systems and also provides greater flexibility for
deployment. In particular, the use of Amazon SWF allows
the pool of worker computers to be grown and shrunk as
need sees fit. And in cases where organizational internal
network access is not required, virtually all system
infrastructure can be run in the cloud.

Taking a broader view, the MSLICE pipeline accomplishes
its goal of automatically processing and making new image
products available to MSLICE users. Additionally, many of
these same images are made available to the general public
directly after they become available to mission scientists
and engineers.

8. ACKNOWLEDGEMENTS
The research described in this paper was carried out at the
Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics
and Space Administration.

 10

REFERENCES
[1] M. Powell. “A Scalable Image Processing Framework for

Gigapixel Mars and Other Celestial Body Images” IEEE
Aerospace Conference, Big Sky, Montana, March 6-13,
2010.

[2] K. Shams, M. Powell, T. Crockett, J. Norris, R. Rossi, T.
Soderstrom. “Polyphony: A Workflow Orchestration
Framework for Cloud Computing” IEEE/ACM 10th
International Conference on Cluster, Cloud and Grid
Computing (CCGrid), Melbourne, Australia, May 17-20,
2010.

[3] J. Fox, J. Norris, M. Powell, K. Rabe, K. Shams.
“Advances in distributed operations and mission activity
planning for Mars surface exploration” AIAA 9th
International Conference on Space Operations
(SpaceOps), Rome, Italy, June 19-24, 2006.

[4] “Amazon EC2 Instance Types,” Amazon EC2 Details,
January 14, 2013. [Online]. Available:
http://aws.amazon.com/ec2/instance-types/

BIOGRAPHIES
 David Knight is an Application
Software Engineer at NASA’s Jet
Propulsion Laboratory (JPL) currently
working on the Mars Science
Laboratory Interface (MSLICE) team
in the Ops Lab. As a college intern in
2010, he previously developed a
WebGL front-end for rendering terrain

data from the Lunar Mapping and Modeling Project
(LMMP). He received a B.S. in Electrical Engineering
from Oregon State University in 2009 and a M.S. in
Electrical Engineering from Stanford University in 2011.

Mark Powell is a Senior Computer
Scientist at the Jet Propulsion
Laboratory, Pasadena, CA. Since 2001
Mark has created apps for
visualization and control of robots that
explore Earth, sea, sky, space, moons
and planets. Mark is the product lead
for many of the command and control

apps for the Curiosity Mars Rover. These apps afford
environment visualization, collaborative planning, health
and safety monitoring, simulation, command sequence
authoring and validation to the Curiosity science and
engineering teams. These apps are known collectively as
the Mars Science Laboratory Interface (MSLICE). Mark
also supports Curiosity as an Engineering Camera
(ECAM) Uplink Lead. He supported the 2004 Mars
Exploration Rover (MER) mission operations as a
Science Downlink Coordinator, facilitating the timely
downlink and analysis of science data from the rovers. He
received the NASA Software of the Year Award for his
work on the Science Activity Planner science
visualization and activity planning software used for
MER operations. He also received the Imager of the Year
award from Advanced Imaging Magazine for his work on
Maestro, the publicly-available version of the Science
Activity Planner for MER. Mark also supports a variety
of other projects at JPL including the Aerobot aerial
robotic vehicle, the Cassini mission to Saturn, and the
ATHLETE prototype asteroid-hopping robotic vehicle.

