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Verification and Validation (V&V) at JPL is traditionally performed on flight or flight-
like hardware running flight software.  For some time, the complexity of avionics has 
increased exponentially while the time allocated for system integration and associated V&V 
testing has remained fixed.  There is an increasing need to perform comprehensive system 
level V&V using modeling and simulation, and to use scarce hardware testing time to 
validate models; the norm for thermal and structural V&V for some time.  Our approach 
extends model-based V&V  to electronics and software through functional and structural 
models implemented in SysML. We develop component models of electronics and software 
that are validated by comparison with test results from actual equipment.  The models are 
then simulated enabling a more complete set of test cases than possible on flight hardware.  
SysML simulations provide access and control of internal nodes that may not be available in 
physical systems.  This is particularly helpful in testing fault protection behaviors when 
injecting faults is either not possible or potentially damaging to the hardware.  We can also 
model both hardware and software behaviors in SysML, which allows us to simulate 
hardware and software interactions.  With an integrated model and simulation capability we 
can evaluate the hardware and software interactions and identify problems sooner. The 
primary missing piece is validating SysML model correctness against hardware; this 
experiment demonstrated such an approach is possible.  

We implemented a SysML model and simulation of a typical command processing 
infrastructure and avionics hardware.  Test cases were then run using the simulation and the 
test results compared to those obtained from identical tests run on a hardware testbed.  The 
simulation produced test results that precisely matched those of the avionics hardware 
demonstrating the future potential of this approach 

Nomenclature 
SysML = Systems Modeling Language 
REU = Remote Engineering Unit 
MOS = Mission Operations System 
GDS = Groud Data System 
S/C = Spacecraft 
FSW = Flight Software 
FPGA = Field-Programmable Gate Array 
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I. Introduction 
erification and Validation (V&V) at JPL is traditionally performed on flight or flight-like hardware running 
flight software.  For some time, the complexity of avionics has increased exponentially while the time allocated 

for system integration and associated V&V testing has remained fixed.  There is an increasing need to perform 
comprehensive system level V&V using modeling and simulation, and to use scarce hardware testing time to 
validate models; the norm for thermal and structural V&V for some time. 

A. V&V background, need, and the Avionics complexity problem 
Space project systems consisting of ground stations, ground networks, spacecraft, and possibly probes and rovers 

deployed to the surface of other planets, have for some time been been out pacing our ability to perform 
comprehensive verification and validation on the as-built hardware and software. Increased complexity, increased 
on-board autonomy, increased test risk, and increased use of spacecraft capabilities beyond the uses envisaged in the 
baseline mission plan have all contributed to a need for more verification and validation (V&V). The increased 
complexity is largely due to exponentially more capable on-board processors, more capable science instrumentation 
demanding higher data rates, and an ever present desire to manage and recover from the inevitable on-board faults 
that occur during deep-space missions. Spacecraft avionics have evolved from the simple sequencers used in early 
flights to highly complex, multi-processor configurations that can autonomously reconfigure themselves to work 
around faults and process huge volumes of data in real-time.  We use the term “avionics” to refer to the electronics 
and flight software that form the brains and nervous system of a spacecraft. 

 
Flight software in a modern avionics subsystem can be hundreds of thousands to a million lines of code 

organized in a multi-tier hierarchy across multiple processors and memories.  Large missions can employ dozens to 
hundreds of progammers.  Additionally, avionics hardware may consist of multiple, loosely interacting processors, 
hundreds of sensors and actuators, and multiple science instruments.  Moreover, spacecraft systems are designed 
with redundant components that are reconfigured during the mission life as permanent failures occur or as mission 
modes change. 

 
Testing all permutations of electronics configuration and software operation for all modes, states, hierarchies, 

configuations, and behaviors is impossible.  Even knowing what state the spacecraft is in at any point in time is not 
possible and mechanisms that attempt to revert to a “known” state cannot assure that all state variables are returned 
to a known value.   Given this situation, the job of verification (e.g. was the system built according to specification?) 
and validation (e.g. does the as-built system meet the driving need of the mission?) is a daunting challenge. 

 
Models already have a critical role in primary V&V; thermal and structural models that have been validated 

against hardware tests have been the venue for comprehensive verification for decades.  Software simulators are 
used for verification of algorithms, operations processes, and for dry runs of test procedures before hardware testing.  
Unfortunately, some desired avionics tests cannot be performed on physical systems at all because requisite internal 
nodes are unreachable .  In particular, fault injection tests are highly limited which means that system behaviors 
during and after faults under various operational modes cannot be tested at all on flight hardware. To keep up with 
the demand for V&V we must continue to integrate the use of validated models and testbeds to achieve more 
complete coverage of the system capabilities.  The desired, though probably idealistic, end state is that the only 
Flight Model tests that will need to be performed are tests of fundamental workmanship (phasing, environments, 
etc.), end-to-end tests between interfacing systems (Deep Space Network compatibility, etc), and tests whose 
purpose is to validate the models and simulations used for primary V&V. 

 
Our interest is in the development of simple simulations of project-level processes such as maneuvers, science 

passes, deployment and mobility operations, and other complex flight-to-ground interactions in nominal and fault 
cases that can validate project and system level requirements and validate system design before committing to 
hardware.  Generally, having the system expressed formally as a static model makes the necessary V&V easier to 
identify early in the design process. The modeling semantic itself prevents many inconsistencies and errors in test 
design. Interfaces and behaviors are clearly and unambiguously expressed in a consistent way, making errors more 
obvious when they occur, and the possibility of generating simulations directly from models, essentially making the 
models ‘executable’, contributes to validating such a system model. 
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We explored the utility of Systems Modeling Language (SysML) and related tools for modeling, and for directly 
generating simulations by modeling and simulating avionics hardware and software. Verification tests were run on a 
hardware testbed, identical tests run on the simulation, and the results compared. The hardware model was validated 
by the corresponding hardware tests. 

 
The approach described in this paper addresses many of the complexity issues by creating computer models of 

the system that are validated at each step of design decomposition.  Our concept reduces the likelihood that design 
errors are detected late because validation is performed concurrent with design.  Moreover planning V&V 
concurrent with design aids in defining an efficient set of V&V activities.  Using computer models in design is not 
new, what we add is the concept of validating these models early in the lifecycle before hardware is available, 
making that validation part of the V&V process, and using validated models to replace testing on the physical 
system.   

B. SysML Summary 
Our V&V approach is based on the System Modeling Language (SysML) which is an extension of the Unified 

Modeling Language (UML) used for developing software.  Like UML, SysML is a language constructed from a 
formally defined semantics that includes representations of elements, requirements, behaviors, test cases, 
parametrics and the relationships that link these.  Because SysML has a formal semantics, models built within 
SysML have unambiguous meaning which leads to better communication among system designers.  But the central 
point of SysML is that the formal semantics enables descriptions that are used for automated reasoning and analyses.   
Contrast this with a typical block diagram that uses arbitrary color codes and line styles to represent a system.  In 
this latter situation, it might not be clear whether a line connecting two objects is data, control, an arbitrary 
association, generalization, specialization, or something else.   
 

In brief, a model built using SysML comprises elements and associations.  Elements are objects, e.g., classes, 
systems, subsystems, and other parts while associations are the relationships that connect elements.  Elements 
consist of a number of items that reflect the type of entity and scope the associations that may be attached.  Elements 
may represent physical system components (e.g., electronics and mechanical structures), software elements, or any 
combination.  There are a number of defined associations that may be applied between entities such as data and 
control flows, inheritance, containment, and allocation.  Not all associations may be applied to all elements and 
associations may be assigned  features that enable simple rule checking.  SysML semantics also allows for 
extensions of the language that also must follow rigorous definitions.  For example, there are semantic 
specializations of elements defined for real-time computer systems. 
 

It is important that the semantics of SysML are distinguished from tools provided by a number of vendors.  The 
tools support design and analyses of models described in SysML.  While the form and function of these tools may 
vary from vendor to vendor, the underlying SysML is invariant.  Consequently, although we have implemented our 
V&V methodology with one tool, our approach is not tool specific. 

II. Experiment Description 
Our approach extends model-based V&V  to electronics and software through functional and structural models 

implemented in SysML. We develop component models of electronics and software that are validated by 
comparison with test results which are then simulated enabling a more complete set of test cases than possible on 
flight hardware. 

 
A Remote Engineering Unit (REU) was chosen as the device to simulate, based on the available testbed 

resources, existing test data, and the complexity of the assembly we would be able to model given the overall scope 
of the task. The REU was integrated with an existing avionics testbed. Existing REU functional and performance 
test cases were run to provide data suitable for validating similar runs on the model.  
 

For our work we implemented a simple system architecture comprising models of ground command and 
telemetry, spacecraft telecommunications, spacecraft command and data handling, 1553 bus, and a remote 
engineering unit (REU) which is responsible for collecting analog and digital data from multiple sources on a 
spacecraft.  We modeled the REU in considerable detail and validated the model by comparing model test results 
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with bench test results received from a physical REU.  The model consist of the two primary elements: Mission 
Operations/Ground Data System (MOS/GDS) and the Spacecraft (S/C) System as shown in Figure 1. 
 

 
Figure 1.  Primary Elements of Simulation Model. 

 
Figure 2 looks inside the S/C System and Figure 3 shows the Command and Data Handling (CDH) components.  

Our focus is on the REU which is shown connected to a 1553 Bus Controller.  The REU receives commands 
generated in software (which is allocated to the CDH processor) and returns its status or the value of data sampled.  
There are also a number of memory locations within the REU that are used for control.  The values placed into those 
memory locations are also sent on the 1553 bus. 

 

 
Figure 2: Spacecraft System 

 

 
Figure 3: The Command and Data Handling System Internal Diagram 

 
Figure 4 shows that the REU consists of a watchdog timer, FPGA, EEPROM and SDRAM.    The FPGA 

manages inputs and outputs to a number of subaddresses (SA), implements the 1553 remote terminal (RT), and a 
telemetry controller.  The notation in Figure 4 indicates composition and not data flow.  The numbers attached to the 
arrows in the composition associations indicate multiplicity.  We do not attempt to show the internal structure of the 
REU due to the large number of interconnects.  However, the tool used for this work provides an instantiation 
feature that makes all of the associations automatically and in a way that allows our simulation access to all internal 
elements. 
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Figure 4: Composition of the REU 

III. SysML Model 
We can model both hardware and software behaviors in SysML, which allows us to simulate hardware and 

software interactions.  With an integrated model and simulation capability we can evaluate system interactions and 
identify problems sooner. The model was created using commercial software, which implements SysML semantics, 
and simulated using a simulation tool plugin, which executes the logic in the model. 

 

A. General Structure 
 The hardware devices and software artifacts were modeled using SysML’s structural semantics (e.g. block 
definition and internal block diagrams as shown in Figures 1 - 4). The machine logic and software processes were 
modeled using SysML behavior semantics (e.g. activity and state machine diagrams). Combining these two 
paradigms, a spacecraft command and data handling system model was created that captured the devices/software 
involved and their respective behavioral logic, as shown in Figures 5 – 7. Interweaving simulation capabilities into 
the model allows for various scenario metrics (e.g. REU subaddress channel bit values) to be stored and moved 
among block structures according to the logic pathways dictated by the system’s behavior relationships. In this 
manner, we were able to create an event-driven simulation of the command and data handling system model. 
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Figure 5: Telecom/Avionics to Flight Software interface behavior 

 

 
Figure 6: Flight Software to Bus Controller interface behavior 
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Figure 7: Bus Controller to REU interface behavior 

 

B. Simulation Basics  
 An example of this modeling/simulation process is shown in Figures 8 – 10. Figure 8 represents a simple system 
consisting of two blocks, which represent two interacting devices within a system. Value properties on the blocks 
represent device metrics of interest. Figure 9 shows the system’s internal block diagram that represents the 
communication paths between the two devices, as well as the overlaid activity diagrams that dictate each device’s 
behavior. Figures 8 and 9 represent the full structural and behavioral description of the system. Figure 10 shows that 
by adding simple coding logic (as dictated by the simulation engine) to the actions in the activity diagram we can 
move data between the two devices. Data flow that is simulated between the two blocks represents metrics captured 
by the value properties on the blocks. In this way we can move data between the devices during run time and store 
instantaneous data values on the respective block’s value properties.  
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Figure 8: Simple system block definition diagram 

 

 
Figure 9: Simple system internal block diagram and activity diagram 

 

 
Figure 10: Javascript code example of an action 

 
 A key advantage for using simulation techniques is that multiplicities are instantiated at run time. This allows for 
expressing complex structure using simple multiplicities in the model diagram, yet these are fully navigable during 
simulation execution. This feature was especially important for compact representation of the eight 1553 
subaddresses  of 32 channels each used in the REU (see Figure 4).  
  
 Applying this basic modeling/simulation paradiam to a larger model like the spacecraft command and data 
processing system model works more efficiently by introducing certain artifacts into the model. Adding a global 
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variables block greatly simplifies traversing the model tree during simulation runs. Storing the randomized runtime 
pointer addresses in the address block at the start of the simulation enables quickly jumping to key areas in the 
model tree rather than traversing from the top block in the model each time. 

C. Command and Data Handling System Simulation 
 Using the aforementioned model simulation basics and increased efficiency techniques, the spacecraft 
communications and data handling model consisted of the system model (as shown in Figures 1 – 4) and simulation 
code placed within activity and state machine nodes to mimic system functionality. The simulation was then tested 
with various input commands to determine the validity of the model. The accuracy of the model was compared to 
actual device runs with the same input commands. 
  
 The behavior diagrams shown in Figures 5 – 7 hinge on the concept of sending, receiving, and unraveling signals  
encoded by a bit pattern. The bit pattern will instruct what actions, whether nominal or fault, the flight software and 
REU can take. This functionality was guided in the model by the logic relationships in the behavior diagrams and 
the simulation code embedded within the behavior nodes (as shown in Figure 10). All representative bits in the 
simulated system were simulated as strings due to the relative ease with which strings can be concatenated and 
parsed using simple javascript commands. These three elements were key to allowing manipulation of input 
commands in a manner similar to how they would be treated by the spacecraft avionics. 
  
 In order to send signals from a simulated MOS/GDS, a command and telemetry dictionary was referenced to act 
as a repository and translator for the various commands that the spacecraft is programmed to understand. The 
simulation allows the user to input a series of commands that he or she would like to put through the command and 
data handling model. The basic input commands are correlated with the command and telemetry dictionary to create 
a full CCSDS command sequence that includes necessary CCSDS overhead formatting as well as the embedded 
spacecraft command codeblocks. The simulated MOS/GDS aspect of the model was incorporated purely as 
simulation code, so there is no corresponding behavior diagram to indicate the overall operation flow. 
  
 Upon command generation and transfer by MOS/GDS, the simulation will mimic command reception and error 
detection, which are behaviors of the telecom and avionics subsystems of a S/C. For the limited scope of the 
simulation, command reception by the telecom subsystem was simulated as a simple pass through between the 
MOS/GDS transmitters and the S/C’s receiver blocks. More time and effort was dedicated to the error detection 
aspect of command reception, which is traditionally controlled by a FPGA. This consisted of checking the CCSDS 
formatting on the input command message and identifying the type of S/C command being sent. All logic used in 
simulating ths functionality was based on existing hardware documentation. The overall functional logic for these 
processes is shown in Figure 5. 
  
 After initial error checking, the command is passed to FSW for further decomposition and processing. These 
processes consist of unraveling the command message based on the structure of the CCSDS formatting to isolate the 
embedded command codeblocks. These S/C commands are then placed on sequence engines and executed according 
to the type of command and information contained within it. These processes were simulated by parsing the 
command message in chunks (to mimic FSW algorithms) until the codeblock was isolated. This process was greatly 
facilitated by simulating the command message as a string because this simply meant utilizing string parsing and 
concatenation operations in various layers of complexity. The overall functional logic for these processes is shown 
in Figure 6. 
  
 Upon execution by the FSW sequence engine, the S/C commands are translated into their corresponding 1553 
commands and sent to the REU for processing. The translation from S/C command to 1553 codeblock was done via 
simulation code, which used the same command and telemetry dictionary that was used in manufacturing CCSDS 
commands by the MOS/GDS behavior. These commands are then sent to the 1553 bus controller, which stacks these 
commands on its queue. At a simulated rate of 8 Hz, the bus controller executed each of its 1553 commands by 
broadcasting them to all avionics hardware devices. In turn, each device listens to the command, but only reacts if 
the command is meant for it. This process of events was simulated by string parsing and comparison to set values, 
such as those representing the device’s identification number. 
  
 The REU reacts to properly formatted 1553 commands either by updating or reporting its internal register values 
based on command instructions. How it reacted to various commands is based purely on the hardware logic, which 
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is pre-defined for the existing REU device. This aspect of simulating the hardware logic proved to be the most 
difficult aspect of the simulation as it was widely varying and many times resulted in cascading functionality on 
other hardware devices. This may seem trivial when testing the actual device, but proved to be quite complex when 
trying to simulate the variety of logical paths. We greatly limited our scope by only engaging REU-centric 
commands, but if multiple hardware devices (e.g memory card) were present it would present an opportunity to 
incorporate more complex logical operations. REU logic was incorporated into the simulation by changing block 
value properties that corresponded to subaddress channel values. Each combination of these values would indicate 
an aspect of the avionics system’s current state of operations. Hardware logic was incorporated purely as simulation 
code. The overall functional logic for FSW, bus controller, and REU interactions is shown in Figure 6 and 7. 
  
 Throughout the S/C command and data handling system processes, timing is a very critical aspect that must be 
handle carefully and accurately. The most time critical processes in the simulation were the FSW sequence engine 
exection and 1553 bus controller messaging. The FSW sequence engine behavior was important because CCSDS 
commands come with a  time tag that indicates when the command shall be executed. Generally the command is 
required to be processed within a few milliseconds of its indicated execution time or else the system will generate a 
fault. On the other hand, the 1553 bus controller must send messages at a fixed millisecond-scale time step. If these 
conditions are not met, the avionics system is left idle and the FSW would likely initiate a system reset. To account 
for the timer aspect of these processes, we incorporated a simulation clock that was only progressed after certain 
events. In this manner, the simulation would essentially “freeze” time to carry our concurrent operations and only 
step the clock once these operations were complete. The clock steps wre mainly dominated by the 8 Hz messaging 
rate of the bus controller. 
  
 Aside from nominal operations of the simulated hardware and software, an equally important aspect of the 
simulation was in the off-nominal operations. A lot of the fault mitigation aspects of command reception and REU 
hardware logic were accounted for in the static behavior diagrams, but were not enacted with simulation code. This 
serves as a very important avenue for future exporation because it would serve as a key method for virtual testing of 
all the avionic system’s logical pathways, some of which would be damaging if run on the actual hardware. The 
ideal simulation would be to have a system that has the capability to inject faults into the nominal behavior based on 
probabilistic or user-based triggers, which opens up the possibility of running Monte-Carlo simulation on the model 
with varied input command and fault conditions. 

IV. Conclusion 
 This work showed that it is possible to model avionics boxes and software in SysML, derive simulations directly 

from the models, and validate the simulations against hardware test results. Test cases were run using the simulation, 
and the test results compared to those obtained from identical tests run on a hardware testbed.  The simulation 
produced test results that precisely matched those of the avionics hardware. 

 
We deliberatly began simulation work at a low level of assembly to constrain the scope of this activity, and 

found perhaps unsurprisingly that simulating complex hardware logic at this level is difficult in SysML. Doing this 
in more detail would require a much more dedicated modeling effort, as well as a multi-thread capable simulation 
engine. Our SysML simulation work so far is best suited for modeling mission scenario sequence and system 
interactions, whereas more focused simulation software or scripts should be used to handle repetitive proceses that 
occur on time scales less than one milliseconds. In future efforts we will use SysML model simulation at a S/C 
subsystem level, and pass inputs to more capable box and card-level simulators to mimic device functionality. 

 
We found that most of the value-added was gained by modeling at the systems level; the tools we used were not 

well suited to modeling lower level electronics. Ideally, we would like to use a more capable simulation engine that 
can handle fine-granularity behaviors; these tools exist, but were not integrated for this work. Despite these 
limitations, the concept of adding simulation to a model is sound and useful. Ideally we strive to have a library of 
behaviors that match a library of hardware and software components that can be selected and re-used.  Elements of 
such a library would only require validation once,  and the library would be usable in multiple projects.   
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