
978-1-4577-0557-1/12/$26.00 ©2012 IEEE

GPU Lossless Hyperspectral Data Compression System for
Space Applications

Didier Keymeulen1, Nazeeh Aranki1, Ben Hopson2, Aaron Kiely1, Matthew Klimesh1, Khaled Benkrid2
1Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA

2 The University of Edinburgh, Institute of Integrated Systems, King’s Buildings, Mayfield Road, Edinburgh, EH9 3JL, UK
818-354-4280

didier.keymeulen@jpl.nasa.gov

Abstract—On-board lossless hyperspectral data
compression reduces data volume in order to meet NASA
and DoD limited downlink capabilities. At JPL, a novel,
adaptive and predictive technique for lossless compression
of hyperspectral data, named the Fast Lossless (FL)
algorithm, was recently developed. This technique uses an
adaptive filtering method and achieves state-of-the-art
performance in both compression effectiveness and low
complexity. Because of its outstanding performance and
suitability for real-time onboard hardware implementation,
the FL compressor is being formalized as the emerging
CCSDS Standard for Lossless Multispectral &
Hyperspectral image compression. The FL compressor is
well-suited for parallel hardware implementation. A GPU
hardware implementation was developed for FL targeting
the current state-of-the-art GPUs from NVIDIA®. The
GPU implementation on a NVIDIA® GeForce® GTX 580
achieves a throughput performance of 583.08 Mbits/sec
(44.85 MSamples/sec) and an acceleration of at least 6
times a software implementation running on a 3.47 GHz
single core Intel® Xeon™ processor. This paper describes
the design and implementation of the FL algorithm on the
GPU. The massively parallel implementation will provide
in the future a fast and practical real-time solution for
airborne and space applications.

TABLE OF CONTENTS

1. INTRODUCTION ... 1
2. ADAPTIVE FILTERING ... 2
3. GPU IMPLEMENTATION 4
4. PERFORMANCE ... 6
5. FUTURE WORK ... 7
6. SUMMARY ... 7
ACKNOWLEDGEMENTS ... 7
REFERENCES .. 7
BIOGRAPHY .. 8

1. INTRODUCTION
Hyperspectral images are three-dimensional data sets,

where two of the dimensions are spatial and the third is
spectral. A hyperspectral image can be regarded as a stack
of individual images of the same spatial scene, with each
such image representing the scene viewed in a narrow
portion of the electromagnetic spectrum. These individual
images are referred to as spectral bands. Hyperspectral

images typically consist of hundreds of spectral bands; the
voluminous amount of data comprising hyperspectral
images makes them appealing candidates for data
compression. An example of a hyperspectral data cube is
shown in Figure 1. It was taken by the Airborne Visible and
Infrared Imaging Spectrometer (AVIRIS), which uses
diffraction gratings for band separation with two sets of
CCD arrays, one with silicon chips to sense in the visible
range and the other with Indium-Antimony (InSb) chips for
wavelengths in the Near-IR to Short-Wave-IR range.
AVIRIS has 224 detectors (channels) in the spectral
dimension, extending over a range of 0.38 to 2.50 µm. This
arrangement leads to a spectral resolution for each chip of
0.01 µm. The spatial resolution derived from this depends
on the platform height. A typical mission, mounting
AVIRIS on a NASA aircraft (ER-2), produces a spatial
resolution of about 20 meters, but this can be improved to
five meters by flying at lower altitudes, which, of course,
narrows the width of the ground coverage [1].

Figure 1: An example of a hyperspectral data cube for Pearl

Harbor, Hawaii taken by the AVIRIS instrument
Current NASA hyperspectral instruments either avoid

compression or make use of only limited lossless image
compression techniques during transmission. For example,
the current state-of-the-practice is to use the Universal
Source Encoder for Space (USES) chip [2]. USES
implements the lossless compression standard [3] proposed
by the Consultative Committee for Space Data Systems
(CCSDS), which is based on the Rice algorithm. USES
includes a multispectral mode to extend its operation to 3D
data sets. The USES chip achieves limited compression
effectiveness compared to other existing techniques, but has
the advantage of being currently available in a radiation
resistant form. The main reasons for utilization of such
devices by NASA are: the limited downlink bandwidth, the
need to reduce the risk of corrupting the data-stream
needed for accurate science processing, and the lack of a

mailto:didier.keymeulen@jpl.nasa.gov

viable on-board platform to perform significant image
processing and compression. Future instruments with more
sensors and a much larger numbers of spectral bands will
collect enormous volumes of data that will far outstrip the
current ability to transmit it back to Earth (data rates for
some instruments can go to several hundreds of Gbits/s).
This gives rise to the need for efficient on-board
hyperspectral data compression.

Exploiting dependencies in all three dimensions of
hyperspectral data sets promises substantially more
effective compression than two-dimensional approaches
such as applying conventional image compression to each
spectral band independently. With that in mind, the JPL
Fast Lossless (FL) hyperspectral compressor was developed
[4]. FL is a predictive technique that uses an adaptive
filtering method and achieves state-of-the-art performance
in both compression effectiveness and low complexity.
Because of its outstanding performance and suitability for
real-time onboard hardware implementation, the FL
compressor is being formalized as the emerging CCSDS
123.0 standard for lossless multispectral and hyperspectral
image compression [19], [20].

Beside its low complexity, the other main advantage of
the FL algorithm is that it is well-suited for parallel
hardware implementation. However, traditional general
purpose processor (GPP) based software implementations of
this algorithm have limited throughput performance and
are power hungry. Dedicated hardware solutions are hence
highly desirable, taking the load off the main processor
while providing a power-efficient solution at the same time.
VLSI ASIC implementations are power- and area-efficient,
but they lack flexibility for post-launch modifications and
repair, they are not scalable and cannot be configured to
efficiently match specific mission needs and requirements.
Field Programmable Gate Arrays (FPGAs) are
programmable and offer a relatively low cost and flexible
solution compared to traditional Application-Specific
Integrated Circuit (ASICs). The development time of an
FPGA solution however is much longer than that of a GPP-
based solution as development of an FPGA solution is
essentially a circuit design exercise. In recent years,
Graphics Processing Units (GPUs) have been proposed and
successfully harnessed as a high performance, low cost,
relatively easy to program, and flexible computing platform
for many applications beyond traditional graphics
processing, giving rise to a new discipline called General
Purpose GPU computing or GPGPU. A GPU essentially
consists of a large number (hundreds) of parallel processors
with a memory hierarchy that allows for the concurrent
processing of thousands of threads. GPUs are generally
programmed in a Single Program Multiple Threads
(SPMT) fashion in which GPU processors (also called
cores) execute the same program on different parts of the
data using different threads. With unique thread IDs, the
program could also make different threads execute different
instructions. The key to the high performance of GPU
solutions resides in the efficient mapping of applications

onto the underlying GPU architecture (multiprocessors and
memory hierarchy), a task which while simpler than FPGA
solution development is more difficult than traditional
single-threaded GPP programming.

The most widely used architecture for GPGPU is
CUDA (Compute Unified Device Architecture) from
NVIDIA Corp, which is traditionally programmed in the C
language with extensions that allow for the SPMT
programming model. Typically, a host program running on
a GPP first copies data from host memory to GPU memory;
then the GPP initiates the processing on GPU; following
which the GPU executes its program in parallel using its
processor cores; and finally results are copied back from
GPU memory to host memory.

Raw data from pushbroom-type hyperspectral imagers
tends to exhibit streaking-artifacts parallel to the along-
track direction. Options in the CCSDS standardization of
the FL compressor allow the user to tailor compression to
handle either data from pushbroom-type sensors or data
that does not include such artifacts (e.g., calibrated imagery
or data from whiskbroom-type sensors such as AVIRIS).

In previous work we have described an FL
implementation for whiskbroom-type sensors [14] and one
for pushbroom-type sensors [18]. In this paper, we describe
the algorithm for pushbroom-type sensors and its GPU
implementation that result in improved compression speed-
up when the algorithm is applied to raw (uncalibrated) data
from a pushbroom-type multispectral imager [15].

The remainder of this paper is organized as follows.
Section 2 describes background on the hyperspectral
compression algorithm used in this paper. Then, section 3
describes our GPU-based implementation of the
hyperspectral compression algorithm and its trade-offs.
After that, section 4 describes the results of our initial
experiments. Section 5 follows with plans for future work.
The paper concludes with a summary.

2. ADAPTIVE FILTERING
Pushbroom-type Instruments

Pushbroom-type multispectral imagers use a detector
array to acquire data in spatial-spectral slices. Thus each
detector element corresponds to a specific spectral band and
cross-track position. Because the characteristics of detector
elements generally vary somewhat from element to
element, cross-track adjacent samples in a given spectral
band will not be as similar as they would be in an
instrument that uses the same detector element for all
samples in a given spectral band (e.g., in a whisk-broom-
type instrument). On the other hand, along-track adjacent
samples will tend to be very similar. As a side effect of the
variation within spectral bands, the correlation between
samples at the same spatial location in different spectral
bands varies with cross-track position. As such, purely
spectral prediction often does not work well with this type
of data. Pushbroom-type instruments are generally the
multispectral imagers of choice for space applications (as

opposed to whisk-broom-type instruments). In the
following sections we describe both the Fast Lossless
compressor as it was originally conceived, as well as the
modification intended for pushbroom instruments.

Algorithm Background

The Fast Lossless compressor encodes data samples
one-at-a-time, typically in raster scan order within a given
spectral band. It uses a form of predictive compression, i.e.
sample values are estimated by linear prediction, and the
differences between the estimates and the actual sample
values are encoded into the compressed bitstream. Only
previously encoded samples are used to predict a given
sample so that the prediction operation can be duplicated by
the decoder. Estimation of sample values by linear
prediction is a natural strategy for lossless compression of
hyperspectral images. This is a form of predictive
compression, or, more specifically, a form of differential
pulse code modulation (DPCM).

The Fast Lossless compressor uses the sign algorithm
[5], which is a variation of the Least Mean Square (LMS)
algorithm [6], a well-known low-complexity adaptive
filtering algorithm. The sign algorithm and the LMS
algorithm are members of a family of low complexity
adaptive linear filtering techniques. The literature includes
a fair amount of other work on lossless predictive
compression of hyperspectral images. For example, the
methods used by Rizzo et al. [7] have low complexity and
yield compression effectiveness similar to that of FL. Good
compression effectiveness results are also reported in the
literature by Aiazzi et al. [8], but those results are obtained
with methods of moderately high complexity.

Fast Lossless Algorithm Description

The essence of the Fast Lossless compressor is adaptive
linear predictive compression using the sign algorithm for
filter adaptation, with local mean estimation and
subtraction. We start with a brief description of the LMS
algorithm and the sign algorithm. For both of these
algorithms a desired signal td is to be estimated from an

input (column) vector ,t ku , where t is an index which

increases sequentially and represents the time index. The
desired signal td is the sample value at spatial location (x,

y) in spectral band z. The estimate ˆ
td is a linear function

of ,t ku ; specifically, , ,
ˆ T

t t k t kd w u= , where .t kw is the

filter weight vector at index t. The components of

,t ku represent the sample values at spatial location (x, y) in

spectral band z-k with z=1,2 and 3, as well as the sample
values at neighborhood location (y-1,x-1), (y-1,x), (y,x-1) in
spectral band z.

After an estimate ˆ
td is computed, the error between

the estimate ˆ
td and the desired signal td is computed,

specifically, ˆ
t t te d d= − .

This error value is used to update the filter weights.
For the LMS algorithm,

1, , ,t k t k t k tw w u eµ+ = −

For the sign algorithm,

1, , , sgn()t k t k t k tw w u eµ+ = −

In each case µ is a positive, scalar parameter (the step
size parameter) that controls the trade-off between
convergence speed and average steady-state error. A small
µ results in better steady state performance but slower
convergence. In some variants of these algorithms the value
of µ changes over time. The sign algorithm has the
property that under certain general assumptions, the weight
vectors it produces become clustered around the optimum
weight vector in terms of minimizing the mean absolute
estimation error. For a sufficiently small adaptation step
size parameter, the asymptotic mean absolute estimation
error can be made to be as close as desired to the minimum
possible [5].

To overcome problems of poor combinations of
convergence speed and steady-state performance, a local
mean subtraction method was used, motivated by [9]. In the
local mean subtraction method, for each sample we
compute a preliminary estimate using a fixed, causal, linear
predictor involving only samples from the same band
(purple cells in Figure 2). The preliminary estimate of
sample s(x, y, z) is denoted by (, ,)s x y z which is the local
mean of sample values at (y-1,x-1,z), (y-1,x,z), (y,x-1,z) and
(y-1,x+1,z). For our implementation we use a six-sample
prediction neighborhood with three samples from the same
band as the sample to be predicted, and one sample each
from the three preceding bands (blue cells in Figure 2).

All samples are corrected using the local mean
subtraction method so that:

is the corresponding input vector. The general rule is to
adjust each sample in the prediction neighborhood by the
preliminary estimate in the same band as the sample but at
the spatial location of the sample being predicted.
Handling Pushbroom Data

As explained above, for each sample a local mean is
computed as the average sample value of four adjacent
samples in a causal neighborhood within the spectral band
[15]. However, for data from pushbroom-type multispectral
imagers, letting the local mean be equal to the previous
sample in the same cross-track position (and in the same

Figure 4: Algorithm Stages / Data Dependency / Available Parallelism: The top line of the figure gives the block names, the middle
layer shows the data dependency, and the bottom layer lists the available parallelism.

Since there is no interdependency between separate
average values, we can parallelize this section across the
full volume of the image. That is, the averaged value of any
two pixels can be calculated in parallel. Restricting the
threads within a block to all lie within the same pixel
(across 224 bands), we maximize memory access locality.

Predictor

The predictor, due to the feedback caused by the weight
update, has to process pixels serially. Parallelism along the
band axis is possible however, but this is still the bottleneck
of the algorithm. There is a subtle trade-off to make here,
between reducing the amount of work done in the serial
loop so that individual loop iterations take as little time as
possible, and packing enough calculation into each loop so
that the GPU has something to do while fetching from
RAM. Normally, we would have enough threads that
threads blocking on memory access would immediately be
swapped out for ones whose data was available (trading off
computation against memory bandwidth).

We are limited in how many threads we can have
(limited to the number of spectral bands), so we need to
make sure that threads do as much work as possible for
each memory read. For this reason, it actually turns out
optimal to include the Golomb Power-of-2 (GPO2) code
parameter estimator into the same loop as the predictor –
even though the data that this calculation needs could be
pre-calculated by the predictor, stored, and processed in a
separate (much more parallel) kernel invocation. (Adding
the estimator to the predictor barely increased the run time
of the predictor stage).

GPO2 Parameter Calculation.

To dynamically determine the GPO2 parameter k we
need to compute the base-2 log of a running average of the
values to be encoded (delta), and this will give us a bound.
That is, we need the smallest k such that 2k is greater than
the running average delta value. Fortunately, CUDA comes
to aid again, with the __nlz instruction, which counts the
number of leading zeros of an integer. Equipped with this,
it is trivial to compute the log, and extremely fast.

Encoder

The encoding stage is extremely simple. It takes in a
delta value to be encoded, and the code parameter k. It is
then just a matter of a few bit operations to derive the
output codeword. Since output codewords have variable
width, we need to record internally the output codeword
length for use in the bit-packer, which is discussed in the
next section.

There is no dependency between the encoding of output
samples, even across bands, once we have each delta and
its code parameter. It makes sense, therefore, to pre-
compute these (remember, the code parameter calculation
was rolled into the predictor) and run the encoder in
parallel across bands and pixels.

Packer

The job of the bit packer is to take the variable length
encoded delta values and write these out serially into a bit-
stream. While it looks like this is a classically un-
parallelizable process it can, in fact, be parallelized by first
computing the indices in the output (packed) stream of each
encoded delta value. This is simple: we take the lengths (in
bits) of each encoded delta value and compute a running
sum. While not fully parallel, a running sum (or scan-
reduce) can be implemented as a tree structured process.
The THRUST library (included in the latest CUDA GPU
toolkit) has optimized routines for doing just this and these
are extremely fast [16].

With the output stream offset computed for each
encoded output delta, a single GPU thread has only to read
one encoded output value, split it (where the value strides a
32-bit word boundary) across two output words, and bit-or
the encoded value into the final output stream. The or
operation must be performed atomically to prevent data-
corruption. This causes a performance issue on pre-Fermi
architectures, but the Fermi’s caching removes this issue
since we only need read/write atomically to shared RAM
(the Fermi uses thread-shared memory for its cache) instead
of GPU global RAM.

Since each output value has at least 1 bit, were we to
modify the thread indexing so that encoded values are read

on a stride of 32, we would never have more than one
thread accessing the same output word. That is to say: we
pack encoded (but not packed) blocks 0,32, 64, etc on the
first pass through the data – which guarantees that no two
threads write to the same 32-bit output word in the same
data-pass and so on for blocks 1, 33, etc on the next pass.
This removes the need for an atomic operation, but destroys
the cache coherence. On pre-Fermi architectures (compute
capability 1.3 and lower) this trade-off is worth making, but
on the Fermi (compute capability 2.0 onwards) it is not
worth it.

By breaking out the serial portion (the cumulative sum
operation) and running it first, we can run the bit packer in
full pixel & band parallelism.

Output Formatting

Finally, the output words are bit-reversed (hardware
support to the rescue again with the fast __brev
instruction), and byte shuffled to correct big-endian / little-
endian compatibility.

This has to be performed after the bit packer has
completed (but the bit-reversal can occur during bit packing
with a suitable modification to the shift and masking
operations), but this stage can again be performed with the
full parallelism available in the image data.

4. PERFORMANCE
The two main reasons for moving to GPU are speed,

and to reduce the CPU loading. We have evaluated the
performance on a mobile and desktop platform.

The mobile test system used was:
a) Intel® Core™ i7 Processor 2760QM (base clock

speed 2.40Ghz)
b) NVIDIA® GeForce® GTX 560M (1.5GB RAM)
The desktop test system used was:
c) Intel® Xeon™ Processor X5690 (base clock speed

3.46Ghz)
d) NVIDIA® GeForce® GTX 580 (1.5GB RAM)
e) NVIDIA® Tesla® C2070 (6GB RAM)

The test data was an uncalibrated AVIRIS hyperspectral
image from Hawaii with dimensions 614 x 512, with 224
spectral bands, and with 12-bits per samples [17]. For this
specific image, the output was compressed to 25% of the
original packed size (3.02 bits per pixel, a factor 3.98
compression).

With the implementation described above, the CPU is
only used for host memory allocation and file access (at
both the input and output). Peak CPU utilization is typically
less than 3% for the mobile implementation due to fast
memory access thanks to the Solid State Drive used in the
mobile platform, so this is a substantial benefit (Figure 5).
Note that by using the CUDA support for non-paged host
memory, very little CPU work is involved in the data-
transport to and from the GPU.

Shown in Table 1 is a breakdown of time spent on each

stage of the algorithm on the mobile platform. Only the
File Load and File Store stages use the CPU at all,
demonstrating the low CPU utilization. Very clearly, the
bulk of the time is taken in the predictor stage, as this is the
stage with the least available parallelism. The time is
slightly better than the FPGA implementation on a Virtex-4
presented in [18].

Figure 5 Timing breakdown between CPU and GPU of the GPU
implementation of the Fast Lossless Compression on both the
NVIDIA mobile board (GTX560M) and desktop board (GTX580).

Table 1: Timing breakdown by algorithm stage for GPU.

 GTX560M GTX580

Algorithm Stage Total
Time (ms)

Time
per

sample
(ns)

Total
Time
(ms)

Time
per

sample
(ns)

File Load (CPU) 48.24 0.69 86.88 1.23

Input Formatting 53.33 0.76 4.74 0.07

Local Average 70.79 1.01 30.21 0.43

Predictor & Entropy
Estimator

1253.17 17.80 1116.69 15.86

Encoder 59.51 0.85 22.55 0.32

Output Index Sum 114.12 1.62 32.99 0.47

Packer 96.21 1.37 80.10 1.14

Output Formatting 103.97 1.48 65.27 0.93

File Store (CPU) 111.01 1.58 151.93 2.16

Total time 1910.35 27.13 1591.36 22.60

For comparison, the same algorithm recoded to run

without CUDA acceleration running on 1 and 4 CPU cores
(Multicore version coded using OpenMP) both on the
mobile and desktop platform is shown in Figure 6 and in
Table 2.

Figure 6: Speedup comparison of the Fast Lossless Compression
Algorithm on both the mobile platform with GTX560M GPU and
the dual hex core CPU (2.4GHz) and the desktop platform with
the GTX580 and the Tesla C2070 GPUs and the quad code CPU
(3.47GHz).

This result demonstrates that the GPU implementation
could accommodate real-time compression for
hyperspectral instrument which has normally throughput of
800 Mbits/sec e.g. through multiple GPUs or further code
optimization.

Table 2: Speedup comparison of GPU against CPU
implementations

 Speedup Time (s) Speed
(Mbit/s)

Speed
(MSamp/s)

GPU GeForce GTX 580 725% 1.57 583.08 44.85

GPU GeForce GTX 560M 596% 1.91 479.29 36.87

GPU Tesla C2070 486% 2.34 391.21 30.09

Dual Hex Core (12 cores) 309% 3.68 248.76 19.14

Dual Hex Core (8 cores) 272% 4.19 218.48 16.81

Dual Hex Core (4 cores) 259% 4.39 208.53 16.04

Quad Core (4 cores) 196% 6.87 133.25 10.25

Dual Hex Core (1 core) 115% 9.9 92.47 7.11

Quad Core (1 core) 100% 11.38 80.44 6.19

5. FUTURE WORK
Commonly one might divide an image into smaller

pieces (segments, e.g., consisting of 32 lines of image data)
and apply compression to separate segments independently
(i.e., reinitializing the predictor and GPO2 parameter
estimation for each segment). For example, this might be
done to limit the effects of data losses if the compressed
data is transmitted over a noisy channel. This type of
segmentation gives another axis for potential

parallelization. It would be possible to use this to improve
the GPU utilization of the bottleneck stage by allowing
threads from separate blocks to be scheduled at the same
time. Many high-end dedicated GPGPU platforms contain
several GPU cards – the problem could easily be split task-
parallel across separate GPUs, again using the blocks as the
axis for parallelization. The multicore GPP implementation
is under-tuned compared with the GPU version and needs
to be improved.

It is difficult to estimate the performance gain that
could be gained by some of these optimizations but splitting
the problem task-parallel over two GPUs would give almost
a factor 2 (the file access portions would not parallelize). It
is harder to estimate the performance impact of, say,
splitting the image into 16 blocks and operating on all the
blocks in parallel on a single GPU. A factor 16 is unlikely,
but a factor 2-4 is plausible (the multi-core GPP
implementation showed roughly square root scaling with
increases in available parallelism, for comparison).

6. SUMMARY
We presented a GPU implementation of the JPL-

developed Fast Lossless multispectral and hyperspectral
data compression algorithm, currently being formalized as
an emerging CCSDS standard [19]. The implementation
targets a desktop and mobile GPU hardware from
NVIDIA®. For the desktop implementation, the NVIDIA®
GeForce® GTX 580 provides an acceleration of at least 6
times the software implementation on a single core Intel®
Xeon™ Processor (clock speed 3.47GHz) while for the
mobile implementation, the NVIDIA® GeForce® GTX
560M provides an acceleration of at least 7 times the
software implementation on a single core Intel® Core™ i7
Processor (clock speed 2.40GHz). These results make the
use of this compressor practical for satellites and planet
orbiting missions with hyperspectral instruments. Future
development will provide multiple implementations on
GPU and multicore GPPs and options to deploy various
versions of the algorithm to accommodate data from
different instrument types.

ACKNOWLEDGEMENTS
The work described in this publication was carried out

at the Jet Propulsion Laboratory, California Institute of
Technology and the University of Edinburgh.

REFERENCES
[1] W. Campbell, N. M. Short, “Remote Sensing Tutorial”, 2004

http://www.fas.org/irp/imint/docs/rst/Sect13/Sect13_9.html
[2] J. Venbrux, J. Gambles, D. Wiseman, G. Zweigle, W. H.

Miller, and P.-S. Yeh, “A VLSI Chip Set Development for
Lossless Data Compression,” Ninth AIAA Computing in
Aerospace Conference, San Diego, California, October 19–21,
1993.

[3] Lossless Data Compression, Recommendation for Space Data
System Standards, CCSDS 121.0-B-1. Blue Book. Issue 1.

http://www.fas.org/irp/imint/docs/rst/Sect13/Sect13_9.html

Washington, D.C., CCSDS, May 1997.
(http://public.ccsds.org)

[4] M. Klimesh, “Low-Complexity Lossless Compression of
Hyperspectral Imagery via Adaptive Filtering,” The
Interplanetary Network Progress Report, vol. 42-163, Jet
Propulsion Laboratory, Pasadena, California, pp.1–10,
November 15, 2005.

[5] A. Gersho. “Adaptive filtering with binary reinforcement”.
IEEE Transactions on Information Theory, IT-30(2):191–199,
March 1984.

[6] B. Widrow, J. R. Glover, J. M. McCool, J. Kaunitz, C. S.
Williams, R. C. Goodlin, J. R. Zeidler, R. H. Hearn, and E.
Dong. “Adaptive Noise Cancelling: Principles and
Applications”. The Proceedings of the IEEE, 63(12):1692-
1716, December 1975.

[7] F. Rizzo, B. Carpentieri, G. Motta, and J. A. Storer. “Low-
complexity lossless compression of hyperspectral imagery via
linear prediction”. IEEE Signal Processing Letters, 12(2):138–
141, February 2005.

[8] B. Aiazzi, L. Alparone, and S. Baronti. “Near-lossless
compression of 3-D optical data”. IEEE Transactions on
Geoscience and Remote Sensing, 39(11):2547–2557,
November 2001.

[9] J. N. Lin, X. Nie, and R. Unbehauen, “Two-Dimensional LMS
Adaptive Filter Incorporating a Local-Mean Estimator for
Image Processing,” IEEE Transactions on Circuits and
Systems—II: Analog and Digital Signal Processing, vol. 40,
no. 7, pp. 417–428, July 1993

[10] R.G. Gallager and D.C. Van Voorhis. “Optimal source codes
for geometrically distributed integer alphabets”. IEEE
Transactions on Information Theory, IT-21 (2): 228-230,
March 1975.

[11] A. Kiely, “Simpler Adaptive Selection of Golomb Power-of-
Two Codes” NASA Tech Briefs, November 1, 2007: NPO-
41336.

[12] A. Kiely, M. Klimesh, "Fast Lossless Compression of
Multispectral-Image Data" NASA Tech Briefs, July, 2002:
NPO-21101.

[13] M. Klimesh, "A Bit-Wise Adaptable Entropy Coding
Technique" NASA Tech Briefs, August, 2006: NPO-42517.

[14] N. Aranki, D. Keymeulen, A. Bakhshi and, M. Klimesh.
“Fast and Adaptive Lossless on-board Hyperspectral Data
Compression System for Space Applications”, In IEEE
Aerospace Conference. 9-13 March 2009.

[15] M. Klimesh “Lossless, Multi-Spectral Data Compressor for
Improved Compression for Pushbroom-Type Instruments”,
NASA Tech Briefs, July, 2008: NPO 45473.

[16] J. Hoberock and N. Bell, “Thrust: A Parallel Template
Library version 1.3.0”, 2010, In
http://www.meganewtons.com/,

[17] AVIRIS, Hawaii,Scene 1, 2001, Flight f011020t01p03r05
http://compression.jpl.nasa.gov/hyperspectral/
[18] N. Aranki, D. Keymeulen, A. Bakhshi and, M. Klimesh,

“Hardware Implementation of Lossless Adaptive and Scalable
Hyperspectral Data Compression for Space”, In NASA/ESA
Conference on Adaptive Hardware and Systems, IEEE, July
2009.

[19] Lossless Multispectral & Hyperspectral Image Compression.
 Draft Recommendation for Space Data System Standards,
CCSDS 123.0-R-1. Red Book. Issue 1. Washington, D.C.:
CCSDS, May 2011. (http://public.ccsds.org/review)

[20] M. Klimesh, A. Kiely, P. Yeh, “Fast Lossless Compression
of Multispectral and Hyperspectral Imagery,” Proc.
International Workshop on On-Board Payload Data
Compression (OBPDC), 8 pages, Toulouse, France, Oct. 28–
29, 2010.

BIOGRAPHY
Nazeeh Aranki received the BSEE, MSEE
and Ph.D. in Electrical Engineering from
Caltech and USC. Nazeeh has 28 years of
experience in design and implementation of
digital and FPGA based systems. Since he
joined JPL in 1994, his research interests
have included reconfigurable hardware,
digital signal and image processing, data
compression, parallel processing, evolvable

hardware, and neural networks. Nazeeh developed algorithms for
compression of hyperspectral data and their implementations on
reconfigurable platforms. He was awarded a patent and the NASA
Space Act award for his contribution in the development of an
FPGA-based neuroprocessor for automotive applications in
control and diagnostics. He also served as the principal
investigator and task Manager on a number of NASA, DARPA
and AFRL projects related to data compression and power aware
computing and communications.

Ben Hopson received a Master of Mathematics
from Oxford University in 1998 and a BEng in
Electronic Engineering from the University of
Edinburgh in 2010. He is currently
undertaking a PhD in Hardware / Algorithm
Co-design as part of the Institute for Integrated
Micro and Nano Systems at the University of

Edinburgh, supervised by Dr Khaled Benkrid. He worked for
several years for CESG involving cryptography, high
performance computing, and algorithm design – and now
consults for private companies in algorithm design applied to
electronic engineering

Didier Keymeulen received the BSEE,
MSEE and Ph.D. in Electrical Engineering
and Computer Science from the Free
University of Brussels, Belgium in 1994. In
1996 he joined the computer science division
of the Japanese National Electrotechnical
Laboratory as senior researcher. Currently
he is principal member of the technical staff

of JPL in the Bio-Inspired Technologies Group. At JPL, he is
responsible for DoD and NASA applications on evolvable
hardware for adaptive computing that leads to the development of
fault-tolerant electronics and autonomous and adaptive sensor
technology. He participated also as test electronics lead, to
Tunable Laser Spectrum instrument on Mars Science Laboratory.
He served as the chair, co-chair, and program-chair of the
NASA/ESA Conference on Adaptive Hardware. Didier is a
member of the IEEE.

http://public.ccsds.org/
http://www.meganewtons.com/
http://compression.jpl.nasa.gov/hyperspectral/
http://public.ccsds.org/review

Khaled Benkrid is a Senior Lecturer in
Electronic Engineering in the School of
Engineering at the University of
Edinburgh, Scotland, UK. During the last
13 years, he has been actively researching
the areas of high performance computing
using reconfigurable hardware and multi-
core processors, and electronic design

automation. To date, his research in these areas has resulted in
over 100 international journal and conference papers, with
contributions in novel architectures, software tools, and
applications in digital signal processing, communications,
control systems, and scientific computing. Dr. Benkrid holds a
PhD in Computer Science, a 1st Class “Ingénieur d’Etat” degree
in Electronic Engineering, and an Executive MBA with
Distinction. He is Senior IEEE Member and a Chartered UK
Engineer.

Matthew Klimesh received B.S.E., M.S.E.,
and Ph.D. degrees, all in electrical
engineering from the University of Michigan
in Ann Arbor, in 1989, 1990, and 1995,
respectively. He spent one year as a
research fellow (postdoc) at Michigan. Since
1996 he has been with the Information
Processing Group at Caltech's Jet
Propulsion Laboratory, working primarily

on research and development of data compression algorithms for
space applications. His research interests include source coding,
data compression, network coding, rate-distortion theory,
channel coding, probability, and discrete mathematics.

Aaron Kiely received the BS, MS, MSE, and
PhD degrees from Virginia Tech, the
University of Southern California, the
University of Michigan, and the University
of Michigan, respectively. Since 1993, he
has worked in the Information Processing
Group of the Communications Architectures
and Research Section at JPL, where he

conducts research in data compression and error-correcting
codes. He wrote the emerging CCSDS 123.0 standard for
Lossless Multispectral & Hyperspectral Image Compression and
is the chair of the Multispectral and Hyperspectral Data
Compression working group of CCSDS. Aaron led the
development of the ICER image compression algorithm being
used by the Mars Exploration Rovers, and he has also provided
data compression consulting for several other deep space
missions and instruments. Aaron has served on the faculty of
Caltech, where he has periodically taught graduate-level courses
on data compression and error- correcting codes.

	GPU Lossless Hyperspectral Data Compression System for Space Applications

