Mars Science Laboratory Entry Descent and Landing Simulation Using DSENDSS

P. Daniel Burkhart
Jordi Casoliva
Bob Balaram

Jet Propulsion Laboratory, California Institute of Technology
Overview

• MSL EDL Overview

• DSEND5 Description

• MSL Specific Models
 – MSL Atmosphere Model
 – MSL Aerodynamics Model
 – Terrain Model
 – MSL Parachute Model
 – MSL Device Models (IMU, RCS, TDS, MLE)
 – MSL Flight Software
 – MSL Telecom Module

• MSL High-Fidelity Simulation
 – Simulation Initialization
 – EDL Trajectory Nominal Runs
 – EDL Monte Carlo Runs

• DSEND5 Independent V&V

• Summary and Conclusions

Topics for this presentation
In paper but not discussed here
Altitude is DIMU altitude above ground.
Velocity is DIMU velocity relative to the ground.
DSEND5 Description

- Dynamics Simulator for Entry, Descent and Surface landing

- Framework for modeling aero-assisted simulations from simple single-body systems to multi-body, flexible systems.

- Extensive library of models for sensors, actuators, environment, environment interaction, and avionics elements.
 - Framework for linking user-supplied code and built-in functions to build a complete simulation.
 - Includes Monte Carlo and parametric simulation capability.

- For MSL, core simulation functions were augmented with project-specific models
MSL Specific Models (1/2)

GNC delivered models
- FSW G6.0
- RCS, DIMU device model CBMs
- Mass/CM/Inertia: MP file (CC)
- Sep spring data (CC)

Aerotherm Environment
- Heating Indicators (CC)

TPS Response: N/A

Aerodeformation:
- N/A

Aerodynamics
- **Aero/RCS interaction**
 - Aerodatabase 2.1

Atmosphere
- Mesoscale Tables
- MarsGRAM 2005

SUFR (EBM)
- Mass/CM/Inertia: MP file (cc)
- Sep Spring Data (cc)
- FSW trigger

Deployment
- FSW trigger

Inflation
- Area scaling vs time (memo/CC)

Strength
- Stacked max area/drag for loads

Inflated Performance
- Tablular aero (memo/CC)

Multi-body model
- FSW trigger
- Post-HGS capsule aero from ADB
- No sep springs (on purpose)

February 3, 2015
MSL Specific Models (2/2)

TDS
- Not modeled
- Nav Filter
- Output not used

Trigger
- FSW trigger modeled
- Multi-body model
- No sep aero interaction
- Parachute aero: memo/CC

Subsonic Aero
- " $S&' ()"

Propulsion System
- Lumped thruster model

Atmosphere
- Mesoscale Modeling
- MarsGRAM 2005

Backshell Separation

Powered Descent

Sky Crane

Subsonic Aero
- " $S&' ()"

Propulsion System
- Lumped thruster model

FSW
- FSW Powered flight trajectory profile flown with truth data

Terrain
- MOLA (up to 1/128)
- 1m DEM

Flyaway
- " $S&' (X"

Radar Data Collection

February 3, 2015
Components: triple bridle, single riser, canopy plus shroud lines

- Each is a rigid body connected to the adjoining body by a ball joint
 - Bodies can rotate in any direction, no relative translation
- Joint between bridle and riser is free to move, all others locked
 - Two rigid bodies: capsule/bridle and riser/parachute
• Built-in components with MSL-specific aerodynamics and mass properties
• Checkout example: compare simulation output aerodynamic axial coefficient with hand-computed values
• RCS stand-alone routine delivered and integrated into DSENDSS
• Checkout example: fire a 1s pulse with a single thruster, compare performance with expected values (thrust, rise time, delay, etc)
MSL Simulation

- **Full-fidelity simulation**
 - Single-run nominal cases and Monte Carlo
 - Results compared between POST and DSEND5 at parachute deploy and landing

- **Targeting simulation**
 - 3DOF simulation without closed-loop functionality used for cruise maneuver design and real-time Doppler event detection
 - Entry guidance design using POST was performed using the trajectories from cruise maneuver design
Open-loop comparison: As part of reference trajectory design, compare output from DSEND5 with POST entry guidance design trajectories

Common models: atmosphere and winds, capsule aerodatabase, mass properties
- Monte Carlo comparison at parachute deploy: equivalent modeling in both simulations to this point
- Small (400m) difference in mean values
DSEND5 Independent V&V

- Monte Carlo comparison at landing
- Major modeling differences: parachute model, powered flight
- The MSL project concluded the independent V&V activity was successful.