
Model-Based Verification and Validation of Spacecraft
Avionics

M. Omair Khan1 and Michael Sievers2
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109-8099, USA

Shaun Standley3
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109-8099, USA

Verification and Validation (V&V) at JPL is traditionally performed on flight or flight-
like hardware running flight software. For some time, the complexity of avionics has
increased exponentially while the time allocated for system integration and associated V&V
testing has remained fixed. There is an increasing need to perform comprehensive system
level V&V using modeling and simulation, and to use scarce hardware testing time to
validate models; the norm for thermal and structural V&V for some time. Our approach
extends model-based V&V to electronics and software through functional and structural
models implemented in SysML. We develop component models of electronics and software
that are validated by comparison with test results from actual equipment. The models are
then simulated enabling a more complete set of test cases than possible on flight hardware.
SysML simulations provide access and control of internal nodes that may not be available in
physical systems. This is particularly helpful in testing fault protection behaviors when
injecting faults is either not possible or potentially damaging to the hardware. We can also
model both hardware and software behaviors in SysML, which allows us to simulate
hardware and software interactions. With an integrated model and simulation capability we
can evaluate the hardware and software interactions and identify problems sooner. The
primary missing piece is validating SysML model correctness against hardware; this
experiment demonstrated such an approach is possible.

We implemented a SysML model and simulation of a typical command processing
infrastructure and avionics hardware. Test cases were then run using the simulation and the
test results compared to those obtained from identical tests run on a hardware testbed. The
simulation produced test results that precisely matched those of the avionics hardware
demonstrating the future potential of this approach

Nomenclature
SysML = Systems Modeling Language
REU = Remote Engineering Unit
MOS = Mission Operations System
GDS = Groud Data System
S/C = Spacecraft
FSW = Flight Software
FPGA = Field-Programmable Gate Array

1 Systems Engineer, System Verification and Validation Group, MS179-260, Member.
2 Systems Engineer, Advanced Computer Systems and Technologies Group, MS156-142, Sr. Member.
3 Technical Group Supervisor, System Verification and Validation Group, MS179-260, Member.

American Institute of Aeronautics and Astronautics

1

I. Introduction
erification and Validation (V&V) at JPL is traditionally performed on flight or flight-like hardware running
flight software. For some time, the complexity of avionics has increased exponentially while the time allocated

for system integration and associated V&V testing has remained fixed. There is an increasing need to perform
comprehensive system level V&V using modeling and simulation, and to use scarce hardware testing time to
validate models; the norm for thermal and structural V&V for some time.

A. V&V background, need, and the Avionics complexity problem
Space project systems consisting of ground stations, ground networks, spacecraft, and possibly probes and rovers

deployed to the surface of other planets, have for some time been been out pacing our ability to perform
comprehensive verification and validation on the as-built hardware and software. Increased complexity, increased
on-board autonomy, increased test risk, and increased use of spacecraft capabilities beyond the uses envisaged in the
baseline mission plan have all contributed to a need for more verification and validation (V&V). The increased
complexity is largely due to exponentially more capable on-board processors, more capable science instrumentation
demanding higher data rates, and an ever present desire to manage and recover from the inevitable on-board faults
that occur during deep-space missions. Spacecraft avionics have evolved from the simple sequencers used in early
flights to highly complex, multi-processor configurations that can autonomously reconfigure themselves to work
around faults and process huge volumes of data in real-time. We use the term “avionics” to refer to the electronics
and flight software that form the brains and nervous system of a spacecraft.

Flight software in a modern avionics subsystem can be hundreds of thousands to a million lines of code

organized in a multi-tier hierarchy across multiple processors and memories. Large missions can employ dozens to
hundreds of progammers. Additionally, avionics hardware may consist of multiple, loosely interacting processors,
hundreds of sensors and actuators, and multiple science instruments. Moreover, spacecraft systems are designed
with redundant components that are reconfigured during the mission life as permanent failures occur or as mission
modes change.

Testing all permutations of electronics configuration and software operation for all modes, states, hierarchies,

configuations, and behaviors is impossible. Even knowing what state the spacecraft is in at any point in time is not
possible and mechanisms that attempt to revert to a “known” state cannot assure that all state variables are returned
to a known value. Given this situation, the job of verification (e.g. was the system built according to specification?)
and validation (e.g. does the as-built system meet the driving need of the mission?) is a daunting challenge.

Models already have a critical role in primary V&V; thermal and structural models that have been validated

against hardware tests have been the venue for comprehensive verification for decades. Software simulators are
used for verification of algorithms, operations processes, and for dry runs of test procedures before hardware testing.
Unfortunately, some desired avionics tests cannot be performed on physical systems at all because requisite internal
nodes are unreachable . In particular, fault injection tests are highly limited which means that system behaviors
during and after faults under various operational modes cannot be tested at all on flight hardware. To keep up with
the demand for V&V we must continue to integrate the use of validated models and testbeds to achieve more
complete coverage of the system capabilities. The desired, though probably idealistic, end state is that the only
Flight Model tests that will need to be performed are tests of fundamental workmanship (phasing, environments,
etc.), end-to-end tests between interfacing systems (Deep Space Network compatibility, etc), and tests whose
purpose is to validate the models and simulations used for primary V&V.

Our interest is in the development of simple simulations of project-level processes such as maneuvers, science

passes, deployment and mobility operations, and other complex flight-to-ground interactions in nominal and fault
cases that can validate project and system level requirements and validate system design before committing to
hardware. Generally, having the system expressed formally as a static model makes the necessary V&V easier to
identify early in the design process. The modeling semantic itself prevents many inconsistencies and errors in test
design. Interfaces and behaviors are clearly and unambiguously expressed in a consistent way, making errors more
obvious when they occur, and the possibility of generating simulations directly from models, essentially making the
models ‘executable’, contributes to validating such a system model.

V

American Institute of Aeronautics and Astronautics

2

We explored the utility of Systems Modeling Language (SysML) and related tools for modeling, and for directly
generating simulations by modeling and simulating avionics hardware and software. Verification tests were run on a
hardware testbed, identical tests run on the simulation, and the results compared. The hardware model was validated
by the corresponding hardware tests.

The approach described in this paper addresses many of the complexity issues by creating computer models of

the system that are validated at each step of design decomposition. Our concept reduces the likelihood that design
errors are detected late because validation is performed concurrent with design. Moreover planning V&V
concurrent with design aids in defining an efficient set of V&V activities. Using computer models in design is not
new, what we add is the concept of validating these models early in the lifecycle before hardware is available,
making that validation part of the V&V process, and using validated models to replace testing on the physical
system.

B. SysML Summary
Our V&V approach is based on the System Modeling Language (SysML) which is an extension of the Unified

Modeling Language (UML) used for developing software. Like UML, SysML is a language constructed from a
formally defined semantics that includes representations of elements, requirements, behaviors, test cases,
parametrics and the relationships that link these. Because SysML has a formal semantics, models built within
SysML have unambiguous meaning which leads to better communication among system designers. But the central
point of SysML is that the formal semantics enables descriptions that are used for automated reasoning and analyses.
Contrast this with a typical block diagram that uses arbitrary color codes and line styles to represent a system. In
this latter situation, it might not be clear whether a line connecting two objects is data, control, an arbitrary
association, generalization, specialization, or something else.

In brief, a model built using SysML comprises elements and associations. Elements are objects, e.g., classes,
systems, subsystems, and other parts while associations are the relationships that connect elements. Elements
consist of a number of items that reflect the type of entity and scope the associations that may be attached. Elements
may represent physical system components (e.g., electronics and mechanical structures), software elements, or any
combination. There are a number of defined associations that may be applied between entities such as data and
control flows, inheritance, containment, and allocation. Not all associations may be applied to all elements and
associations may be assigned features that enable simple rule checking. SysML semantics also allows for
extensions of the language that also must follow rigorous definitions. For example, there are semantic
specializations of elements defined for real-time computer systems.

It is important that the semantics of SysML are distinguished from tools provided by a number of vendors. The
tools support design and analyses of models described in SysML. While the form and function of these tools may
vary from vendor to vendor, the underlying SysML is invariant. Consequently, although we have implemented our
V&V methodology with one tool, our approach is not tool specific.

II. Experiment Description
Our approach extends model-based V&V to electronics and software through functional and structural models

implemented in SysML. We develop component models of electronics and software that are validated by
comparison with test results which are then simulated enabling a more complete set of test cases than possible on
flight hardware.

A Remote Engineering Unit (REU) was chosen as the device to simulate, based on the available testbed

resources, existing test data, and the complexity of the assembly we would be able to model given the overall scope
of the task. The REU was integrated with an existing avionics testbed. Existing REU functional and performance
test cases were run to provide data suitable for validating similar runs on the model.

For our work we implemented a simple system architecture comprising models of ground command and
telemetry, spacecraft telecommunications, spacecraft command and data handling, 1553 bus, and a remote
engineering unit (REU) which is responsible for collecting analog and digital data from multiple sources on a
spacecraft. We modeled the REU in considerable detail and validated the model by comparing model test results

American Institute of Aeronautics and Astronautics

3

with bench test results received from a physical REU. The model consist of the two primary elements: Mission
Operations/Ground Data System (MOS/GDS) and the Spacecraft (S/C) System as shown in Figure 1.

Figure 1. Primary Elements of Simulation Model.

Figure 2 looks inside the S/C System and Figure 3 shows the Command and Data Handling (CDH) components.

Our focus is on the REU which is shown connected to a 1553 Bus Controller. The REU receives commands
generated in software (which is allocated to the CDH processor) and returns its status or the value of data sampled.
There are also a number of memory locations within the REU that are used for control. The values placed into those
memory locations are also sent on the 1553 bus.

Figure 2: Spacecraft System

Figure 3: The Command and Data Handling System Internal Diagram

Figure 4 shows that the REU consists of a watchdog timer, FPGA, EEPROM and SDRAM. The FPGA

manages inputs and outputs to a number of subaddresses (SA), implements the 1553 remote terminal (RT), and a
telemetry controller. The notation in Figure 4 indicates composition and not data flow. The numbers attached to the
arrows in the composition associations indicate multiplicity. We do not attempt to show the internal structure of the
REU due to the large number of interconnects. However, the tool used for this work provides an instantiation
feature that makes all of the associations automatically and in a way that allows our simulation access to all internal
elements.

American Institute of Aeronautics and Astronautics

4

Figure 4: Composition of the REU

III. SysML Model
We can model both hardware and software behaviors in SysML, which allows us to simulate hardware and

software interactions. With an integrated model and simulation capability we can evaluate system interactions and
identify problems sooner. The model was created using commercial software, which implements SysML semantics,
and simulated using a simulation tool plugin, which executes the logic in the model.

A. General Structure
 The hardware devices and software artifacts were modeled using SysML’s structural semantics (e.g. block
definition and internal block diagrams as shown in Figures 1 - 4). The machine logic and software processes were
modeled using SysML behavior semantics (e.g. activity and state machine diagrams). Combining these two
paradigms, a spacecraft command and data handling system model was created that captured the devices/software
involved and their respective behavioral logic, as shown in Figures 5 – 7. Interweaving simulation capabilities into
the model allows for various scenario metrics (e.g. REU subaddress channel bit values) to be stored and moved
among block structures according to the logic pathways dictated by the system’s behavior relationships. In this
manner, we were able to create an event-driven simulation of the command and data handling system model.

American Institute of Aeronautics and Astronautics

5

Figure 5: Telecom/Avionics to Flight Software interface behavior

Figure 6: Flight Software to Bus Controller interface behavior

American Institute of Aeronautics and Astronautics

6

Figure 7: Bus Controller to REU interface behavior

B. Simulation Basics
 An example of this modeling/simulation process is shown in Figures 8 – 10. Figure 8 represents a simple system
consisting of two blocks, which represent two interacting devices within a system. Value properties on the blocks
represent device metrics of interest. Figure 9 shows the system’s internal block diagram that represents the
communication paths between the two devices, as well as the overlaid activity diagrams that dictate each device’s
behavior. Figures 8 and 9 represent the full structural and behavioral description of the system. Figure 10 shows that
by adding simple coding logic (as dictated by the simulation engine) to the actions in the activity diagram we can
move data between the two devices. Data flow that is simulated between the two blocks represents metrics captured
by the value properties on the blocks. In this way we can move data between the devices during run time and store
instantaneous data values on the respective block’s value properties.

American Institute of Aeronautics and Astronautics

7

Figure 8: Simple system block definition diagram

Figure 9: Simple system internal block diagram and activity diagram

Figure 10: Javascript code example of an action

 A key advantage for using simulation techniques is that multiplicities are instantiated at run time. This allows for
expressing complex structure using simple multiplicities in the model diagram, yet these are fully navigable during
simulation execution. This feature was especially important for compact representation of the eight 1553
subaddresses of 32 channels each used in the REU (see Figure 4).

 Applying this basic modeling/simulation paradiam to a larger model like the spacecraft command and data
processing system model works more efficiently by introducing certain artifacts into the model. Adding a global

American Institute of Aeronautics and Astronautics

8

variables block greatly simplifies traversing the model tree during simulation runs. Storing the randomized runtime
pointer addresses in the address block at the start of the simulation enables quickly jumping to key areas in the
model tree rather than traversing from the top block in the model each time.

C. Command and Data Handling System Simulation
 Using the aforementioned model simulation basics and increased efficiency techniques, the spacecraft
communications and data handling model consisted of the system model (as shown in Figures 1 – 4) and simulation
code placed within activity and state machine nodes to mimic system functionality. The simulation was then tested
with various input commands to determine the validity of the model. The accuracy of the model was compared to
actual device runs with the same input commands.

 The behavior diagrams shown in Figures 5 – 7 hinge on the concept of sending, receiving, and unraveling signals
encoded by a bit pattern. The bit pattern will instruct what actions, whether nominal or fault, the flight software and
REU can take. This functionality was guided in the model by the logic relationships in the behavior diagrams and
the simulation code embedded within the behavior nodes (as shown in Figure 10). All representative bits in the
simulated system were simulated as strings due to the relative ease with which strings can be concatenated and
parsed using simple javascript commands. These three elements were key to allowing manipulation of input
commands in a manner similar to how they would be treated by the spacecraft avionics.

 In order to send signals from a simulated MOS/GDS, a command and telemetry dictionary was referenced to act
as a repository and translator for the various commands that the spacecraft is programmed to understand. The
simulation allows the user to input a series of commands that he or she would like to put through the command and
data handling model. The basic input commands are correlated with the command and telemetry dictionary to create
a full CCSDS command sequence that includes necessary CCSDS overhead formatting as well as the embedded
spacecraft command codeblocks. The simulated MOS/GDS aspect of the model was incorporated purely as
simulation code, so there is no corresponding behavior diagram to indicate the overall operation flow.

 Upon command generation and transfer by MOS/GDS, the simulation will mimic command reception and error
detection, which are behaviors of the telecom and avionics subsystems of a S/C. For the limited scope of the
simulation, command reception by the telecom subsystem was simulated as a simple pass through between the
MOS/GDS transmitters and the S/C’s receiver blocks. More time and effort was dedicated to the error detection
aspect of command reception, which is traditionally controlled by a FPGA. This consisted of checking the CCSDS
formatting on the input command message and identifying the type of S/C command being sent. All logic used in
simulating ths functionality was based on existing hardware documentation. The overall functional logic for these
processes is shown in Figure 5.

 After initial error checking, the command is passed to FSW for further decomposition and processing. These
processes consist of unraveling the command message based on the structure of the CCSDS formatting to isolate the
embedded command codeblocks. These S/C commands are then placed on sequence engines and executed according
to the type of command and information contained within it. These processes were simulated by parsing the
command message in chunks (to mimic FSW algorithms) until the codeblock was isolated. This process was greatly
facilitated by simulating the command message as a string because this simply meant utilizing string parsing and
concatenation operations in various layers of complexity. The overall functional logic for these processes is shown
in Figure 6.

 Upon execution by the FSW sequence engine, the S/C commands are translated into their corresponding 1553
commands and sent to the REU for processing. The translation from S/C command to 1553 codeblock was done via
simulation code, which used the same command and telemetry dictionary that was used in manufacturing CCSDS
commands by the MOS/GDS behavior. These commands are then sent to the 1553 bus controller, which stacks these
commands on its queue. At a simulated rate of 8 Hz, the bus controller executed each of its 1553 commands by
broadcasting them to all avionics hardware devices. In turn, each device listens to the command, but only reacts if
the command is meant for it. This process of events was simulated by string parsing and comparison to set values,
such as those representing the device’s identification number.

 The REU reacts to properly formatted 1553 commands either by updating or reporting its internal register values
based on command instructions. How it reacted to various commands is based purely on the hardware logic, which

American Institute of Aeronautics and Astronautics

9

is pre-defined for the existing REU device. This aspect of simulating the hardware logic proved to be the most
difficult aspect of the simulation as it was widely varying and many times resulted in cascading functionality on
other hardware devices. This may seem trivial when testing the actual device, but proved to be quite complex when
trying to simulate the variety of logical paths. We greatly limited our scope by only engaging REU-centric
commands, but if multiple hardware devices (e.g memory card) were present it would present an opportunity to
incorporate more complex logical operations. REU logic was incorporated into the simulation by changing block
value properties that corresponded to subaddress channel values. Each combination of these values would indicate
an aspect of the avionics system’s current state of operations. Hardware logic was incorporated purely as simulation
code. The overall functional logic for FSW, bus controller, and REU interactions is shown in Figure 6 and 7.

 Throughout the S/C command and data handling system processes, timing is a very critical aspect that must be
handle carefully and accurately. The most time critical processes in the simulation were the FSW sequence engine
exection and 1553 bus controller messaging. The FSW sequence engine behavior was important because CCSDS
commands come with a time tag that indicates when the command shall be executed. Generally the command is
required to be processed within a few milliseconds of its indicated execution time or else the system will generate a
fault. On the other hand, the 1553 bus controller must send messages at a fixed millisecond-scale time step. If these
conditions are not met, the avionics system is left idle and the FSW would likely initiate a system reset. To account
for the timer aspect of these processes, we incorporated a simulation clock that was only progressed after certain
events. In this manner, the simulation would essentially “freeze” time to carry our concurrent operations and only
step the clock once these operations were complete. The clock steps wre mainly dominated by the 8 Hz messaging
rate of the bus controller.

 Aside from nominal operations of the simulated hardware and software, an equally important aspect of the
simulation was in the off-nominal operations. A lot of the fault mitigation aspects of command reception and REU
hardware logic were accounted for in the static behavior diagrams, but were not enacted with simulation code. This
serves as a very important avenue for future exporation because it would serve as a key method for virtual testing of
all the avionic system’s logical pathways, some of which would be damaging if run on the actual hardware. The
ideal simulation would be to have a system that has the capability to inject faults into the nominal behavior based on
probabilistic or user-based triggers, which opens up the possibility of running Monte-Carlo simulation on the model
with varied input command and fault conditions.

IV. Conclusion
 This work showed that it is possible to model avionics boxes and software in SysML, derive simulations directly

from the models, and validate the simulations against hardware test results. Test cases were run using the simulation,
and the test results compared to those obtained from identical tests run on a hardware testbed. The simulation
produced test results that precisely matched those of the avionics hardware.

We deliberatly began simulation work at a low level of assembly to constrain the scope of this activity, and

found perhaps unsurprisingly that simulating complex hardware logic at this level is difficult in SysML. Doing this
in more detail would require a much more dedicated modeling effort, as well as a multi-thread capable simulation
engine. Our SysML simulation work so far is best suited for modeling mission scenario sequence and system
interactions, whereas more focused simulation software or scripts should be used to handle repetitive proceses that
occur on time scales less than one milliseconds. In future efforts we will use SysML model simulation at a S/C
subsystem level, and pass inputs to more capable box and card-level simulators to mimic device functionality.

We found that most of the value-added was gained by modeling at the systems level; the tools we used were not

well suited to modeling lower level electronics. Ideally, we would like to use a more capable simulation engine that
can handle fine-granularity behaviors; these tools exist, but were not integrated for this work. Despite these
limitations, the concept of adding simulation to a model is sound and useful. Ideally we strive to have a library of
behaviors that match a library of hardware and software components that can be selected and re-used. Elements of
such a library would only require validation once, and the library would be usable in multiple projects.

American Institute of Aeronautics and Astronautics

10

Acknowledgments
The work described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of

Technology, under a contract with the National Aeronautics and Space Administration. The authors would like to
thank Melody Safavizadeh for her advice on the REU’s detailed functionality and testbed setup.

References

Marcos V. Linhares, Rˆomulo S. de Oliveira, Jean-Marie Farines, Introducing the Modeling and Verification
process in SysML, IEEE Conference on Emerging Technologies and Factory Automation, 2007. ETFA.

David P. Gluch, et. al., Mode-Based Verification: An Engineering Practice, Technical Report CMU/SEI-2002-TR-
021, Carnegie-Mellon University, Pittsburgh, PA., 2002

Gregor Engels, Jochen M. Küster, Reiko Heckel, Marc Lohmann, Model-Based Verification and Validation of
Properties, Electronic Notes in Theoretical Computer Science 82 No. 7 (2003)

Paul Baker, et. al., The UML 2.0 Testing Profile, http://folk.uio.no/oysteinh/CONQUEST-FINAL.pdf

Paul Baker, et. al., Model-Driven Testing: Using the UML Testing Profile, Springer, ISBN 978-3540725626,
2007

American Institute of Aeronautics and Astronautics

11

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4416742

	Model-Based Verification and Validation of Spacecraft Avionics
	Nomenclature
	I. Introduction
	A. V&V background, need, and the Avionics complexity problem
	B. SysML Summary

	II. Experiment Description
	III. SysML Model
	A. General Structure
	B. Simulation Basics
	C. Command and Data Handling System Simulation

	IV. Conclusion
	Acknowledgments
	References

