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Abstract—On-board lossless hyperspectral data 
compression reduces data volume in order to meet NASA 
and DoD limited downlink capabilities. At JPL, a novel, 
adaptive and predictive technique for lossless compression 
of hyperspectral data, named the Fast Lossless (FL) 
algorithm, was recently developed. This technique uses an 
adaptive filtering method and achieves state-of-the-art 
performance in both compression effectiveness and low 
complexity. Because of its outstanding performance and 
suitability for real-time onboard hardware implementation, 
the FL compressor is being formalized as the emerging 
CCSDS Standard for Lossless Multispectral & 
Hyperspectral image compression. The FL compressor is 
well-suited for parallel hardware implementation. A GPU 
hardware implementation was developed for FL targeting 
the current state-of-the-art GPUs from NVIDIA®. The 
GPU implementation on a NVIDIA® GeForce® GTX 580 
achieves a throughput performance of 583.08 Mbits/sec 
(44.85 MSamples/sec) and an acceleration of at least 6 
times a software implementation running on a 3.47 GHz 
single core Intel® Xeon™ processor. This paper describes 
the design and implementation of the FL algorithm on the 
GPU. The massively parallel implementation will provide 
in the future a fast and practical real-time solution for 
airborne and space applications. 
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1. INTRODUCTION  
Hyperspectral images are three-dimensional data sets, 

where two of the dimensions are spatial and the third is 
spectral. A hyperspectral image can be regarded as a stack 
of individual images of the same spatial scene, with each 
such image representing the scene viewed in a narrow 
portion of the electromagnetic spectrum. These individual 
images are referred to as spectral bands. Hyperspectral 

images typically consist of hundreds of spectral bands; the 
voluminous amount of data comprising hyperspectral 
images makes them appealing candidates for data 
compression. An example of a hyperspectral data cube is 
shown in Figure 1. It was taken by the Airborne Visible and 
Infrared Imaging Spectrometer (AVIRIS), which uses 
diffraction gratings for band separation with two sets of 
CCD arrays, one with silicon chips to sense in the visible 
range and the other with Indium-Antimony (InSb) chips for 
wavelengths in the Near-IR to Short-Wave-IR range. 
AVIRIS has 224 detectors (channels) in the spectral 
dimension, extending over a range of 0.38 to 2.50 µm. This 
arrangement leads to a spectral resolution for each chip of 
0.01 µm. The spatial resolution derived from this depends 
on the platform height. A typical mission, mounting 
AVIRIS on a NASA aircraft (ER-2), produces a spatial 
resolution of about 20 meters, but this can be improved to 
five meters by flying at lower altitudes, which, of course, 
narrows the width of the ground coverage [1]. 

 
Figure 1: An example of a hyperspectral data cube for Pearl 

Harbor, Hawaii taken by the AVIRIS instrument 
Current NASA hyperspectral instruments either avoid 

compression or make use of only limited lossless image 
compression techniques during transmission. For example, 
the current state-of-the-practice is to use the Universal 
Source Encoder for Space (USES) chip [2]. USES 
implements the lossless compression standard [3] proposed 
by the Consultative Committee for Space Data Systems 
(CCSDS), which is based on the Rice algorithm.  USES 
includes a multispectral mode to extend its operation to 3D 
data sets. The USES chip achieves limited compression 
effectiveness compared to other existing techniques, but has 
the advantage of being currently available in a radiation 
resistant form. The main reasons for utilization of such 
devices by NASA are: the limited downlink bandwidth, the 
need to reduce the risk of corrupting the data-stream 
needed for accurate science processing, and the lack of a 
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viable on-board platform to perform significant image 
processing and compression. Future instruments with more 
sensors and a much larger numbers of spectral bands will 
collect enormous volumes of data that will far outstrip the 
current ability to transmit it back to Earth (data rates for 
some instruments can go to several hundreds of Gbits/s). 
This gives rise to the need for efficient on-board 
hyperspectral data compression.  

Exploiting dependencies in all three dimensions of 
hyperspectral data sets promises substantially more 
effective compression than two-dimensional approaches 
such as applying conventional image compression to each 
spectral band independently. With that in mind, the JPL 
Fast Lossless (FL) hyperspectral compressor was developed 
[4]. FL is a predictive technique that uses an adaptive 
filtering method and achieves state-of-the-art performance 
in both compression effectiveness and low complexity. 
Because of its outstanding performance and suitability for 
real-time onboard hardware implementation, the FL 
compressor is being formalized as the emerging CCSDS 
123.0 standard for lossless multispectral and hyperspectral 
image compression [19], [20]. 

Beside its low complexity, the other main advantage of 
the FL algorithm is that it is well-suited for parallel 
hardware implementation. However, traditional general 
purpose processor (GPP) based software implementations of 
this algorithm have limited throughput performance and 
are power hungry. Dedicated hardware solutions are hence 
highly desirable, taking the load off the main processor 
while providing a power-efficient solution at the same time. 
VLSI ASIC implementations are power- and area-efficient, 
but they lack flexibility for post-launch modifications and 
repair, they are not scalable and cannot be configured to 
efficiently match specific mission needs and requirements. 
Field Programmable Gate Arrays (FPGAs) are 
programmable and offer a relatively low cost and flexible 
solution compared to traditional Application-Specific 
Integrated Circuit (ASICs). The development time of an 
FPGA solution however is much longer than that of a GPP-
based solution as development of an FPGA solution is 
essentially a circuit design exercise. In recent years, 
Graphics Processing Units (GPUs) have been proposed and 
successfully harnessed as a high performance, low cost, 
relatively easy to program, and flexible computing platform 
for many applications beyond traditional graphics 
processing, giving rise to a new discipline called General 
Purpose GPU computing or GPGPU. A GPU essentially 
consists of a large number (hundreds) of parallel processors 
with a memory hierarchy that allows for the concurrent 
processing of thousands of threads. GPUs are generally 
programmed in a Single Program Multiple Threads 
(SPMT) fashion in which GPU processors (also called 
cores) execute the same program on different parts of the 
data using different threads. With unique thread IDs, the 
program could also make different threads execute different 
instructions. The key to the high performance of GPU 
solutions resides in the efficient mapping of applications 

onto the underlying GPU architecture (multiprocessors and 
memory hierarchy), a task which while simpler than FPGA 
solution development is more difficult than traditional 
single-threaded GPP programming.  

The most widely used architecture for GPGPU is 
CUDA (Compute Unified Device Architecture) from 
NVIDIA Corp, which is traditionally programmed in the C 
language with extensions that allow for the SPMT 
programming model. Typically, a host program running on 
a GPP first copies data from host memory to GPU memory; 
then the GPP initiates the processing on GPU; following 
which the GPU executes its program in parallel using its 
processor cores; and finally results are copied back from 
GPU memory to host memory.  

Raw data from pushbroom-type hyperspectral imagers 
tends to exhibit streaking-artifacts parallel to the along-
track direction.  Options in the CCSDS standardization of 
the FL compressor allow the user to tailor compression to 
handle either data from pushbroom-type sensors or data 
that does not include such artifacts (e.g., calibrated imagery 
or data from whiskbroom-type sensors such as AVIRIS). 

In previous work we have described an FL 
implementation for whiskbroom-type sensors [14] and one 
for pushbroom-type sensors [18]. In this paper, we describe 
the algorithm for pushbroom-type sensors and its GPU 
implementation that result in improved compression speed-
up when the algorithm is applied to raw (uncalibrated) data 
from a pushbroom-type multispectral imager [15]. 

The remainder of this paper is organized as follows. 
Section 2 describes background on the hyperspectral 
compression algorithm used in this paper. Then, section 3 
describes our GPU-based implementation of the 
hyperspectral compression algorithm and its trade-offs. 
After that, section 4 describes the results of our initial 
experiments. Section 5 follows with plans for future work. 
The paper concludes with a summary. 

2. ADAPTIVE FILTERING 
Pushbroom-type Instruments 

Pushbroom-type multispectral imagers use a detector 
array to acquire data in spatial-spectral slices. Thus each 
detector element corresponds to a specific spectral band and 
cross-track position. Because the characteristics of detector 
elements generally vary somewhat from element to 
element, cross-track adjacent samples in a given spectral 
band will not be as similar as they would be in an 
instrument that uses the same detector element for all 
samples in a given spectral band (e.g., in a whisk-broom-
type instrument). On the other hand, along-track adjacent 
samples will tend to be very similar. As a side effect of the 
variation within spectral bands, the correlation between 
samples at the same spatial location in different spectral 
bands varies with cross-track position. As such, purely 
spectral prediction often does not work well with this type 
of data. Pushbroom-type instruments are generally the 
multispectral imagers of choice for space applications (as 



opposed to whisk-broom-type instruments). In the 
following sections we describe both the Fast Lossless 
compressor as it was originally conceived, as well as the 
modification intended for pushbroom instruments. 

 
Algorithm Background 

The Fast Lossless compressor encodes data samples 
one-at-a-time, typically in raster scan order within a given 
spectral band. It uses a form of predictive compression, i.e. 
sample values are estimated by linear prediction, and the 
differences between the estimates and the actual sample 
values are encoded into the compressed bitstream. Only 
previously encoded samples are used to predict a given 
sample so that the prediction operation can be duplicated by 
the decoder. Estimation of sample values by linear 
prediction is a natural strategy for lossless compression of 
hyperspectral images. This is a form of predictive 
compression, or, more specifically, a form of differential 
pulse code modulation (DPCM). 

The Fast Lossless compressor uses the sign algorithm 
[5], which is a variation of the Least Mean Square (LMS) 
algorithm [6], a well-known low-complexity adaptive 
filtering algorithm. The sign algorithm and the LMS 
algorithm are members of a family of low complexity 
adaptive linear filtering techniques. The literature includes 
a fair amount of other work on lossless predictive 
compression of hyperspectral images. For example, the 
methods used by Rizzo et al. [7] have low complexity and 
yield compression effectiveness similar to that of FL. Good 
compression effectiveness results are also reported in the 
literature by Aiazzi et al. [8], but those results are obtained 
with methods of moderately high complexity. 

 
Fast Lossless Algorithm Description 

The essence of the Fast Lossless compressor is adaptive 
linear predictive compression using the sign algorithm for 
filter adaptation, with local mean estimation and 
subtraction. We start with a brief description of the LMS 
algorithm and the sign algorithm. For both of these 
algorithms a desired signal td  is to be estimated from an 

input (column) vector ,t ku , where t is an index which 

increases sequentially and represents the time index. The 
desired signal td  is the sample value at spatial location (x, 

y) in spectral band z. The estimate ˆ
td  is a linear function 

of ,t ku ; specifically, , ,
ˆ T

t t k t kd w u= , where .t kw  is the 

filter weight vector at index t. The components of 

,t ku represent the sample values at spatial location (x, y) in 

spectral band z-k with z=1,2 and 3, as well as the sample 
values at neighborhood location (y-1,x-1), (y-1,x), (y,x-1) in 
spectral band z. 

After an estimate ˆ
td  is computed, the error between 

the estimate ˆ
td  and the desired signal td  is computed, 

specifically, ˆ
t t te d d= − .  

This error value is used to update the filter weights. 
For the LMS algorithm, 

1, , ,t k t k t k tw w u eµ+ = −  

For the sign algorithm, 

1, , , sgn( )t k t k t k tw w u eµ+ = −  

In each case µ is a positive, scalar parameter (the step 
size parameter) that controls the trade-off between 
convergence speed and average steady-state error. A small 
µ results in better steady state performance but slower 
convergence. In some variants of these algorithms the value 
of µ changes over time. The sign algorithm has the 
property that under certain general assumptions, the weight 
vectors it produces become clustered around the optimum 
weight vector in terms of minimizing the mean absolute 
estimation error. For a sufficiently small adaptation step 
size parameter, the asymptotic mean absolute estimation 
error can be made to be as close as desired to the minimum 
possible [5]. 

To overcome problems of poor combinations of 
convergence speed and steady-state performance, a local 
mean subtraction method was used, motivated by [9]. In the 
local mean subtraction method, for each sample we 
compute a preliminary estimate using a fixed, causal, linear 
predictor involving only samples from the same band 
(purple cells in Figure 2). The preliminary estimate of 
sample s(x, y, z) is denoted by ( , , )s x y z  which is the local 
mean of sample values at (y-1,x-1,z), (y-1,x,z), (y,x-1,z) and 
(y-1,x+1,z). For our implementation we use a six-sample 
prediction neighborhood with three samples from the same 
band as the sample to be predicted, and one sample each 
from the three preceding bands (blue cells in Figure 2). 

All samples are corrected using the local mean 
subtraction method so that:  

 

is the corresponding input vector. The general rule is to 
adjust each sample in the prediction neighborhood by the 
preliminary estimate in the same band as the sample but at 
the spatial location of the sample being predicted. 
Handling Pushbroom Data  

As explained above, for each sample a local mean is 
computed as the average sample value of four adjacent 
samples in a causal neighborhood within the spectral band 
[15]. However, for data from pushbroom-type multispectral 
imagers, letting the local mean be equal to the previous 
sample in the same cross-track position (and in the same 





 
Figure 4: Algorithm Stages / Data Dependency / Available Parallelism: The top line of the figure gives the block names, the middle 
layer shows the data dependency, and the bottom layer lists the available parallelism. 

Since there is no interdependency between separate 
average values, we can parallelize this section across the 
full volume of the image. That is, the averaged value of any 
two pixels can be calculated in parallel. Restricting the 
threads within a block to all lie within the same pixel 
(across 224 bands), we maximize memory access locality. 
 
Predictor 

The predictor, due to the feedback caused by the weight 
update, has to process pixels serially. Parallelism along the 
band axis is possible however, but this is still the bottleneck 
of the algorithm. There is a subtle trade-off to make here, 
between reducing the amount of work done in the serial 
loop so that individual loop iterations take as little time as 
possible, and packing enough calculation into each loop so 
that the GPU has something to do while fetching from 
RAM. Normally, we would have enough threads that 
threads blocking on memory access would immediately be 
swapped out for ones whose data was available (trading off 
computation against memory bandwidth). 

We are limited in how many threads we can have 
(limited to the number of spectral bands), so we need to 
make sure that threads do as much work as possible for 
each memory read. For this reason, it actually turns out 
optimal to include the Golomb Power-of-2 (GPO2) code 
parameter estimator into the same loop as the predictor – 
even though the data that this calculation needs could be 
pre-calculated by the predictor, stored, and processed in a 
separate (much more parallel) kernel invocation. (Adding 
the estimator to the predictor barely increased the run time 
of the predictor stage). 
 
GPO2 Parameter Calculation. 

To dynamically determine the GPO2 parameter k we 
need to compute the base-2 log of a running average of the 
values to be encoded (delta), and this will give us a bound. 
That is, we need the smallest k such that 2k is greater than 
the running average delta value. Fortunately, CUDA comes 
to aid again, with the __nlz instruction, which counts the 
number of leading zeros of an integer. Equipped with this, 
it is trivial to compute the log, and extremely fast. 

Encoder 

The encoding stage is extremely simple. It takes in a 
delta value to be encoded, and the code parameter k. It is 
then just a matter of a few bit operations to derive the 
output codeword. Since output codewords have variable 
width, we need to record internally the output codeword 
length for use in the bit-packer, which is discussed in the 
next section. 

There is no dependency between the encoding of output 
samples, even across bands, once we have each delta and 
its code parameter. It makes sense, therefore, to pre-
compute these (remember, the code parameter calculation 
was rolled into the predictor) and run the encoder in 
parallel across bands and pixels. 
 
Packer 

The job of the bit packer is to take the variable length 
encoded delta values and write these out serially into a bit-
stream. While it looks like this is a classically un-
parallelizable process it can, in fact, be parallelized by first 
computing the indices in the output (packed) stream of each 
encoded delta value. This is simple: we take the lengths (in 
bits) of each encoded delta value and compute a running 
sum. While not fully parallel, a running sum (or scan-
reduce) can be implemented as a tree structured process. 
The THRUST library (included in the latest CUDA GPU 
toolkit) has optimized routines for doing just this and these 
are extremely fast [16]. 

With the output stream offset computed for each 
encoded output delta, a single GPU thread has only to read 
one encoded output value, split it (where the value strides a 
32-bit word boundary) across two output words, and bit-or 
the encoded value into the final output stream. The or 
operation must be performed atomically to prevent data-
corruption. This causes a performance issue on pre-Fermi 
architectures, but the Fermi’s caching removes this issue 
since we only need read/write atomically to shared RAM 
(the Fermi uses thread-shared memory for its cache) instead 
of GPU global RAM. 

Since each output value has at least 1 bit, were we to 
modify the thread indexing so that encoded values are read 



on a stride of 32, we would never have more than one 
thread accessing the same output word. That is to say: we 
pack encoded (but not packed) blocks 0,32, 64, etc on the 
first pass through the data – which guarantees that no two 
threads write to the same 32-bit output word in the same 
data-pass and so on for blocks 1, 33, etc on the next pass. 
This removes the need for an atomic operation, but destroys 
the cache coherence. On pre-Fermi architectures (compute 
capability 1.3 and lower) this trade-off is worth making, but 
on the Fermi (compute capability 2.0 onwards) it is not 
worth it. 

By breaking out the serial portion (the cumulative sum 
operation) and running it first, we can run the bit packer in 
full pixel & band parallelism. 
 
Output Formatting 

Finally, the output words are bit-reversed (hardware 
support to the rescue again with the fast __brev 
instruction), and byte shuffled to correct big-endian / little-
endian compatibility. 

This has to be performed after the bit packer has 
completed (but the bit-reversal can occur during bit packing 
with a suitable modification to the shift and masking 
operations), but this stage can again be performed with the 
full parallelism available in the image data. 

4. PERFORMANCE  
The two main reasons for moving to GPU are speed, 

and to reduce the CPU loading. We have evaluated the 
performance on a mobile and desktop platform. 

The mobile test system used was: 
a) Intel® Core™ i7 Processor 2760QM (base clock 

speed 2.40Ghz) 
b) NVIDIA® GeForce® GTX 560M (1.5GB RAM) 
The desktop test system used was: 
c) Intel® Xeon™ Processor X5690 (base clock speed 

3.46Ghz) 
d) NVIDIA® GeForce® GTX 580 (1.5GB RAM) 
e) NVIDIA® Tesla® C2070 (6GB RAM) 
 
The test data was an uncalibrated AVIRIS hyperspectral 
image from Hawaii with dimensions 614 x 512, with 224 
spectral bands, and with 12-bits per samples [17]. For this 
specific image, the output was compressed to 25% of the 
original packed size (3.02 bits per pixel, a factor 3.98 
compression). 

With the implementation described above, the CPU is 
only used for host memory allocation and file access (at 
both the input and output). Peak CPU utilization is typically 
less than 3% for the mobile implementation due to fast 
memory access thanks to the Solid State Drive used in the 
mobile platform, so this is a substantial benefit (Figure 5). 
Note that by using the CUDA support for non-paged host 
memory, very little CPU work is involved in the data-
transport to and from the GPU. 

Shown in Table 1 is a breakdown of time spent on each 

stage of the algorithm on the mobile platform. Only the 
File Load and File Store stages use the CPU at all, 
demonstrating the low CPU utilization. Very clearly, the 
bulk of the time is taken in the predictor stage, as this is the 
stage with the least available parallelism. The time is 
slightly better than the FPGA implementation on a Virtex-4 
presented in [18]. 
 

 
 

 
Figure 5 Timing breakdown between CPU and GPU of the GPU 
implementation of the Fast Lossless Compression on both the 
NVIDIA mobile board (GTX560M) and desktop board (GTX580).  
 
Table 1: Timing breakdown by algorithm stage for GPU. 

 GTX560M GTX580 

Algorithm Stage Total 
Time (ms) 

Time 
per 

sample  
(ns) 

Total 
Time 
(ms) 

Time 
per 

sample  
(ns) 

    

File Load (CPU) 48.24 0.69 86.88 1.23 

Input Formatting 53.33 0.76 4.74 0.07 

Local Average 70.79 1.01 30.21 0.43 

Predictor & Entropy 
Estimator 

1253.17 17.80 1116.69 15.86 

Encoder 59.51 0.85 22.55 0.32 

Output Index Sum 114.12 1.62 32.99 0.47 

Packer 96.21 1.37 80.10 1.14 

Output Formatting 103.97 1.48 65.27 0.93 

File Store (CPU) 111.01 1.58 151.93 2.16 

Total time 1910.35 27.13 1591.36 22.60 

 
For comparison, the same algorithm recoded to run 



without CUDA acceleration running on 1 and 4 CPU cores 
(Multicore version coded using OpenMP) both on the 
mobile and desktop platform is shown in Figure 6 and in 
Table 2. 
 

 
Figure 6: Speedup comparison of the Fast Lossless Compression 
Algorithm on both the mobile platform with GTX560M GPU and 
the dual hex core CPU (2.4GHz) and the desktop platform with 
the GTX580 and the Tesla C2070 GPUs and the quad code CPU 
(3.47GHz). 
 

This result demonstrates that the GPU implementation 
could accommodate real-time compression for 
hyperspectral instrument which has normally throughput of 
800 Mbits/sec e.g. through multiple GPUs or further code 
optimization.  
 
Table 2: Speedup comparison of GPU against CPU 
implementations 

 Speedup Time (s) Speed 
(Mbit/s) 

Speed 
(MSamp/s) 

GPU GeForce GTX 580 725% 1.57 583.08 44.85 

GPU GeForce GTX 560M 596% 1.91 479.29 36.87 

GPU Tesla C2070 486% 2.34 391.21 30.09 

Dual Hex Core (12 cores) 309% 3.68 248.76 19.14 

Dual Hex Core (8 cores) 272% 4.19 218.48 16.81 

Dual Hex Core (4 cores) 259% 4.39 208.53 16.04 

Quad Core (4 cores) 196% 6.87 133.25 10.25 

Dual Hex Core (1 core) 115% 9.9 92.47 7.11 

Quad Core (1 core) 100% 11.38 80.44 6.19 

5. FUTURE WORK 
Commonly one might divide an image into smaller 

pieces (segments, e.g., consisting of 32 lines of image data) 
and apply compression to separate segments independently 
(i.e., reinitializing the predictor and GPO2 parameter 
estimation for each segment). For example, this might be 
done to limit the effects of data losses if the compressed 
data is transmitted over a noisy channel. This type of 
segmentation gives another axis for potential 

parallelization. It would be possible to use this to improve 
the GPU utilization of the bottleneck stage by allowing 
threads from separate blocks to be scheduled at the same 
time. Many high-end dedicated GPGPU platforms contain 
several GPU cards – the problem could easily be split task-
parallel across separate GPUs, again using the blocks as the 
axis for parallelization. The multicore GPP implementation 
is under-tuned compared with the GPU version and needs 
to be improved. 

It is difficult to estimate the performance gain that 
could be gained by some of these optimizations but splitting 
the problem task-parallel over two GPUs would give almost 
a factor 2 (the file access portions would not parallelize). It 
is harder to estimate the performance impact of, say, 
splitting the image into 16 blocks and operating on all the 
blocks in parallel on a single GPU. A factor 16 is unlikely, 
but a factor 2-4 is plausible (the multi-core GPP 
implementation showed roughly square root scaling with 
increases in available parallelism, for comparison).  

6. SUMMARY 
We presented a GPU implementation of the JPL-

developed Fast Lossless multispectral and hyperspectral 
data compression algorithm, currently being formalized as 
an emerging CCSDS standard [19]. The implementation 
targets a desktop and mobile GPU hardware from 
NVIDIA®. For the desktop implementation, the NVIDIA® 
GeForce® GTX 580 provides an acceleration of at least 6 
times the software implementation on a single core Intel® 
Xeon™ Processor (clock speed 3.47GHz) while for the 
mobile implementation, the NVIDIA® GeForce® GTX 
560M provides an acceleration of at least 7 times the 
software implementation on a single core Intel® Core™ i7 
Processor (clock speed 2.40GHz). These results make the 
use of this compressor practical for satellites and planet 
orbiting missions with hyperspectral instruments. Future 
development will provide multiple implementations on 
GPU and multicore GPPs and options to deploy various 
versions of the algorithm to accommodate data from 
different instrument types. 
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