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Abstract— This paper presents a novel dynamic program-
ming algorithm with a joint chance constraint, which explicitly
bounds the risk of failure in order to maintain the state within
a specified feasible region. A joint chance constraint cannot
be handled by existing constrained dynamic programming
approaches since their application is limited to constraints in
the same form as the cost function, that is, an expectation
over a sum of one-stage costs. We overcome this challenge
by reformulating the joint chance constraint into a constraint
on an expectation over a sum of indicator functions, which
can be incorporated into the cost function by dualizing the
optimization problem. As a result, the primal variables can be
optimized by a standard dynamic programming, while the dual
variable is optimized by a root-finding algorithm that converges
exponentially. Error bounds on the primal and dual objective
values are rigorously derived. We demonstrate the algorithm
on a path planning problem, as well as an optimal control
problem for Mars entry, descent and landing. The simulations
are conducted using a real terrain data of Mars, with four
million discrete states at each time step.

I. INTRODUCTION

When controlling a system with stochastic uncertainty,
it is important to limit the risk of mission failure while
minimizing a given cost function. For example, Mars entry,
descent, and landing (EDL) is subject to various source of
uncertainties such as atmospheric variability and imperfect
aerodynamics model. The resulting dispersions of the landing
position typically spans over tens of kilometers for a 99.9%
confidence ellipse [1]. Given such a highly uncertain nature
of EDL, a target landing site must be carefully chosen in
order to limit the risk of landing on rocky or uneven terrain,
since such an event may directly results in a mission failure.
At the same time, it is equally important to land near science
targets in order to minimize the traverse distance after the
landing. An effective framework for such a multi-objective
decision making involving risk can be posed as a chance-
constrained optimization, a minimization of the expected cost
with a bound on the risk of mission failure [2], [3].

Future Mars lander/rover missions aim to reduce the
uncertainty by using several new active control technolo-
gies, consisting of the following three stages: entry-phase
targeting, powered-descent guidance (PDG) [4], and hazard
detection and avoidance (HDA) [5], as shown in Figure 1.
Each control stage is capable of making corrections to the
predicted landing position by a certain distance, but each
stage is subject to execution errors, which deviates the
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Fig. 1. A future Mars entry, descent, and landing scenario.

spacecraft away from the planned landing position. We pose
this problem as an optimal sequential decision making under
a persisting uncertainty.

Dynamic programming (DP) is a general framework for
optimal sequential decision making under uncertainty and
provides theoretical basis for various optimal control meth-
ods, such as the linear-quadratic regulator (LQR) and the
model-predictive control (MPC) [6]. Among the MPC com-
munity, the chance-constrained MPC (CCMPC) has been
intensively studied over the last decade [7], [8], [9], [10],
[11], [12], [13], [14] and has found successful applications
such as control of buildings [15] and electrical grids [16].
The objective of this paper is to reflect the rich insights
obtained from these CCMPC studies back to DP and develop
a general joint chance-constrained dynamic programming
framework that can be applied for a broad range of optimal
control problems.

Chance-constrained dynamic programming was initially
studied in the context of water management in the
1970s [17], [18]. Although these early studies are impor-
tant in that they first introduced the notion of the chance
constraint in DP, a field-specific formulation and a lack of
theoretical justification of the employed optimization method
are their weakness. A similar but different constraint called
reliability constraint has been also studied [19], which limits
the expected number of failures and employs a Lagrangian
method to transform the constrained optimization into an
unconstrained optimization problem. A closely related disci-
pline is the Markov decision process (MDP), which typically
achieves risk aversion by imposing an arbitrary penalty on
failure states. The proposed chance-constrained DP approach
is different from the penalty-based MDPs in that the former
can explicitly impose a constraint on the probability of



failure, which is what the stake holders desire to have
especially for space missions. Several algorithms have been
proposed to solve constrained MDP problems [20]. Among
them, the most relevant work is [21], which also employed
a Lagrangian method to handle constraints. A limitation of
the constrained MDP approaches is that constraint functions
must have the same form as the objective function, that is,
an expectation over a summation of one-stage costs. Due to
this limitation, it is generally difficult to handle a chance
constraint by constrained DP/MDP approaches, as pointed
out by [19].

We overcome this challenge by using the recently-
developed risk allocation approach [13], which decomposes
a joint chance constraint into a set of individual chance
constraints and distributes the risks among them. With this
approach, a joint chance constraint is transformed into an
expectation over a summation of indicator functions, which
has the same form as the cost function. The resulting
Lagrangian of the constrained optimization preserves the
form that is handled by a standard DP. We propose an
algorithm that solves the dual optimization problem, where
the dual objective function is evaluated by minimizing the
Lagrangian using a standard dynamic programming approach
(i.e., backward recursion), given a fixed dual variable. The
dual variable is optimized by a root-finding algorithm called
Brent’s method [22]. The root-finding algorithm has an
exponential convergence rate, and its complexity does not
change with the size of the primal problem. It typically
converges within 10 to 30 iterations.

Another important contribution of this paper is the deriva-
tion of the bounds on the suboptimality of both the primal
and dual objective values. The dual objective function of a
chance-constrained optimization is often non-differentiable,
and hence it is difficult to find an exact optimal solution with
a root-finding algorithm. Our algorithm obtains an approx-
imate solution, but with a user-specified tolerance on the
suboptimality of the dual objective value. A suboptimality
bound on the primal objective value is also obtained from
the dual solution.

The rest of the paper is organized as follows. In Section
II, the problem statement of chance-constrained DP is pre-
sented, together with the reformulation which allows us to
apply a Lagrangian-based method. Section III then presents
its dual problem, the proposed solution approach, and its
suboptimality bounds. Section IV shows the algorithmic
steps, and finally Section V shows several simulation results.

II. FORMULATION OF JOINT CHANCE-CONSTRAINED DP
A. Problem Statement

We consider a discrete-time stochastic dynamic system,
whose state at time k is represented by a vector xk � ∪ .
The state space ∪ can be continuous, discrete, or hybrid.
We assume the following general dynamics model:

xk+1 = f(xk, uk, wk)

uk � Xk(xk)

wk ←pk(wk), (k = 0, . . . , N 1)

where uk is a control input in a set Xk(xk) ≤ X and wk is
disturbance with a known probability distribution (density)
function, pk(wk). We assume that the state xk is directly
observable with no uncertainty at time k, and the initial state
x0 is given. We define a control policy as a map, μk : ∪ ∀∈
Xk(xk). A policy sequence is denoted by:

μ = }μ0, μ1, . . . , μN−1| .

Our objective is, given an initial state x0, to find an optimal
policy sequence μ� over a finite control horizon k =
0, . . . , N that achieves the followings:

1) Satisfaction of a joint chance constraint: The prob-
ability that the state stays within a feasible region
∪k ≤ ∪ over the control horizon is at least 1 Δ,
where Δ � [0, 1] is a user-specified risk bound.

2) Minimization of a cost function: We minimize the
expected total cost over the control horizon, given a
one-stage cost function gk : ∪ ±X ∀∈ R and a terminal
cost function gN : ∪ ∀∈ R.

This constrained optimal control problem is formally stated
as follows:
Problem 1: Joint Chance-constrained Optimal Control

min
μ

E

}
gN (xN ) +

N−1∫
k=0

gk(xk, μk(xk))

⎧
(1)

s.t. Pr

}
N∨

k=1

xk � ∪k

{{{x0

⎧
∼ 1 Δ. (2)

This problem cannot be solved by the existing con-
strained DP/MDP approaches, such as Lagrangian-based
methods [19], [21], because the left hand side of (2) has
a form different from that of the objective function (1).

B. Reformulation though Risk Allocation

We address the challenge stated above by reformulating
the joint chance constraint (2) into a constraint over an
expectation of a summation of indicator functions, so that
a Lagrangian-based approach can be applied. The indicator
function Ik(xk) is defined as follows.

Ik(xk) =

{
1 (xk /� ∪k)
0 (Otherwise)

(3)

In other words, Ik(xk) is one if xk is infeasible. Using this
indicator function, we formulate the following approximation
of Problem 1:
Problem 2: Approximation of Problem 1

min
μ

E

}
gN (xN ) +

N−1∫
k=0

gk(xk, μk(xk))

⎧
(4)

s.t. E

}
N∫

k=1

Ik(xk)
{{{x0

⎧
≥ Δ. (5)

The following theorem holds:

Theorem 1: Feasibility of Approximate Solution
A feasible solution to Problem 2 is also a feasible solution
to Problem 1.



Proof: It suffices to show that (5) is a sufficient
condition of (2). The probability of at each time step is
represented by the indicator function Ik(xk):

Pr }xk /� ∪k ‖x0| = E}Ik(xk) ‖x0| .

Using the above equation, the left hand side of (2) is bounded
as follows:

Pr

}
N∨

k=1

xk � ∪k ‖x0

⎧
= 1 Pr

}
N

k=1

xk /� ∪k ‖x0

⎧

∼ 1
N∫

k=1

Pr }xk /� ∪k ‖x0|

= 1
N∫

k=1

E}Ik(xk) ‖x0|

= 1 E

}
N∫

k=1

Ik(xk) ‖x0

⎧
(6)

Note that the inequality is derived from Boole’s inequality:
Pr[A{B] ≥ Pr[A]+Pr[B]. (6) implies that (5) is a sufficient
condition of (2).

The same approximation is employed by the risk allocation
approach [13], which is originally developed for chance-
constrained MPC. It has been shown in the context of
the risk allocation approach that, although Problem 2 is a
conservative approximation of Problem 1, the conservatism
due to this approximation is practically very small. More
specifically, it has been shown [23] that, with an assumption
that failures occur independently between time steps, the
conservatism measured by the difference between the left
hand side and the right hand side of the inequality in (6) is
U (Δ2). In most practical cases, the risk bound Δ is set to a
small value, such as 1%. If Δ = 1%, then the conservatism
is about 0.01%. Furthermore, it is demonstrated by the
previous work [13], [24] that the risk allocation approach
results in substantially smaller suboptimality compared to
other approximation approaches, such as [8], [9], [10], [25].

III. METHOD

We solve Problem 2 using a Lagrangian-based approach,
which is similar to [19], [21], [26]. Our method is distinct
from these existing approaches in that it allows users to
explicitly specify a tolerance on the suboptimality of the
dual optimization (Theorem 2-1). A suboptimality bound
on the primal optimization is also obtained from the dual
solution (Theorem 2-2). This capability is enabled by the
newly designed stopping condition of the dual optimization,
(13). It is particularly important to bound the solution error
in our problem since the dual objective function is often non-
differentiable, and it is difficult to obtain the exact solution.

A. Dual Optimization

Our approach is to solve the dual optimization problem of
Problem 2. To this end, we first formulate the Lagrangian.

For a dual variable λ ∼ 0, let

Lλ
k(xk, uk) =

⎩∑
⎨

g0(x0, u0) (k = 0)
gk(xk, uk) + λIk(xk) (k = 1×××N 1)
gN (xN ) + λIN (xN ) (k = N).

Then, the dual optimization problem is formulated as fol-
lows:

Problem 3: Dual of Problem 2

max
λ≥0

min
μ

E

}
N∫

k=0

Lλ
k(xk, μk(xk))

⎧
λΔ.

We introduce the following simplified notation:

Problem 3’: Dual of Problem 2 (Simplified notation)

max
λ≥0

q(λ),

where q(λ) is the dual objective function, which can be
evaluated by solving the following optimization problem
with a given λ:

Problem 4: Evaluation of Dual Objective Function

Jλ
0 (x0) = min

μ
E

}
N∫

k=0

Lλ
k(xk, μk(xk))

⎧
.

Since Problem 4 is an unconstrained optimization, it can
be solved efficiently by a standard DP method for a given
λ. More specifically, the following backward recursion is
conducted:

Jλ
N (xN ) := Lλ

N (xN ) (7)

Jλ
k (xk) := min

uk∈Uk(xk)
E
wk

∣
Lλ
k(xk, uk)

+Jk+1 (f(xk, uk, wk))| , (8)
k = 0, 1, . . . N 1.

After the backward recursion, the dual objective function is
obtained as:

q(λ) = Jλ
0 (x0) λΔ.

Note that the dual objective function q(λ) does not have to be
obtained in a closed form, because the optimality conditions
can be obtained without a closed-form expression of q(λ),
as explained in the next subsection.

B. Optimality Condition

The goal of this subsection is to obtain an optimality
condition for Problem 3. Before proceeding, let us define
three additional notations. First, let λ� be the optimal dual
solution for Problem 3. Second, we denote by μλ the optimal
solution for Problem 4 with a given λ, where

μλ = }μλ
0 , μ

λ
1 ,×××μ

λ
N | .



Third, we define a risk-to-go function, rλ0 (x0), which is
equivalent to the left hand side of (5) given the optimal policy
μλ:

rλ0 (x0) := E

}
N∫

k=1

Ik(xk) ‖x0,μ
λ

⎧
. (9)

Intuitively, rλ0 (x0) represents the conditional probability of
failure1 when the optimal policy μλ is applied starting from
the given initial state x0. The risk-to-go function is computed
by the following backward recursion:

rλN (xN ) := IN (xN )

rλk (xk) := Ik(xk) +

∧
wk

rλk+1 f(xk, μ
λ
k , wk)

{
pk(wk)dwk

If the distribution is discrete, the integral is replaced with a
summation.

We are now ready to formally discuss the optimality
condition. It is known that the dual objective function q(λ)
is guaranteed to be concave [27]. Therefore, the maximum
is achieved if:

0 � ∂q(λ), (10)

where ∂q(λ) is the subgradient of q(λ). If 0 /� q(λ) for all
λ > 0, then λ = 0 is the optimal solution. Such a special
case is handled separately in the proposed algorithm. It is
also known that the subgradient contains:

rλ0 (x0) Δ � ∂q(λ). (11)

If q is differentiable at λ, then

dq

dλ
= rλ0 (x0) Δ.

Therefore, rλ0 (x0) Δ = 0 is a sufficient condition for dual
optimality. Hence, if q is differentiable at λ�, then Problem
3 can be optimally solved by a root-finding algorithm, such
as the bisection method or Brent’s method.

However, particularly when the control space Xk(xk)
is discrete, the maximum is often attained at an non-
differentiable point of q, where rλ0 (x0) is discontinuous. In
such case, it is generally difficult to find the optimal solution
by a root-finding algorithm. Instead, we run a root-finding
algorithm until it finds an interval [λ λ] that satisfies:

r
λ
0 (x0) Δ > 0, rλ0 (x0) Δ ≥ 0 (12)

(λ λ)}rλ0 (x0) Δ| ≥ εd (13)

for a given tolerance εd > 0. Such an interval can be
efficiently found by a root-finding algorithm since rλ0 is
monotonically non-increasing with λ. Standard root-finding
algorithms, such as the bisection method and Brent’s method,
have exponential convergence rate [22]. Therefore, an inter-
val that satisfies (12) and (13) can be found very efficiently.
We empirically demonstrate the exponential convergence of
the dual optimization in Section V-B (Figure 5). Note that the

1Strictly speaking, the risk-to-go function rλ0 (x0) does not represent the
probability of failure, but an upper bound of it, because of the reformulation
from Problem 1 to Problem 2.

chance constraint (5), which is equivalent to rλ0 (x0) Δ ≥ 0,
is satisfied at λ. Therefore, we use λ as an approximate
solution to Problem 3. In the next subsection we show that
the approximation error in the dual objective function is
bounded by εd.

C. Suboptimality Bounds

Our dual optimization approach may be suboptimal with
regard to Problem 2 due to the following two factors:

1) Approximation error of a dual solution (i.e., λ λ�),
as discussed in the previous subsection, and

2) Duality gap.
As for the first factor, the approximation error in the dual
objective function is q� q(λ) ∼ 0, where q� is the optimal
dual objective value. Regarding the second factor, even if
λ� = λ, the optimal dual objective value may not agree
with the optimal primal objective value due to a duality gap.
Therefore, the control policy obtained from the approximate
solution to the dual optimization, μλ, can be different from
the optimal solution to Problem 2. We denote by hλ the
optimal objective value of the primal problem (Problem 2)
given λ. Hence,

hλ = q(λ) λ(rλ0 (x0) Δ). (14)

We also denote by h� the optimal primal objective value
to Problem 2. Then, since (12) guarantees that the primal
solution for λ is feasible but not necessarily optimal, there is
an error in the resulting primal objective value: hλ h� ∼ 0.

The following theorem provides bounds on these errors.

Theorem 2: Suboptimality Bounds
Let q� and h� be the optimal dual and primal objective

values, respectively. Also, let λ be the approximate dual
solution that satisfies (12) and (13). Then, the following
holds:

1) Suboptimality of the dual objective value is bounded
by:

q� q(λ) ≥ εd. (15)

2) Suboptimality of the primal objective value is bounded
by:

hλ h� ≥ εp, (16)

where
εp := λ}rλ0 (x0) Δ| .

Proof:
1) The dual objective function q is concave. Therefore,

q� ≥ q(λ) + d×(λ� λ), Nd � ∂q(λ).

Since q(λ) is concave and rλ0 is monotonically non-
increasing, it follows from (10), (11), and (12) that

λ ≥ λ� ≥ λ.

We use (11) and (13) to obtain:

q� ≥ q(λ) + (λ� λ)}rλ0 (x0) Δ|

≥ q(λ) + (λ λ)}rλ0 (x0) Δ| ≥ q(λ) + εd.



Therefore, (15) holds.
2) Since q� and h� are the optimal dual and primal

objective values, q(λ) ≥ q� ≥ h�. Therefore,

hλ h� ≥ hλ q(λ) = λ(rλ0 (x0) Δ) = εp.

The first equality follows from (14).

IV. ALGORITHM

We now present the algorithm that obtains an approximate
solution to solve Problem 2. More specifically, the algorithm
computes λ that satisfies (12) and (13), as well as the policy
sequence μλ. Recall that the feasibility of μλ is guaranteed
by (12), and a bound on the approximation error is provided
by Theorem 2. The proposed algorithm is described as below.

Algorithm 1 Joint Chance-Constrained Dynamic Program-
ming

1: Solve Problem 4 with λ = 0
2: if rλ0 (x0) Δ ≥ 0 then
3: return μ0

4: end if
5: Solve Problem 5
6: if Δmin > Δ then
7: return Infeasible
8: end if
9: [λ λ]→ [0 λ+]

10: while (λ λ)}rλ0 (x0) Δ| > εd do
11: λ→ Brent’s method with [λ λ]
12: Solve Problem 4 with λ
13: if rλ0 (x0) Δ = 0 then
14: return μλ

15: else if rλ0 (x0) Δ < 0 then
16: λ→ λ
17: else
18: λ→ λ
19: end if
20: end while
21: return μλ

Lines 1 - 4 are to separate the special case, λ = 0 (See
the discussion in Section III-B). If the chance constraint is
satisfied with λ = 0, then it is the optimal solution.

Lines 5 - 8 checks if a feasible solution to the primal
optimization problem (Problem 2) exists by solving the
following optimization problem:

Problem 5: Feasibility Check

Δmin = min
μ

E

}
N∫

k=1

Ik(xk) ‖x0

⎧
.

Note that the objective function of Problem 5 is the
same as the constraint of Problem 2. Hence, Δmin means
the minimum risk that can be achieved by any possible
policy. Since Problem 5 is an unconstrained optimization
problem, it can be efficiently solved by a standard DP

method. If Δmin is larger than the specified risk bound Δ,
then Problem 2 is infeasible. Otherwise, there exists a λ+

such that rλ
+

0 (x0) Δ ≥ 0. In Line 9, λ is initialized with
such a λ+.

Lines 10 - 20 are the main loop of the algorithm. Line
11 computes one step of a root-finding algorithm, Brent’s
method, in order to obtain λ � (λ λ). Then, in Line 12, the
optimal policy μλ is obtained by solving Problem 4 with
this λ. Lines 13 - 17 updates [λ λ] so that (12) is always
satisfied. The algorithm terminates if (13) is satisfied, and
returns the optimal policy with λ.

V. SIMULATION RESULTS

We demonstrate the proposed algorithm on two types of
problems: path planning and Mars EDL. The algorithm is
implemented in MATLAB. Computation time is evaluated
on a machine with an Intel Core 2 CPU clocked at 2.93
GHz and a 2 GB of memory.

A. Path Planning

In this example, we consider a two-dimensional rectangu-
lar state space, which is discretized into a 100x100 grid with
an interval of 1.

The following dynamics are assumed:

xk+1 = xk + uk + wk

uk 2 ≥ dk, wk ←O (0, σ2I),

where dk and σ are constant parameters, O (0,Σ) is a zero-
mean Gaussian distribution with the covariance matrix Σ,
and I is the two-dimensional identity matrix. We set dk = 6
and σ = 1 for Figure 2(a), and dk = 5 and σ = 1.67 for
Figure 2(b) and Table I. The control input and disturbance are
also discretized with the same interval as the state variable.

The dynamic programming problem is formulated with 50
time steps (N = 50). We choose the locations of the start
x0 and the goal xG randomly. The terminal cost is:

gN (xN ) =

{
0 (if xN = xG)
1 (Otherwise),

while the stage cost is proportional to the path length of each
step:

gk(xk, uk) = α uk ,

where α is a constant. This constant must be set to a very
small value in order to avoid a trivial solution that stays at
the start at the all time steps. We use α = 10−5.

An illustrative example of the path planning problem is
shown in Figure 2(a). The lines shown in the figure are the
nominal paths with different risk bounds Δ, while the black
blocks represent infeasible state regions. Here, a nominal
path means a state sequence x0, . . . , xN that is obtained
by applying the resulting control policy μλ to the system
without disturbances. When a 10% risk of failure is allowed,
the nominal path goes through a narrow gap between the
obstacles in order to minimize the path length. With 1% and
0.1% risk bounds, the nominal paths go through a wider
gap in order to avoid excessive risk. When the risk bound is
0.01%, an even longer nominal path is chosen.



(a) (b)

Fig. 2. Application of the proposed chance-constrained dynamic program-
ming algorithm to path planning problems with 50 time steps.

Next, we run the proposed algorithm in a state space
with five randomly placed rectangular obstacles. Figure 2(b)
shows an example of the state space as well as the resulting
nominal paths. The simulation is run 100 times with three
different risk bounds. The means and the standard deviations
of the cost function values and the computation times are
shown in Table I. The change in cost between different Δ is
relatively small because the stage cost (i.e., path length) is
significantly smaller than the terminal cost (i.e., penalty of
failure to reach the goal at the final time step), due to the
very small value of α.

TABLE I
THE AVERAGES AND THE STANDARD DEVIATIONS OF THE COSTS AND

COMPUTATION TIMES FOR DIFFERENT RISK BOUNDS. FOR EACH CASES,
100 SIMULATIONS ARE CONDUCTED WITH RANDOM LOCATION OF

OBSTACLES.

Risk bound Cost
Length of

nominal path
Computation

time [sec]
Δ = 1% 0.88551± 0.0176 82.58± 25.10 17.2± 5.4
Δ = 0.1% 0.88555± 0.0175 86.74± 27.94 14.9± 4.6
Δ = 0.01% 0.88556± 0.0175 87.21± 28.11 12.2± 4.7

B. Mars EDL Scenario

We next demonstrate the proposed algorithm on the Mars
EDL scenario shown in Figure 1. We employ the same
dynamics model as [2], except that we assume stochastic
disturbance at all time steps while [2] assumed set bounded
disturbance at the PDG and HDA stages. At the kth stage,
xk represents the projected landing location without further
control, as shown as the dashed lines in Figure 1. By applying
a control at the kth stage, the lander can correct the projected
landing location to uk, which must be within an ellipsoid
centered around xk. At the end of the kth control stage,
the projected landing location xk+1 deviates from uk due
to a disturbance wk, which is assumed to have a Gaussian
distribution. x3 is the final landing location. This EDL model
is described as follows:

xk+1 = uk + wk

(uk xk)
TDk(uk xk) ≥ d2k, wk ←O (0,Σk),

where Dk and Σk are positive definite matrices, and dk is a
scalar constant. In this simulation, Dk is set to be the 2-D
identity matrix, and dk is set as follows:

d0 = 3000 m, d1 = 20 m, d2 = 6 m.

We assume that the covariance matrix Σk is a diagonal matrix
with all diagonal elements being σ2

k, where σk is a standard
deviation. The 3-σ of each stage is:

3σ0 = 500 m, 3σ1 = 10 m, 3σ2 = 2 m.

The state space ∪ is a 2 km-by-2 km square, which is
discretized at a one meter resolution. As a result, the problem
has four million states at each time step. The control and the
disturbance are also discretized at the same resolution. The
infeasible areas are specified using the data of HiRISE (High
Resolution Imaging Science Experiment) camera on the Mars
Reconnaissance Orbiter. We use the real landscape of a site
named “East Margaritifer” on Mars.

Figure 4(a) shows the Lagrangian of the terminal stage,
Lλ
3 . The blue flat areas are infeasible areas for landing due

to either steep slope or existence of obstacles, such as rocks.
We only consider the terminal cost gN (xN ), which is equal
to the minimum distance to travel in order to visit a specified
number of science targets starting from the landing site. The
method to obtain the minimum driving distance is described
in detail in [2]. We place nine science targets, represented
by squares in Figure 4(a) and labeled as A, B, ... I.

Figure 3(a) shows the dual objective function q(λ) for a
case with a 1% risk bound. The function is concave and
achieves the maximum at λ = 725.2. The probability of
failure, rλ0 (x0), is 0.990% and is within the risk bound. The
expected cost is hλ = 637.81 m. Using Theorem 2-2, the
suboptimality bound on the expected cost is εp = 7.25±10−2

m. The optimal EDL target u0 is shown in Figure 4(b) as well
as a circle representing the three sigma of the disturbance w0.
The optimal EDL target is near the science target D.

With a smaller risk bound, Δ = 0.1%, the optimal EDL
target moves to a location near the science target E, as shown
in Figure 4(c). This is because, although the cost is relatively
higher around the science target E than D, there are fewer
obstacles in its proximity, and hence involves smaller risk
of landing failure. As a result, the expected cost increases
to hλ = 644.82 m, with a suboptimality bound of εp =
6.73±10−1 m. With an even smaller risk bound, Δ = 0.01%,
the optimal EDL target location changes only slightly, as
shown in Figure 4(c). The expected cost is hλ = 645.54 m,
and the suboptimality bound is εp = 5.46± 10−3 m.

An interesting thing to note is that, when the risk bound
is Δ = 0.1%, the resulting probability of failure with the
optimal policy is rλ0 (x0) = 0.0160%, which is significantly
smaller than the given risk bound. This large gap between Δ
and rλ0 (x0) is explained in Figure 3(b), which plots rλ0 (x0)
against λ. Note that the function is discontinuous at around
λ = 800, which corresponds to a non-differentiable point of
the dual objective function, shown in Figure 3(a). Since there
is no λ that achieves rλ0 (x0) = 0.1%, the algorithm chooses



(a) Dual objective q(λ), Δ = 1% (b) Risk-to-go function rλ0 (x0)

Fig. 3. (a) The dual objective function p(λ) with Δ = 0.01. Note that the
function is concave, as predicted by the theory. The dual solution obtained by
the proposed algorithm is λ = 725.16. (b) The risk-to-go function rλ0 (x0).
Note the discontinuous feature of the plot. This is because, although the dual
objective p(λ) is continuous, it is not differentiable at countable number of
points. The plot is generated by solving the primal problem with different
values of λ with a uniform interval of 10.

λ that is slightly right of the discontinuous point in order to
satisfy the chance constraint. Such a discontinuous change
in rλ0 (x0) occurs due to a “jump” of the optimal EDL target
from D to E, as shown in Figures 4(b) and 4(c). On the other
hand, rλ0 (x0) is nearly continuous when it crosses 0.01 and
0.0001. As a result, the probabilities of failure for Δ = 1%
and 0.01% are rλ0 (x0) = 0.990% and 0.0094%, respectively,
which are relatively close to the risk bounds.

The exponential convergence of the dual optimization
(Lines 10-20 in Algorithm 1) is demonstrated in the semi-log
plots in Figure 5. Note that a straight line in a semi-log plot
represents an exponential relationship. In this simulation, we
set the risk bound Δ = 0.1% and the convergence tolerance
εd = 10−3. Figure 5(a) plots the dual suboptimality bound,
which corresponds to the left hand side of (13), against
the number of dual iterations (i.e., the number of times
Problem 4 is solved). The algorithm terminates when the
dual suboptimality bound goes below εd. Figure 5(b) plots
the width of the search interval of the zero-finding method,
λ λ. It is shown in the plots that both the suboptimality
bound and the search interval decrease exponentially and
converges with 23 iterations in this case.

In order to evaluate the computation time and the number
of iterations, we run the algorithm 40 times with randomly
located science targets. We set Δ = 0.1% and εd = 10−3.
The average and the standard deviation of the computation
time are 188.1⊆76.1 seconds, while those of the number of
iterations are 16.1⊆ 5.8.

C. Suboptimality bound

Finally, we empirically validate Theorem 2. We consider a
variant of the Mars EDL scenario, where only one time step
(EDL targeting) is considered. With this simplified problem
setting, the exact optimal solution can be found by a brute-
force approach (i.e., finding the best μ0 among four million
options). We compare the approximate primal objective value
hλ, obtained from the proposed chance-constrained DP, with
the optimal primal objective value h�, obtained from the
brute-force approach. The simulation is run 100 times with
randomized location of science targets and a risk bound
Δ = 0.1%. Figure 6 plots the resulting suboptimality,

(a) Jλ
N (xN );Δ = 1%, λ = 725.2 (b) J

′λ
0 (u0);Δ = 1%, λ = 725.2

(c) J
′λ
N (u0);Δ = 0.1%, λ = 801.0 (d) J

′λ
N (u0);Δ = 0.01%, λ = 910.5

Fig. 4. (a) The Lagrangian function Jλ
N = Lλ

N (xN ) at the final stage
with the dual solution λ = 725.2. The blue flat areas are the infeasible
regions (i.e., obstacles), penalized with a cost λ. The Lagrangian values
at the feasible locations represent the required distance to traverse after
landing. Squares are science targets, to which the rover must drive after
landing. (b)-(d) Expected cost at the initial stage as a function of u0,
J

′λ
0 (u0) := E{Jλ

1 (f(x0, u0, w0))}, with Δ = 1%, 0.1%, and 0.01%,
respectively. The red ×-mark is the optimal EDL target u0, while the red
circle represents 3σ of the disturbance in the first stage wo. The dual
solution λ is shown above each figure. The dimension of the map is 2000
x 2000 meters, which is discretized at a 1-meter resolution.

(a) (λ− λ){rλ0 −Δ} (b) λ− λ

Fig. 5. Exponential convergence of the dual optimization. (a) The dual
error bound, (λ − λ){rλ0 (x0) − Δ}, which gives an upper bound on the
error in the dual objective value (Theorem 2). The stopping condition (13)
requires that the dual error is below εd. (b) The width of the search interval
[λ λ], in which the dual optimal solution λ� is guaranteed to exist. Note
that the plots are in a semi-log scale.

hλ h�, against the suboptimality bound given by Theorem
2, εp = λ}rλ0 (x0) Δ| . In all the 100 runs, the error
is less than the error bound. Furthermore, in 24 runs, the
suboptimality is exactly zero, meaning that the solution of
the proposed algorithm is the exact optimal solution.

VI. CONCLUSION

This paper presented a novel chance-constrained dynamic
programming algorithm, which outputs a control policy that
minimizes the expected cost while guaranteeing that the
probability of constraint violation is within a user-specified
risk bound. Through the careful reformulation of the problem
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Fig. 6. Suboptimality of the primal objective value, as well as the
primal suboptimality bounds, of 100 solutions of the simplified Mars EDL
scenario with randomly placed scientific targets. The vertical axis of the plot
represents the observed suboptimality, hλ − h⋆, while the horizontal axis
represents the primal suboptimality bound, ϵp. Theorem 2-2 is empirically
validated by the fact that all samples are below the 45◦ line, shown in the
dotted line.

using the dual optimization, the original problem is converted
to a combination of a standard DP and a root-finding
problem that is solved iteratively. Although the obtained
solution is suboptimal in nature, the suboptimality bound
is explicitly characterized and is shown to be very small
when the acceptable probability of failure is set to be small.
Applications to Mars EDL analysis and path planning are
shown in simulation, together with the numerical verification
of the presented theories.
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