Improved Ozone Profile Retrievals Using Multispectral Measurements from NASA “A Train” Satellites
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Introduction

Knowledge of the vertical distribution of ozone over the long
term is ial for i igatil i science objecti y
e.g., impacts of tropospheric ozone on air quality and climate;
response of ozone to rapid industrialization in Asia; reductions in
ozone precursor emissions in North America and Europe; changes in
burning due to climate and agricultural practices.

The Aura Tropospheric Emission Spectrometer (TES) :

» provides well-validated global survey record of tropospheric ozone

» has advanced a number of science objectives including increased
tropospheric ozone trends over Asia possibly connected to local
ozone precursor emissions (NOx) [Figure 1].
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Figure 1. (Upper panel) the spatial
difference between bottom-up anthropogenic
11 NOx emissions (1° x 1.25° grid) [Figure 1 of
\] Lamsal et al, 2011]; ( Bottom panel) TES
ozone trend over Asia (Jan. 2005 - Jan.
2011): [O,] record over Asia [Verstraten et
al., in preparation 2013].

» Temporal/spatial availability of TES data: (1) 2005 — 2009 within
designed life time provides consistently high sampling; (2) 2010 —
2012 exceeded designed life time did not cover high latitude; (3)
2012 — focused on targeted observations
» Limits the full potential of using TES measurements to assess

long-term changes in ozone and its relationship to climate.
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Retrieval Algorithm Inheritance

The multi-spectral retrieval is a rapidly maturing

Retrieval Algorithm Inheritance

Multi

[Worden et al., 2007b; Landgraf and Hasekamp 2007; Fu et al., 2013;
Worden et al., 2013; Cuesta et al., 2013].

Th ical study from sy retrievals

Synthetic estimated ozone from
joint OMITES closely represent
the GEOS-CHEM fields.
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Figure 3. (first panel) A Curtain Plot of the GEOS-CHEM ozone fields used for the
study. (2™, 3 and 4" panels) The synthetic estimated ozone from joint OMI/TES,
TES alone and OMI alone accordingly [Worden et al., 2007].

Evaluations of retrievals using TES/OMI measured radiances:
Comparing the sonde measurements

Figure 4. Left: (A-C panels) ozone profiles; (D-F panels) differences beween
satellite estimates and sonde profiles Right: (A-C panels) Averaging kemels from

surface to 10 hPa; (D-F panels) zoom in view of surface to 100 hPa [Fu et al., 2013]
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There are needs for creating a new global decadal tropospheric
ozone profile products [Table 1] by combining collocated
measurements from NASA “A-Train” (within ~10 minutes) of

» Aura Ozone Monitoring Instrument (OMI)

» Aqua Atmospheric Infrared Sounder (AIRS)

» Aura Microwave Limb Sounder (MLS)

NASA “A-Train” Satellites

> Afternoon constellation

» Sun-synchronous orbit

> Altitude: ~ 690 Km

» Daily crosses equator
time

Figure 2. Artist's Concept of the A-Train constellation of satellites. Credit: NASA.

Table 1. The Temporal and Spatial Coverage together with the Vertical
Sensitivity of Retrieved Ozone Profiles among NASA “A Train”
Satellites.

N Repeat | [O,] Degrees of | Data
ear Cycle | Freedom | Product
Data Set Coverage Reference
Day | Trop. | Stra. | Ver/Year
OMVAIRS/MLS | 2004 - Present 1 38 91 | viozome This Work
G5 2004 - 2008 Worden, et al., 2007
TES SO 2004 — Now B uw &0 LD Boxe et al., 2010
GS 2004 - 2008
TES/OMI S5 2004 - 2o 1 NA 90 | vaa2013 | Fueral,2013
MLS 2004 - Present 1 10 50 | vaozomg | vesey etal, 2008
Lu ot l, 2010 a
omie 2004 - Present 1 05 10 | veo:zo1s | G etel 2010 e
ARS 2004 - Present 16 20 50 | v10:204 | Susskind of al, 2003

(1) GS: global survey; SO: special observations for regions

> Surface and boundary layer

1 ozone sonde measurements are
well-correlated.

» Moderate bias and significant

1 RMS reflect in part lateral
mixing.

» TES+OMI correlation and bias
consistent with precision.

Figure 5. Correlation between TES/OMI and Sonde measurements.

Evaluations of retrievals using TES/OMI measured radiances:
Comparing the USA EPA-AQS surface site measurements
Satelte vs. AQS

» TES+OMI retrieval show better
agreement with AQS than TES or
Rl OMI alone.
! » The agreement between satellite
observations and USA EPA-AQS
sites has regional dependency
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Figure 6. Correlation among joint TES/OMI, TES alone, OMI alone and EPA in-situ

measurements over USA During August 2008.

| retrieval algorithm has already been developed for
IASI-GOME2 instruments on MetOp satellite, an European
tellite in the Si ynch orbit.

(GOME.2 Surace -3 km s ) CHMERE'AVK. Surace -3 km as
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retrievals have a strong
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Figure 7. Ozone fields near surface ~ “y,: 3

estimated from IASI+GOME2
measurements and simulated using
CHIMERE model [Cuesta et al.,
2013).
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Development of Joint OMI/AIRS/MLS Retrieval Algorithm

The joint OMI/AIRS/MLS retrieval algorithm, which applies the optimal
estimation method [Rodgers, 2000], is being developed from TES/
OMI work and combines: (1) measured OMI/AIRS spectral radiances;
(2) a priori ozone constraints in the upper troposphere and
stratosphere provided by MLS assimilated ozone fields. It minimizes
the following cost function to find the best estimate state vector X.

€00 =xx s +x %l H Lo = Lo,

@ priori MLs omr

+‘ Equation 1

Lo ks = L anes (X
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» Joint AIRS/OMI [Figure 9]
» differ from the a priori profile (purple)
» closely match to sonde profiles (green and black)
> has similar vertical resolution to Aura TES
> has similar error characteristics to Aura TES
» has slightly different biases
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Figure 9. Ozone measurements over Huntsville, USA on August 16, 2008.

" ‘Ensl mLs
3#_2;'

Development of Joint OMI/AIRS/MLS Retrieval Algorithm

» Joint OMI/AIRS/MLS

» incorporates the assimilated Aura MLS ozone profiles [Stajner
et al., 2008; Wargan et al., 2010] into the joint retrievals
(Equation 1)

» The vertical resolution and error characteristics can be
substantially improved, compared to joint OMI/AIRS
measurements (Figure 10).

» This increased sensitivity is critical for evaluating the radiative
response of ozone to surface emissions and the role of
stratospheric/tropospheric exchange, long range transport, and
tropical fires (or pyro-convection) on the tropospheric ozone
distribution.
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Figure 10. Ozone soundings with improved vertical sensitivity and reduced
measurement uncertainty using multi-spectral observations over Huntsville, USA on
August 16%, 2008.

» The joint OMI/AIRS/MLS data products, which we are planning to
create, consist of two categories: “global survey” (GS) and
“regional maps” (RM). Both categories will have temporal coverage
from 2004 to present day.

Summary and Future Work

» This work presented an approach/algorithm to retrieve decadal
global ozone record using NASA “A Train” measurements.

» The sample retrievals over Huntsville, USA on August 16%, 2008
indicated the feasibility of obtaining high vertical resolution ozone
profiles in both stratosphere and troposphere by combining
multiple sensors on NASA “A Train” satellites.

» This new algorithm, which is inherited from the validated joint
TES/OMI retrieval algorithm, is being developed/optimized/test.
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