
AAS 13-463

MANAGING COMPLEXITY IN THE MSL/CURIOSITY ENTRY,
DESCENT, AND LANDING FLIGHT SOFTWARE AND AVIONICS

VERIFICATION AND VALIDATION CAMPAIGN

Aaron Stehura∗ and Matthew Rozek†

The complexity of the Mars Science Laboratory (MSL) mission presented the Entry, De-
scent, and Landing systems engineering team with many challenges in its Verification and
Validation (V&V) campaign. This paper describes some of the logistical hurdles related to
managing a complex set of requirements, test venues, test objectives, and analysis products
in the implementation of a specific portion of the overall V&V program to test the interaction
of flight software with the MSL avionics suite. Application-specific solutions to these prob-
lems are presented herein, which can be generalized to other space missions and to similar
formidable systems engineering problems.

INTRODUCTION

With its rover Curiosity and the largest, most advanced set of scientific instruments ever sent to the surface
of another planet, the Mars Science Laboratory (MSL) mission seeks to assess the habitability of the Martian
environment for past or present life. A key challenge for any mission with the goal of interplanetary surface
exploration is proceeding safely through the process of Entry, Descent, and Landing (EDL) – entry into and
descent through the extraterrestrial body’s atmosphere, followed by landing as close as possible to a specified
target. The combination of MSL’s desire to deliver the largest landed payload mass ever attempted to the
Martian surface while guaranteeing an unprecedented level of accuracy and precision resulted in a more
complex EDL system architecture than that employed by any other robotic visitor to the Red Planet.1, 2 The
responsibility of MSL’s EDL systems engineering team was to design, specify, verify, and operate a system
that would fulfill this architecture and land the Curiosity rover safely on the surface of Mars.

A tremendous effort was contributed to this undertaking, and a large number of challenges had to be
overcome. Increasing landed payload mass resulted in the adoption of the pioneering sky crane approach
during the final moments of powered descent, while improving landing accuracy necessitated the adoption of
hypersonic guided entry,3 more like the Apollo-era systems that brought astronauts safely back to Earth rather
than the ballistic entries of some previous Mars landers. These were just a few of the “firsts” for this new
landing system. For approximately 2.5 years leading up to Curiosity’s successful landing on August 6, 2012,
we and other members of the EDL systems engineering team were tasked with the following charter: prove
with reasonable confidence and provide objective evidence that the EDL flight software (FSW) performs all
of the necessary behaviors to accomplish a successful landing, specifically in regard to the interaction with the
MSL flight system avionics suite. This paper describes some of the challenges faced in the implementation
of this charter, as well as the solutions that were devised to surmount these challenges.

In the “Problem & Scope” section, we begin by discussing the overall MSL EDL Verification and Valida-
tion (V&V) effort and its associated framework. We detail our slice of this effort and the elements inherited
as a starting point for this work, as well as a high-level description of major problems encountered along the
way. The “Avionics & EDL FSW Architecture” section provides some background information on MSL’s
flight system architecture, focusing on the primary avionics components, sensors, and actuators that were
∗Systems Engineer, Jet Propulsion Laboratory – California Institute of Technology, Pasadena CA, 91109.
†Systems Engineer, Jet Propulsion Laboratory – California Institute of Technology, Pasadena CA, 91109.

1



important during EDL. It also summarizes elements of MSL’s EDL FSW, focusing on the EDL Timeline and
the Guidance, Navigation, and Control (GNC) Mode Commander – the two most critical software modules
controlling the EDL behavior. The main body sections (with names starting “Challenge 1”, “Challenge 2”,
and “Challenge 3”) present the problems encountered in more detail, along with the solutions devised. We
end with a “Summary & Conclusions” section.

PROBLEM & SCOPE

MSL Systems Engineering Process Background

At a high level, the MSL project was divided into three phases: Launch/Cruise/Approach, EDL, and Sur-
face. The project mandated that all three phases use an MSL systems engineering process adapted from
NASA’s standard.4, 5 Beyond that, it was up to the phase to determine how best to manage their V&V ef-
fort. Each phase had a development/managerial lead that was responsible for enforcing the MSL systems
engineering process through deputized V&V leads.

The basis for system definition in the MSL process was a series of configuration, functional, behavioral,
and performance requirements that were defined in documentation and tracked using the Telelogic (now IBM)
DOORS software∗ in a module called “MSL 1.0”. Requirement closure planning and progress was tracked
through a set of artifacts called verification items (VIs). VIs were a superset of requirements that contained
both one-for-one copies of requirements and other analyses/verifications that engineers deemed as necessary
deliverables in the verification effort. The VIs were tracked in a separate DOORS module called “MSL
2.0”. All VIs had to be accounted for with a documented verification approach, accompanying data, and a
variety of metadata (owner name, targeted closure date, actual closure date, managerial approver, notes, etc).
Requirements remained the controlling source of system specification, but VIs were used as the mechanism
for tracking verification progress.

During testing/analysis in support of VI closure, any major problems that were encountered required the
generation of a Problem Failure Report (PFR). If a change needed to be made to the system, whether to
remedy the issue contained in a PFR or as a result of some other desire to alter the design, an Engineering
Change Request (ECR) was filed and cleared with the Change Control Board (CCB). Changes to requirements
in their defining documents required an ECR – once this ECR was passed by the CCB, the corresponding
VI in the “MSL 2.0” database would then be updated as well. In cases where test/analysis resulted in a VI
not passing (tracked as “failed,” which meant its associated requirement would not be met), a waiver could
be filed for consideration by a waiver board consisting of project managers, high level technical staff, and
mission assurance personnel. If the waiver passed, the failure was considered “use-as-is” and the underlying
issue was not remedied; if denied, a change was implemented to fix the issue. ECRs and waivers were
approved in the presence of cost, schedule, and technical risk considerations.

EDL V&V Framework & Initial Conditions

The complex nature of the MSL spacecraft, the addition of new landing technologies, and the infeasibility
of executing an end-to-end EDL validation test under representative dynamic conditions forced the develop-
ment of a non-standard V&V approach for MSL’s EDL system.6 Kornfeld et al. describe how, given a set of
EDL system requirements, a V&V framework was developed to span the space of required V&V activities.
This development was broken into two key components as follows:

Domain Decomposition. The first key component of this framework was the decomposition of the EDL
V&V effort into three orthogonal domains – the subsystems, flight dynamics, and flight system domains.
The subsystems domain included all hardware and software subsystem and unit-level functionality. The flight
dynamics domain addressed the external behavior of the spacecraft and how it interacted with its environment.
The flight system domain encompassed all internal system-level behavior of the spacecraft, specifically the
hardware/software and software/software interactions. In verifying and validating the EDL FSW and its
interaction with the suite of flight system avionics, the work presented in this paper was solidly in the flight

∗All references to DOORS in this paper reflect the 8.3.0.2 version of the software.

2



system domain. However, there was cross-pollination – characterization activities within the flight dynamics
domain informed certain elements within the flight system domain and vice versa. For instance, continual
testing characterized the behavior of the flight system, which allowed the development of realistic spacecraft
models in flight dynamics simulations; this was an iterative relationship.

Once the domains were devised, the approach used to verify and validate their contents was customized
based on the domain. Because a single end-to-end test of the EDL system could not be performed, multiple
test venues with varying levels of fidelity were created with the domain decomposition in mind. For instance,
flight dynamics tests required high-fidelity reproduction of the interactions between the flight vehicle and its
environment; furthermore, the capability to vary these dynamics in a Monte Carlo sense was necessary to gen-
erate believable performance estimates. This was less important for flight system testing, which emphasized
accuracy in software/software and software/hardware interactions.

During development of the EDL V&V framework, preliminary plans for a test campaign also took shape. A
number of opportunities were reserved for flight system testing using the actual spacecraft, but it was assumed
that most of the testing for elements within this domain would occur on one of two lower-fidelity venues – the
first composed primarily of engineering model hardware running the actual FSW, and the second a software-
only venue running the actual FSW on simulated hardware. The selection of venues available for flight system
testing and how they were used is detailed later in the section entitled “Challenge 3: Test Execution & Data
Analysis Management.”

EDL Event Tree. The second key component of the V&V framework was the development of an EDL
event tree to complement the set of EDL system requirements. Instead of depending on the flowdown of
requirements to fully describe the necessary elements in a successful EDL system, a top-down approach was
used to generate the event tree – each major segment of the EDL timeline was separated into a set of discrete
events, the success of which were required for a successful EDL. The elements of the event tree were grouped
into a set of EDL Functional Certifications (EFCs). Each EFC was also tracked as a VI in the “MSL 2.0”
DOORS repository.

Task & Problems Encountered

Our task was to determine how best to flesh out and execute the flight system test campaign with an end goal
of verifying that the EDL FSW would perform as specified while directing the actions of the spacecraft. We
were to do this while reducing risk, increasing confidence, meeting milestones, and communicating progress.
While working this complex task, we encountered a number of problems. In this paper, we present detailed
descriptions of these systems-oriented issues and the approach taken to solve them.

We address five main problems:

1. Requirement documentation, organization, & understanding, where there existed a large number of
requirements whose rationale or context was often not clear;

2. Requirement closure and tracking progress, where workflow was not well-defined and existing tool set
was onerous to use;

3. Executing tests in three different venues with varying levels of hardware fidelity, as well as having
different types of test objectives requiring various configurations of those venues;

4. Sheer volume of testing performed, as well as generation of an extraordinary amount of data and the
EDL team’s inability to analyze this data manually;

5. Due to schedule pressure, need to increase test throughput (execution and analysis) to complete test
objectives.

And we detail approaches used to solve these problems:

• A method for functional categorization of requirements;

3



• A method for priority categorization of requirements;

• A method for adapting the Atlassian JIRA∗ system for requirements management (application of meta-
data, review, and change processes), input & review of closure information, and tracking closure
progress;

• Developing an automated, configuration-controlled test execution framework;

• Developing a suite of tools useful in test analysis and data management.

It is our belief that the solutions and lessons learned presented in this paper can be generalized from
their specific application on MSL EDL for use by other space missions undergoing the systems engineering
process, and likely to other complex systems.

AVIONICS & EDL FSW ARCHITECTURE

Avionics Architecture

Figure 1. High level avionics block diagram for the MSL system.

The MSL spacecraft was divided into three physical stages: the cruise stage, descent stage, and rover. An
aeroshell (composed of a backshell and a heatshield) encapsulated the descent stage and rover to protect it
during atmospheric entry, but this hardware did not contain any avionics elements crucial to system operation.
The avionics backbone was comprised of two Rover Compute Elements (RCEs) on the rover (one prime and
one backup), and two Power & Analog Modules (PAMs) on each of the three stages (on each stage, one
acting as prime and the other as backup), as shown in Figure 1. The RCEs contained the RAD750 flight
computers, main system memory (SDRAM + NAND flash), serial data interfaces to the science instruments
and engineering cameras, and serial data interfaces to X-Band and UHF radios on the rover. The PAMs were

∗JIRA version v4.4#649-r158309 was used.

4



the primary load/relay switching devices on the spacecraft, and also collected a majority of the analog and
PRT (platinum resistance thermometer) temperature telemetry. Each PAM also contained an interface slice
called the remote engineering unit (REU) that housed EEPROM instructions in an always-powered section
to control the lowest level system wakeup/shutdown behavior. Aside from this, each PAM also supported
specialized functions on each stage: the cruise PAMs interfaced with cruise attitude determination sensors
(sun sensor and start tracker) and also with the cruise thrusters; the descent PAMs interfaced with the descent
reaction control system (DRCS) thrusters; and both the descent PAMs and rover PAMs interfaced with the
pyro firing avionics on their respective stages.

The core avionics assemblies were all connected via two sets of dual-redundant 1553 communication
buses. The first set of buses connecting the RCEs to the Cruise PAMs ran at 8Hz interrupt cycles, and the
other set connecting the RCEs to the rover and descent PAMs ran at 64Hz interrupt cycles. The controllers
for both sets of buses were housed in the RCEs. Given that the core avionics architecture was fully redundant
and cross-strapped, redundancy arbitration behavior was necessary to control which devices were prime and
which were backup at any given time, as well as to manage the communication interfaces between them.
The RCEs contained some level of hardware arbitration to distinguish between prime and backup units, but
a majority of the arbitration was accomplished via behavior in the FSW running on the flight computers in
the RCE. The large degree of redundancy in the avionics infrastructure made testing the system especially
challenging.

On top of the core avionics assemblies, other sensors and actuators were included to enable the overall
EDL behavior. The descent stage contained two redundant inertial measurement units (IMUs) and a landing
radar7 (also known as the terminal descent sensor or TDS) that acted as EDL sensor inputs. The IMU
provided 200Hz linear accelerations (X, Y, & Z) and 3DOF accumulated angle measurements, which were
routed directly to the RCEs via the descent motor control assembly (DMCA). The IMU measurements were
routed through the DMCA so this unit could perform the descent stage flyaway maneuver post-touchdown
and rover separation. The TDS was a six-beam Ka-band radar that provided line-of-sight range and velocity
measurements at 20Hz (for each beam). The TDS data was routed to the RCEs via the 64Hz 1553 bus. The
descent stage also contained two sets of thrusters used for vehicle control during EDL.8, 9 The first, the DRCS
thrusters, were a set of eight 250N mono-propellant thrusters mounted on the top of the descent stage with
the nozzles protruding through the backshell. The DRCS was operated in an on/off pulsed mode to control
the entry vehicle’s attitude between cruise stage separation (exo-atmospheric) and backshell separation. The
second was a set of eight Mars Landing Engines (MLEs) mounted on the bottom of the descent stage with the
thruster nozzles also pointed in the downward direction. The MLEs were also mono-propellant thrusters like
the DRCS, but were instead throttleable in the usable range of approximately 400 to 3000N. The MLEs were
used post backshell separation to control the trajectory of the descent stage and slow the vehicle down to an
appropriate speed for landing. The MLE throttles were controlled via commands from the DMCA, which
was in turn commanded by the GNC software running on the RCEs.

Along with sensors and actuators, the spacecraft included a set of radios that were used to communicate
with Earth and Mars-orbiting relay satellites during entry. There were dual redundant UHF-band transceivers
on the rover that transmitted through a series of waveguides to different antennas on each stage (depending
on the spacecraft configuration at the time), and an X-band transceiver (the DSDST) on the descent state to
transmit tone information direct-to-earth.10

EDL Flight Software Architecture

At its lowest level, the EDL behavior was controlled by a piece of software called the EDL Timeline that
stepped through a series of discrete events. Each event had a corresponding action, which were relatively
simple behaviors such as changing a software state, powering on a device, or firing a pyro to initiate mech-
anism separation. As the EDL Timeline executed, the events were stepped through serially and triggered
at specific points in time according to a set of defined timing constraints. When each event was triggered,
the Timeline waited for responsible FSW modules to complete the triggered behavior and send a reply of
completion (either successful or not), before moving on to the next event. The Timeline did not include retry
logic for replies where the status was unsuccessful; all retry logic and fault protection was included in the

5



lower-level FSW behavior that the Timeline triggered.

The Timeline worked in concert with another piece of software called the GNC Mode Commander (MC),
which was a large state machine for determining which GNC algorithms to use at certain points in the EDL
sequence. For example, the GNC MC contained different states for exo-atmospheric attitude control, target
range control, target heading alignment, post-chute oscillation damping, MLE descent profiles, and so forth.
Some GNC MC state changes were triggered by atmospheric conditions, but others were triggered by events
programmed into the Timeline. Conversely, changes in the GNC MC state triggered some groups of events
in the Timeline. Therefore, the Timeline and GNC MC worked in a hand-shaking process to execute the
entire sequence of behaviors necessary to complete EDL successfully. More information on the EDL FSW
is given here,11 and more information on the GNC algorithms used is given here12 – both of which are being
presented at this conference.

CHALLENGE 1: REQUIREMENTS DOCUMENTATION, ORGANIZATION, & UNDERSTAND-
ING

The EDL flight system systems engineering task was underscoped for a period of time. As a result, there
existed a poorly defined set of requirements, some of which were difficult to understand or lacked explanatory
rationale/context. Our task included addressing the documentation, organization, and understanding of the
EDL flight system requirements so that the overall V&V task could make progress.

Requirements Documentation

Problem. The first issue faced was that all of the flight system functional requirements were not yet clearly
defined and captured in documentation, even though a majority of the corresponding functionality was already
implemented. There previously existed a set of EDL requirements in the “MSL 1.0” DOORS repository that
defined general EDL behavior, but these were not a complete set of functional requirements.

Solution – Functional Documentation. To address the lack of requirement documentation, the EDL flight
system leveraged the MSL Functional Design Description (FDD) documentation process. An FDD was a
document that specified the behavior to be implemented through MSL FSW. Each FDD contained prose
descriptions, diagrams, and reference information for desired behaviors in a particular area of FSW (encom-
passing one or more modules). The FDD content also contained requirements that were associated with the
functional descriptions. The requirements within the FDDs were the controlling source of functional specifi-
cation, but each requirement was also tracked as a VI in the “MSL 2.0” DOORS database. Across the project,
a total of 46 FDDs were written for approximately 150 FSW modules, with each FDD containing anywhere
from 10 to 100+ requirements.

Figure 2. Table showing EDL flight system VIs organized by their controlling documentation source.

6



Specifically in the EDL flight system domain, there were a total of five FDDs: EDL Events and Control
(Timeline); EDL Guidance, Navigation, & Control Sensors; EDL Actuators; EDL Communications; and
EDL MEDLI (MSL EDL Instrumentation).∗ As can be seen in Figure 2, the FDDs provided a very large
portion of the overall EDL flight system VI set (582 of 740, almost 80%). This helped immensely in provid-
ing documentation for the verification coverage that was necessary to ensure the system would perform as
expected.

Requirements Organization

Problem. Given a documented set of requirements and VIs, the next challenge we faced was how to deal
with the logistics of having such a large set. Our main goal was to organize them in such a way to facilitate
closure. To do this, the work needed to be divided amongst members of the EDL flight system team. It was
important to balance the workload, but it was even more important to have the most knowledgeable people
for a particular subject area assigned to close the VIs in that subject area. This would provide the greatest
likelihood of finding errors in the design/implementation should any exist.

Along with facilitating closure, there were also secondary objectives to organize the VIs in a manner
that improved test planning (with respect to determining which should be tested/reviewed/closed next) and
expedited communication of closure progress. A traditional burndown curve is a good way to communicate
overall progress, but it does not give the fidelity to determine exactly what areas need more attention (time
and personnel) to stay on track.

Solution – Functional and Priority Categorizations. To address this problem, the VIs were divided into
separate functional areas at two different levels. The first level split the VIs into bins called verification
activity groups (VAGs), which essentially followed the functional areas as defined by the FDDs. As a general
rule, any VIs that were not derived from requirements in one of the five EDL FDDs were mapped into the
corresponding VAGs for the FDDs. However, because the set of VIs associated with the Timeline FDD was
still quite large, it made sense to divide it further into five separate VAGs, as seen in Figure 3.

Figure 3. Table showing EDL flight system VIs organized by their VAG.

The Timeline Action VAG contained a VI for each type of discrete low-level action, such as powering on
a certain avionics box or commanding the GNC MC into certain modes, programmed into the EDL Time-
line.† The Timeline Atomic VAG contained VIs that defined the low-level “atomic” behavior of the Timeline
Engine, such as how to sequence particular events and the rules to follow for arbitrating various timing con-
straints that were programmed into FSW. The Timeline Constraint VAG contained all of the VIs that were
originally sourced from the Timeline constraint spreadsheet (which levied constraints for relative event or-
dering and relative event timing on the EDL Timeline design), along with other timing constraints that were
defined in the EDL Events & Control (Timeline) FDD. The Timeline Off-Nominal VAG contained VIs that
related to fault protection, fault handling, and off-nominal behavior. And the Timeline EDL General VAG
∗MEDLI was a series of sensors embedded in the MSL heatshield used to measure pressure, temperature, and recession during

atmospheric entry – see reference13 for more information.
†Note that Figure 3 only shows 104 actions. There were a total of 289 instances of these actions in the final Timeline; many of the

individual actions were repeated but with different action arguments.

7



was a catch-all for any VIs that did not fit into the other categories. Along with these, an extra VAG was
added to contain some EDL Comm VIs that were originally derived from an analysis of the EDL Comm
success tree. This brought the total number of VAGs to ten. Creating these VAGs was a more source-oriented
approach to splitting the VIs since the grouping was done along the lines of the functional groups that levied
the corresponding requirements. This was particularly helpful in enabling the division of the statistics when
providing progress reports. However, it did not suffice when attempting to divide the VIs from the standpoint
of spreading the work and responsibility for closure – this will be discussed next.

Figure 4. Table showing EDL flight system VIs as distributed by their module structure in DOORS.

The second level of functional categorization was done by closure category instead of levying source. In
this decomposition, every grouping became associated with a particular engineer who was responsible for the
closure of the VIs within the group. This arrangement helped by giving ownership of the VIs to the engineer
who was most knowledgeable about those particular VIs. It was also useful in getting the VIs closed as
quickly as possible in that there developed a sort of informal competition among the engineers on the team as
to who would have the most VIs closed or who could get all of their VIs closed first. This was an unintended
yet beneficial consequence.

As shown in Figure 4, the second level of functional categorization was captured through the hierarchical
structure within the “MSL 2.0” DOORS repository. The MEDLI, Sensors, and Actuators VAGs were not split
any further since each of these was the responsibility of a single engineer. The EDL Comm VAG was split
into subsections, but this was only organizational since all of the EDL Comm VIs also belonged to a single
engineer. The Timeline VIs (being the largest amount as a collective of five VAGs), was where the majority
of the splitting took place. These VIs were divided into 12 sub-areas, aligned with both closure engineer and
the area of expertise for that particular engineer. The name of the module section in DOORS even included
the name of the assigned engineer to emphasize the ownership of those VIs.

Along with functional categorization, a second method was employed to categorize the requirements by
closure priority. This was done at a time in mid 2011 when we were approaching the first of our V&V / Risk
Reviews approximately six months before launch. Because the flight system was behind in its verification and
closure of VIs, the priority categorization was intended to distinguish which requirements had to be closed

8



prior to launch or before a post-launch FSW version update could be made to the spacecraft. Therefore, the
following categories were used:

CAT-I: hardware-centric and had to be tested exclusively on the flight spacecraft

CAT-II: hardware/software interaction that should be tested on the flight spacecraft but could be tested in
a testbed venue if necessary OR software/software interaction that is needed in the early Cruise phase
(before post-launch FSW update is performed)

CAT-III: software/software interaction that can easily be tested pre- or post- launch in a testbed venue

This categorization easily allowed us to determine which VIs needed to be focused on first, and which could
be deferred for later closure. Of the 740 total flight system VIs, 146 were CAT-I, 133 were CAT-II, and 461
were CAT-III. The last CAT-I VI was approved for closure on October 19, 2011 (a little over one month from
launch), and the last CAT-II VI was approved for closure on November 10, 2011. The last flight system VI (a
CAT-III), was closed on May 5, 2012.

Requirements Understanding

Problem. Requirements that appeared to not reflect the current design were another impediment encoun-
tered during the VI closure process. The expanding EDL flight system team found issues that needed fixing
(changes to enable baseline functionality and others to reduce risk) during testing and detailed review of be-
haviors, which resulted in evolution of the EDL FSW. New FSW versions were being released at a rapid pace
(32 between the start of 2010 and the end of 2011, giving a rate of more than one per month), and the systems
team was so busy with testing the new versions and proposing updates/fixes that some of the paperwork to
update FDDs and the corresponding requirements was just never done at the time.

This was often compounded by the fact that when the requirements were originally written, many did not
have an associated rationale to explain their context. This was not a problem for requirements that were
verified by the engineers who wrote them, but it was sometimes a problem for engineers when verifying
requirements they did not write.

Solution – Requirements Scrub and Cleanup. Two approaches were employed in an attempt to resolve this
situation. First, requirements were scrubbed as they were being considered for data analysis and closure. The
scrubbing process involved the closer of the associated VI checking with the engineer or team of engineers
who originally levied the requirement as to the intent and validity of the requirement. Sometimes, the closer
and the levying party were the same person, so it was easy to go through this self-check process. However, for
a fair portion of the requirements, the levying party and the closer were not the same person. For example, the
constraint VIs were levied by engineers from the power, thermal, mechanical, etc. subsystems on the design
of the Timeline relating to the capabilities of their hardware. In these cases, it was more difficult to check
the validity of requirements, but it was still done at great expense in terms of time and effort. We wanted to
ensure that any requirements we verified had a distinct purpose and that we were verifying the correct thing.
In a way, this became part of the EDL flight system validation effort (among many other system-level tests).

As a result of this scrubbing process, over the period of approximately six months from November 2011
until April 2012, a large number of requirement changes (154), deletions (45), and additions (5) were gath-
ered together and captured in a single requirements cleanup ECR. As part of the requirements configuration
management process, a “Working Notes” field was also tracked along with the requirement text. This field
was meant to be used as a way to capture any notes on rationale, intent, or context that applied to a particular
requirement. So, within the requirements cleanup ECR, this field was populated and updated as necessary to
capture the correct rationale for requirements where it was not clear. The overall process by which this ECR
was derived is shown in Figure 5 – there were other details involved∗, but the general premise follows what
was described in the preceding paragraphs.
∗One of the other complications of this ECR was that it specified changes on the controlling source – the requirements in the FDDs

– and not the VIs in DOORS. Therefore, all of these changes also had be reflected in the “MSL 2.0” repository in DOORS. This was
accomplished through the use of batch import in the DOORS tool.

9



Figure 5. The flow of inputs that went into the requirements cleanup ECR (110953).

The second manner in which requirement understanding was improved was through the approval process
that was involved in VI closure. As part of the MSL systems engineering process, every VI closure had to
be reviewed by a representative V&V lead from the corresponding phase of the project. Therefore, all of the
EDL flight system VIs underwent review by the EDL phase V&V leads. During the review process, the leads
reviewed the corresponding requirements to make sure that their intent was clear and that the appropriate
objective evidence / data was assembled to show that the requirement was being met. For any requirement
where the intent was not clear, the closure was rejected and not re-reviewed until necessary changes were
made and included in the requirements cleanup ECR described previously in this section.

CHALLENGE 2: VI CLOSURE & PROGRESS TRACKING

With a large number of VIs, managing the closure and tracking progress became a difficult task for the EDL
flight system team. This section describes the issues we faced attempting to define the VI closure process, as
well as some solutions we developed (both ones that did not work well and ones that did) to accomplish this
task within the time/personnel constraints we had.

Problems

The process and workflow for VI closure was left up to each individual phase. Since the project did not
enforce a specific closure workflow, each phase had to a devise a way to produce the expected deliverables.
The requirements the project placed on each phase were that: 1 - each VI closure had to be reviewed by a
representative phase lead (or a deputized V&V lead), and 2 - the closure information (procedure used, data
analysis, closure date, etc.) had to be populated in the “MSL 2.0” VI repository in DOORS. The reason for
the second stipulation was that project-level statistics and burndown curves were generated for management
reviews from the DOORS database.

From our perspective on the EDL flight system team, the use of DOORS brought issues that were chal-
lenging to deal with given our schedule and personnel constraints. First, the ability for concurrent data entry
(multiple users submitting closure information at the same time) was not well-satisfied within the EDL com-
ponents of the DOORS repository. The EDL flight system VIs were only split into two separate modules,
each of which could only be edited by a single user at any given time. This made it challenging for multiple
members of the team to input information during big closure pushes. This issue could have been somewhat
alleviated had we decided to split the EDL flight system VIs among many different modules (possibly along
the lines of closure party as shown in Figure 4), instead of just sections within a module. However, this

10



would have made it more difficult to interpret from a project-level perspective when statistics were gener-
ated, and also more difficult to manage on the EDL flight system level (i.e. the EDL V&V leads would
have had to aggregate statistics and follow status on many different DOORS modules – this would have been
time-prohibitive).

Secondly, DOORS requires a non-trivial effort to input closure information. When directly using the
DOORS user interface (UI), information could only be input one VI at a time, and one associated field at
a time. With close to 750 VIs, the logistics and time to input information would be enormous. DOORS
does have a bulk import capability, but we wanted to stay away from using it except under highly-controlled
circumstances since it was easy to accidentally overwrite or erase existing information.

Figure 6. Example statistics showing VI closure status – taken from actual review
material generated 6/21/2011.

Thirdly, DOORS does not contain, at least to our awareness, any built-in functionality for generation of
progress reports or statistics to assist in progress management. As part of our progress reporting duties, we
had to provide daily or weekly closure status updates of the form shown in Figure 6. This example was
generated manually from data in DOORS, and was time-consuming to produce.∗

The lack of concurrent data entry, difficulty of inputting closure information, and the need to frequently
carry out a complicated statistics-generation process all reduced the time the flight system team could spend
generating, processing, and analyzing data for VI closure.

Solutions

Unsuccessful. Our first attempt at solving these problems involved an Excel spreadsheet that was shared
through the use of the Xerox Docushare program.† Docushare allows for uploaded documents to be locked
(checked out) by a user of the system while that user edits the document. When the document is checked back
in, Docushare recognizes it as a new version, and tracks any previous versions in history. The Excel sheet
that we used was, at the time, only limited to VIs in the Timeline VAGs, and contained all of the information
that was to be tracked in DOORS. The plan was to have DOORS updated periodically by batch import with
the information from the spreadsheet. However, updates to the spreadsheet ended up happening rapidly, and
there never seemed to be a “good time” to perform a batch upload. Therefore, this spreadsheet became our
informal database for VI tracking. Over the period of approximately five months when this system was used,
the DOORS database was only updated a handful of times, which meant that the project-level VI statistics
rarely reflected the current state of the VI closure metadata. On top of this, the issue of concurrency was
still not solved – only one user could edit the spreadsheet at a time. Even with only two people working on
it, there were still many instances of conflict (where one user wanted to update the document but couldn’t
because the other user had it locked). Also, we had the ability to generate closure progress statistics from
the Excel spreadsheet, but it only contained the information from the Timeline VAGs. We were also advised
against generating stats from Excel because the information in the DOORS database was considered “truth,”
while the spreadsheet was only an intermediary. Therefore, we had a patch solution that somewhat solved the

∗The numbers in this and other statistics plots may not agree with one another since the body of requirements was dynamic throughout
the project lifecyle – there were modifications, additions, and deletions via ECR.
†Docushare is an enterprise content management tool that acts as a cloud-based filing system with revision control.

11



issue of easy data entry (Excel UI) but did not solve the issues of enforcing the closure workflow, concurrent
data entry, or easy stats generation.

Successful. In the time period after we completed our last major System Test in August 2011, the spread-
sheet solution had become unmanageable enough where we were starting to seriously consider other solu-
tions. We also had our first EDL Risk Review coming up in September 2011, and needed a way to generate
reliable VI closure statistics from DOORS. Therefore, this issue was tackled first out of necessity. The so-
lution that was developed took advantage of scripting functionality in DOORS to generate a listing of VI
closure metadata stats. This implementation used a DOORS-specific scripting language called DOORS eX-
tension Language (DXL).∗ Using this language, a script was constructed that directly queried the DOORS
database for the information we needed. It was both quick to run (satisfying our need for stats generation up
to a daily frequency), and used the project-mandated data source.

The DOORS script worked well, and we were able to use it to generate information for the pre-launch EDL
Risk Review in September 2011. At the time of this review, the flight system team was far behind schedule,
having closed only approximately 160 out of the total 740 VIs with only seven months left to go until our
final Risk Review in April of 2012.† We knew we could not accomplish the remainder of the closure work
with the current set of tools in place, so we aggressively looked for other options. We looked at other areas
of the project, and other projects for solutions, but did not find anything suitable. We then realized that a tool
we were using for issue tracking, Atlassian JIRA, could be customized to meet our demand.

JIRA is traditionally used as an issue and bug tracker in software development. It allows for a custom-
defined ticket workflow, as well as complete customization of the fields/attributes associated with each state
the ticket is in. It also implements validation checks for when a ticket can be transferred between states in
the workflow. As an institutionally-supported tool by JPL, we had been using a JIRA system to track issues
and bugs that we found in our FSW system-level testing. Therefore, we figured it wouldn’t be too much of an
extension to go from tracking issue tickets to VI tickets. Through some trial and error, we decided to imple-
ment a JIRA system for tracking VI closure progress and built the workflow seen in Figure 7. In this figure,
the green transitions represent the nominal ticket path during normal VI closure, and the blue transitions rep-
resent the nominal ticket path taken during regression closure.‡ Gray transitions were available to re-work or
move the ticket backwards in the system for a variety of reasons. We first built a trial implementation by just
using the VIs from the Timeline VAGs; that worked well, so all EDL flight system VIs were then included in
the system.

The system generally worked like this:

• When the JIRA system was instantiated, all of the EDL-specific “MSL 2.0” DOORS information was
ported into tickets in JIRA, one for each VI. This made use of JIRA’s bulk import capability. All tickets
started in the “Create” state, and were then pushed to the “Unassigned” state.

• Each ticket was then assigned to the VI closure engineer. Upon this assignment, tickets were auto-
matically transferred to the “Open” state. If tickets needed to be re-assigned to a different engineer to
balance workload, it could either be put back into the “Unassigned” state (holding pen), or could be
transferred directly to another assignee within the “Open” state.

• Once in the “Open” state, the ticket would automatically show up in the engineer’s work queue when
they logged into the system. This was extremely helpful in letting people know what work they still
had to accomplish.

∗For more information, see DXL reference manual here: http://publib.boulder.ibm.com/infocenter/rsdp/
v1r0m0/topic/com.ibm.help.download.doors.doc/pdf/dxl_reference_manual.pdf (note: this is for DOORS
version 9.1, which has been upgraded since the version 8.3 that was used on MSL).
†The project requested that all EDL VIs be closed and approved by this point.
‡In the EDL context, regression is the re-verification of VIs on the final build of FSW that was to be used for the actual landing event.

MSL employed a split FSW development scheme, so the software to land the spacecraft on Mars was not fully developed and tested
until after launch. This meant that many VIs were closed before the final FSW version was released, and they had to be re-verified using
the final version of FSW to make sure the FSW still performed the associated functions correctly.

12

http://publib.boulder.ibm.com/infocenter/rsdp/v1r0m0/topic/com.ibm.help.download.doors.doc/pdf/dxl_reference_manual.pdf
http://publib.boulder.ibm.com/infocenter/rsdp/v1r0m0/topic/com.ibm.help.download.doors.doc/pdf/dxl_reference_manual.pdf


Figure 7. Workflow for the EDL flight system JIRA system.

• The “Open” state was where the VI ticket lived while engineers were gathering data in support of clo-
sure. Closure information was entered in multiple fields, and attachments of supporting documentation
could be made.

• Once the engineer was satisfied that the closure documentation was sufficient, s/he transferred it to the
“VI Review” state, where it awaited approval from the V&V leads. The transition from the “Open”
state to the “VI Review” state implemented guards to make sure the required fields were filled in before
the transition was allowed.

• Once a number of VI tickets were collected in the “VI Review” state, the V&V leads would either hold
a review meeting with the closure engineer(s) or review the closure material themselves. If satisfied
with the closure, they (and only they) could transfer the ticket to the “Export to DOORS” state. If not
satisfied with the closure, they transferred it back to the “Open state” for more work to be done.

• Either periodically (every few days), or when a large number (more than ten) VI tickets were collected
in the “Export to DOORS” state, the VIs that had been approved would be exported from JIRA and the
information would be imported back into DOORS to update for the project. All relevant fields were
populated (dates, test info, etc.) and a link to the JIRA ticket was included in the closure information
section.

• After the DOORS import was performed, a JIRA administrator (usually one of the authors) would
transition the VIs from the “Export to DOORS” state to the “Closed” state. Barring any further cir-
cumstances, the VI tickets would remain here until regression was necessary.

• During regression, a similar path was followed. VIs to be regressed were moved into the “Open
Regress” state. This transition required that a “Regress Owner” be defined (which was the engineer
responsible for performing the regression – this could be different than the original closer).

• When regression work was completed, the VI ticket was transitioned to the “Regress in Review” state
– this transition required information related to regression closure to be populated.

• After transition to the “Regress in Review” state, the VI ticket would be reviewed by the V&V leads,
and then transferred to the “Regress Closed” state if passed. Since the project did not require regression
data to be tracked in DOORS, there was no need for a DOORS import or an intermediate DOORS
export state.

13



Figure 8. Example of JIRA user-interface pane showing “Verification” tab with clo-
sure information included.

Shown in Figure 8 is an example of what a user saw when working in the JIRA system on a particular VI
ticket. Information given at the top of the screen indicates which VI ticket is being modified, and there are
a series of buttons to use for performing a variety of actions (including certain transitions described in the
preceding list). On the right side there are two panes – one for “People” information, which lists the current
assignee, approver, etc, and one for “Dates” information. The “Details” pane contained the majority of the
closure metadata and planning information. The top six fields are all JIRA-standard and describe the type of
item and where it is in the workflow, among other things. The lower part of the pane is divided into numerous
tabs (blue text): Header, Tracking, Data Sources, etc. Each of these tabs had a series of fields where the
closer would input information. The particular tab currently being viewed is the “Verification” tab, where the
user input both the closure plan and closure data. This interface was very user-friendly and also organized
the information in a way that was easy to digest for the V&V leads reviewing the information.

Overall, the JIRA system we implemented had numerous benefits:

1. Ease of data entry was realized while still maintaining the ability to port the information to DOORS for
project tracking. JIRA also has a very full-featured bulk import / change capability that allows a user to
change a set of given attributes for any number of tickets (groups of tickets were usually derived from
user-customized ticket filters).

2. Concurrent data entry was now possible, allowing all members of the EDL flight system team to actively
edit their assigned VIs’ closure data in a timely manner.

3. JIRA allowed for the definition of a custom workflow that represented exactly how we wanted the VI
closure process to take place. It was also able to enforce certain conditions on transitions between
states in the workflow.

4. The well-defined workflow and custom-defined set of fields made the closure information very consis-
tent and aided in the swiftness of review.

5. The ability to generate statistics from custom filters and dashboards made it extremely easy to generate
management reports at the push of a button (although we still retained the ability to generate stats
using the DOORS DXL script for “official” purposes). An example of an intermediate statistics report
is given in Figure 9.

14



Figure 9. Example of JIRA dashboard statistics report – taken from actual report
generated 12/1/2011.

Looking at the burndown plot in Figure 10, there is a significant acceleration in VI closure rate beginning
around September 2011. The initial part of this push was due to the need to close our CAT-I and CAT-II VIs
prior to launch. It was during this period that the shortcomings in certain elements of our VI closure process
became evident. Tuning this process and adding manpower to the EDL flight system team enabled the closure
rate to remain high. Our JIRA system was implemented beginning in late November 2011. Its benefits helped
the team attain full closure in a timely manner.

Another important thing to note: an unintended yet greatly appreciated benefit to using the JIRA system
was the ability to re-use VI tickets and their associated metadata in the V&V efforts for the EDL Second
Chance (SECC) software. SECC was a late-developed piece of software (started in early 2012) that contained
much of the same functionality as the main EDL FSW, but was designed to run as a “hot backup” on the
redundant backup flight computer. This software would take over should the prime flight computer experience
a reset during the EDL activities.14 Since the SECC software had much of the same functionality as the main
EDL FSW, many of the VIs were also the same. Therefore, the SECC V&V team decided to use the ability of
JIRA to “clone” tickets to create a SECC VI database in JIRA. The VI IDs were appended with “SECC ” to
delineate from the normal EDL VIs, but all of the other information was maintained. They were sent back to
the “Open” state and new closure information was added during their re-verification. The JIRA system was
instrumental in allowing such an extensive SECC V&V program to take place on a very tight development
schedule.

CHALLENGE 3: TEST EXECUTION & DATA ANALYSIS MANAGEMENT

Three significant problems were encountered while managing test execution and associated data analysis
throughout the EDL flight system V&V effort. We state these problems here, give background for how and
why they developed, and explain how they were mitigated.

1. Executing tests in three different venues with varying levels of hardware fidelity, as well as having
different types of test objectives requiring various configurations of those venues;

2. Sheer volume of testing performed, as well as generation of an extraordinary amount of data and the
EDL team’s inability to analyze this data manually;

15



Figure 10. Burndown plot for all EDL flight system VIs showing key System Test
time periods (ST-XX), which were data generators, and key EDL reviews with a V&V
component, which were closure forcing functions.

3. Due to schedule pressure, need to increase test throughput (execution and analysis) to complete test
objectives.

Test Objectives

One thing was certain at the outset of the EDL V&V campaign: since there was no possibility of executing
a single test that would verify the entire EDL system, a calculated approach to deriving a set of test objectives
from the VIs was needed to break down the testing required into manageable pieces. As mentioned earlier, the
VIs were allocated to functionally-based VAGs. Verification Activity Plans (VAPs) were then developed for
each VAG. For EDL, the VAPs were generally high-level and mostly focused on the flight dynamics domain;
specific test objectives mapped to each VI did not exist for the flight system domain. As the flight system
V&V campaign geared up, the VI closers worked to map VIs into a set of test objectives. Sometimes, a
single test objective was mapped to a single VI; in other instances, multiple test objectives were mapped to
a single VI or vice versa. Regardless, the set of test objectives was incompressible. In other words, the test
objectives were a minimum set, all of which needed to be satisfied to produce the data to complete the VI
closure process.

Test Venues

Flight system domain testing and the need for varying degrees of hardware fidelity gave rise to multiple test
venues. Given that the flight system domain was focused on probing software/software and hardware/software
interactions, available venues ranged from pure software implementations to the actual spacecraft with a

16



minimum of support equipment attached. The venues available for flight system testing are summarized
below.

The venue with the highest hardware fidelity was the MSL spacecraft itself. Consisting of the rover,
descent stage, cruise stage, heatshield, and backshell, the flight hardware was referred to as the ATLO venue.
The stages were usually connected by non-flight extender cables because they were usually kept de-stacked;
also, safety prevented the installation of some hardware in all but the most special circumstances (e.g., live
pyro devices were only installed for a handful of tests and the radioisotope thermoelectric generator nuclear
power source was only installed at Cape Canaveral immediately before launch). Only a small portion of the
test campaign was executed in ATLO. Most often, they were tests that required the actual flight hardware
rather than engineering models, such as System Tests. These System Tests were a coordinated effort between
different phases of the project (Launch/Cruise/Approach, EDL, and Surface) to run through realistic scenarios
on the flight vehicle. These tests were designed to address CAT-I VIs and also serve as a validation of end-to-
end spacecraft behavior and performance. Since the ATLO schedule was tight and there was an overwhelming
desire to avoid mistakes that could cause damage to flight hardware, non-flight venues were the preferred
location for most testing.

The most flight-like venue available for routine testing was the Mission System Testbed (MSTB).15 This
venue was very similar to ATLO; almost all spacecraft hardware was represented, but in the form of flight
spares or engineering models. The hardware was connected with non-flight cables and arranged on a series
of benches and tables. Occasionally, hardware would be removed for outstanding unit-level tests or problem
investigations; in this case, a hardware simulator would take the place of this unit. This venue was used
for tests that required flight-like hardware/software interactions or accurate realtime processing capabilities.
The MSTB was a shared resource between the EDL, cruise, surface, FSW, infrastructure, instrument, and
simulation support teams. For most of the two years prior to landing, the MSTB was occupied 24 hours
per day, seven days per week. Despite being more available than ATLO, the MSTB was still a constrained
resource – efficiency in testing was paramount.

Finally, the third widely-used testing venue was a software-only environment known as the Workstation
Testset (WSTS).16 WSTS was available remotely on a network of Linux machines. It could be run faster
than realtime, so lengthy spacecraft operations could be sped up without sacrificing content. Because it was
completely instantiated in software on a non-realtime operating system, this venue was not useful for timing
or performance considerations. However, it was very accessible, relatively straightforward to set up, and an
excellent venue for testing software/software interactions.

There were two unifying factors between all venues mentioned above. First, all included the actual FSW.
This was an important constant given the differences in hardware fidelity from venue to venue. Second,
each of them used the Control Analysis Simulation Testbed (CAST) software as the primary simulation of
the exterior environment to the spacecraft. CAST was the software that provided the spacecraft with the
appropriate environmental stimuli at the right times during EDL. CAST shared many features with POST, the
primary Monte Carlo simulator used within the flight dynamics domain. This ensured that the flight system
testing would be grounded in truth, or our best estimate thereof.

All three venues above were used for official V&V testing. The EDL behavior and performance of the
MSTB and WSTS were compared with ATLO test data to determine which elements of the non-flight venues
accurately approximated the behavior of the flight vehicle. These qualification efforts established a set of
ground rules that test engineers followed when determining which venue to use to achieve a given test objec-
tive.

Test Flow

In a general sense, there were two primary test paradigms utilized throughout the EDL flight system V&V
campaign. The first paradigm was a functional test in which one of the venues was configured in a manner
prescribed by the test procedure and then a quantity of interest was investigated and possibly manipulated.
In this paradigm, test activities did not occur “while landing” – the state of the system was relatively time-
invariant except for interventions by the test conductor. The second paradigm approximated reality by con-

17



figuring the venue in a flight-like manner and subjecting the spacecraft to a series of simulated stimuli that
would be experienced during EDL. We called this closed-loop EDL testing since the EDL FSW closes the
loop on simulated environmental stimuli. In this paradigm, the EDL Timeline was active, so it would execute
the same set of actions as if it were in flight. These tests usually ended with a landing and transition to the
nominal surface mode. They were characterized by the observation and sometimes perturbation of a quantity
before, during, or throughout the EDL process. The state of the vehicle matched a time-varying expectation
of the state that the actual flight vehicle would enact on August 6, 2012. The bulk of the EDL flight system
domain testing was done according to the second paradigm.

Once EDL testing according to the second paradigm began, the test conductors learned how to configure
and run the system and some important facts became evident. First, it took a long time to configure the system
and bring it up to a “usable” state. Using the MSTB as a benchmark, since this is where the bulk of EDL flight
system V&V testing occurred, it took upwards of ten hours to power on the venue and configure it to a state
where EDL could occur. After this, proceeding through EDL and the transition to Surface lasted another
two hours. Cleanup and power-down took another two hours still. This is 14 hours of work to produce a
single closed-loop EDL dataset, which the test analyst would use to complete a handful of test objectives and
possibly close a few VIs. Second, the configuration steps were onerous and very human-in-the-loop. This
required the test analyst to be completely engaged and prevented him or her from doing something else. As
a corollary, the human-powered setup was also prone to human error, which meant that a given configuration
was less likely to be repeatable. Third, it became clear that there would likely need to be more test iterations
than originally planned. A rough estimate of the effort required to complete the flight system V&V campaign
had been generated, but these new experiences drove this estimate up in two ways. Not only was the time to
execute each test greater than anticipated, but the onerous setup and other factors resulted in fewer objectives
being met during each test. Accomplishing multiple objectives during a given test was challenging due to the
preparation required, the desire to isolate the effects of one or a handful of unrelated quantities, the actual
execution of the steps customized for each objective, and the need to engage in forensics should a problem
derail the test. Furthermore, encountering an issue meant the repetition of a given set of test objectives and
regression of a host of other items for every FSW version released.

Problems

So now we have a situation in which: there is a large, incompressible list of test objectives; tests are
executed across three unique but similar venues; the overhead associated with each test is large; setup is
prone to human error; the need to repeat test configurations and scenarios is increasing while repeatability
is decreasing; and more tests than originally scoped are necessary to complete the EDL flight system V&V
campaign. This complex situation increased the risk that we would not be able to effectively complete our
testing.

But taming the difficulties of test execution was not the only problem faced by the authors – there was
also the issue of data analysis. With each new test that was executed, a dataset was generated that needed
to be analyzed. Usually each test objective called for close inspection of a handful of quantities; the process
of mining the data for each test-specific goal was straightforward, but could be time-consuming since it
was often manual. Additionally, for each closed-loop EDL test that was executed, characterizing whether
the rover had actually “landed” safely was necessary but not easy. In the simulated environment of flight
system testing, realtime verification that the spacecraft had completed EDL safely was not possible. Seeing
that the touchdown velocities were within spec and watching the FSW transition to its surface mode was a
good first-order indicator that there had been no anomalies, but it was not sufficient to say that the landing was
completely nominal. Such anomalies could be masked by unknown interactions between the flight system and
the simulated parts of the test venue (such as the space and Mars environments, and non-present hardware),
even though these simulations had been validated. Therefore, a baseline set of “EDL Success Criteria”
had to be verified for every closed-loop EDL test to ensure that the perturbations required for a given test
objective had not introduced faulty behavior into the system. Verification of these criteria was also manual
and introduced a fixed amount of “analysis overhead” for every test. These criteria were divided into the
categories in Figure 11; each of these categories contained a number of very specific analyses to perform on

18



the dataset produced after a closed-loop EDL test. These ranged from checking the relative timing of each
EDL Timeline event to determining if the touchdown velocity and position were within spec to checking if
the CPU utilization matched an expected profile during EDL.

Figure 11. High-level categories for the EDL Success Criteria used to determine
success or failure of each EDL closed-loop test.

Finally, we faced a great deal of schedule pressure that introduced a need to increase test execution and
analysis throughput to complete our test objectives and close our remaining VIs in time. Earlier, we recalled
that only approximately 20% of the EDL flight system VIs were submitted for closure at the time of the
September 2011 pre-launch Risk Review. Many of the remaining 80% still required testing to generate the
necessary data for closure. This schedule demand increased the need for test efficiency.

Existing schedule constraints also left a relatively small amount of time for regression testing. It became
clear in early 2012 that repetition of the entire VI closure process – both test execution and data analysis – on
the final build of FSW would be impossible in the time allotted. Plans at this time allocated approximately
one month for final regression testing, from the beginning of April 2012 to the beginning of May, before the
“landing load” of FSW was to be certified and uplinked to the spacecraft. This was yet another motivator for
finding a way to increase test throughput.

Solutions

Having a need to execute a large number of very similar tests while analyzing a baseline set of success
criteria for every test suggested the need for more automation and less human interaction. Furthermore,
repeatability and traceability were important in testing for VI closure, and especially important for regression
testing. The approach taken to bring this automation to fruition is detailed below.

Execution. Setup material, the bulk of which was invariant from test to test, was an obvious candidate
for automation. Less evident was the opportunity inherent in developing a framework to inject test-specific
items that could be seamlessly integrated with the setup mechanism. The latter not only offered a better
experience for the user, with all substantive elements of a given test contained in one location, but also
reduced execution time and minimized the opportunity for inducing errors in the items under test. However,
schedule pressure and competing demands on time prevented the team from addressing this problem in its
entirety. As a compromise, a set of scripts was created in late 2010 and honed throughout 2011 to automate
most of the setup material. However, these still required significant human interaction to function properly
and test-specific material was still completely manual.

Setup material included collections of steps to achieve the correct spacecraft memory and parameter con-
figuration, compensate for venue-specific non-flight elements, initialize the environmental simulations, and
jump the spacecraft’s clock forward in time while reproducing operational activities that would nominally oc-
cur during the mission prior to landing. Test-specific material could include variation of a parameter or group
thereof, injection of a fault, introduction of an external stimuli, or simply targeted observation and readout of
a given dataset. Leveraging a script that was developed to power on the venue and taking advantage of the

19



partial automation of setup material resulted in a reduction in time for each closed-loop EDL test. Where it
took approximately 14 hours for a MSTB test before, it now took 7-8 hours.

Two factors motivated revisiting this approach. First, the need to increase test throughput caused us to
search for places where efficiency could be improved. Second, the expansion of the EDL flight system team
to approximately ten engineers meant that more people had to understand how to run EDL tests repeatably
and reliably. These factors initially motivated further honing of the setup scripts and finally resulted in the
development of a wrapper for and extension of the script content. We called this tool the EDL GUI.

The EDL GUI was inspired by a tool created to run the “ATLO Baseline Test”. This test was run in ATLO
after any significant manipulation of the spacecraft had occurred, whether that was hardware reconfiguration
or installation of a new version of FSW. It was a “copper-path” test to ensure that all electrical connections
had been made correctly and it also touched basic functionality for most elements of the spacecraft. Similar
to a closed-loop EDL test, the ATLO Baseline Test was largely the same each time it was run, was executed
many times, required a lot of human interaction, and was time-consuming. The tool created to increase the
efficiency of this test was a GUI-based executable procedure with an interface to the ground software used to
control the spacecraft.

The EDL GUI was built upon the same platform. Before, the EDL setup scripts were run as part of an EDL
procedure that covered an entire EDL closed-loop test. With the EDL GUI, the entire procedure could be
scripted, so the procedure and script became one and the same. The EDL GUI was developed in such a way
that it contained a standard menu of setup options that were often altered from test to test (e.g., venue-specific
setup steps), but it was always intitialized with a configuration-controlled baseline. The user could easily
add or remove sections from the procedure, allowing customization for test-specific material. Any change
that was made to the procedure – whether that was departure from the baseline configuration or addition of
test-specific material – was logged and easily viewed as an “as-run” version of the procedure after the test
was finished. Furthermore, this as-run could be re-executed, allowing the exact same test to be run more than
once if necessary. The EDL GUI implemented a more robust method for communicating with the spacecraft’s
ground software as well, which allowed much greater automation than the previous setup scripts had. There
was little need for human interaction during the setup steps in the EDL GUI; furthermore, the tester could
structure his/her test-specific material in such a way that it could be executed autonomously after the script
received a given stimulus from the spacecraft. Figure 12 shows the initial configuration page of the EDL
GUI (where each tester would choose options specific to his/her test and venue) and the main procedure view
(where scripted steps could be added, removed, or customized to fit a given set of test objectives and then
executed at the push of a button).

The EDL GUI was a largely automated procedure-as-script implementation that established an easily
configuration-controlled baseline setup. It accommodated multiple venues, was easily customizable for a
given set of test objectives, reduced operator error, and improved record-keeping. From the 7-8 hour test with
the EDL setup scripts, the fastest version of EDL from power-on to shutdown was now approximately 3-3.5
hours. This was a huge improvement and meant that each 7.5-hour-long testbed shift could now support two
entire EDL runs.

Analysis. The two-pronged approach to improving test throughput also depended on increasing analysis
accuracy and efficiency. During the System Test campaign, almost all analyses were done manually to verify
the EDL Success Criteria had been met. Some tools were developed to automate portions of the required
analysis, but there did not exist a tool that was capable of judging whether or not a given EDL run was
successful. By early 2012, it was clear that this tool would be an extremely important enabler for finishing the
regression testing effort on the landing load of FSW within the allotted time. A series of meetings involving
high-level members of the EDL team solidified, collected, and prioritized the list of EDL Success Criteria in
March of 2012; an aggressive development schedule yielded a usable, deployed product at the beginning of
April. This product was named SLOPES – System-Level Organized Processed EDL Statistics.

Accessed through a web-based UI, SLOPES consisted of a database of tests and associated EDL data, a
series of reports that processed this data into a usable form, and a set of grading criteria that were used to
judge the processed data and color it green, yellow, or red. It was easy to create a new database entry after

20



Figure 12. Example view of the EDL GUI. The initial configuration page is in the
background; the main procedure view is in the foreground.

a test was completed – simply adding a test title, inputting metadata used by the tool to query data from
the ground software, and checking the boxes next to desired reports allowed SLOPES to start processing a
given test. The reports ranged widely in analytical depth – some just gathered data and put it in one place for
perusal by a trained eye, others carried out complicated calculations on a variety of data and fully compared
the results against a baseline. Some reports were completely new (all analysis was done manually before) and
some called existing tools and delivered their data to the centralized SLOPES location. Examples of existing
tools included the Timeline Timing Analysis Tool (compared the timing of events within the EDL Timeline
to requirements and a certified baseline), a suite of actuator-specific analyses (among other things, plotted
DRCS thruster pulses, MLE commanded vs. actual throttle position, and detected waterhammer events), and
the PLATO report (plotted all warning messages from the spacecraft relative to EDL Timeline milestones and
put them in context of other spacecraft messages to flag off-nominal behavior). A complete analysis of the
EDL Success Criteria for a given test took multiple engineers weeks to complete before SLOPES; this tool
did most of that analysis in approximately 40 minutes. Figure 13 shows the main page of the SLOPES web
interface as well as a sample report.

One of the most valuable reports was the “Timeline Action Success Report.” This report codified a set of
criteria that determined if all 289 actions within the EDL Timeline had succeeded. This report was instrumen-
tal in the regression testing effort, immediately verifying hundreds of EDL VIs at the touch of one button. The
regression testing schedule would have been impossible to meet otherwise. Other extremely useful reports
included the Pyro Firing Report, which showed the firing times of all initiators for each of the 79 pyro devices
fired by the EDL Timeline and determined if they violated any firing constraints; the GNC Initialization State
Report, which showed how well the Cruise attitude estimation algorithm sensed the spacecraft’s attitude and

21



Figure 13. Example view of SLOPES web interface. The main page is in the back-
ground, while an excerpt from a report is in the foreground.

handed this information off to the EDL Timeline; the Nav Filter Solution Report, which judged the quality
of the first TDS radar solution; the Touchdown Report, which graded the position and velocity of the rover’s
touchdown; and the Canonical Data Product Report, which took an inventory of data products downlinked by
the spacecraft during EDL to ensure that all were accounted for.

Additionally, the SECC development and V&V team relied heavily on SLOPES for much of their test
analysis. They ran over 1000 tests through SLOPES, depending on the tool to tell them when their software
had successfully taken over from the primary EDL Timeline and continued to execute the rest of the EDL
actions.

Finally, SLOPES was also useful in operations. During the Approach phase of the mission leading up to
EDL, the most critical activity was uplinking to the spacecraft the EDL Parameter Update File (EPUF) to the
spacecraft. The EPUF was a set of parameters describing, among other things, the entry state and desired
landing location, both of which were important for guaranteeing an accurate and safe landing. The process
for creating this parameter load included a number of closed-loop EDL validation tests. SLOPES was used
to judge the success or failure of these validation tests and flag any anomalous events. This type of quick-
turnaround validation would not have been possible without SLOPES. It vastly increased the ability of the
EDL operations personnel to incorporate the most up-to-date information in their decisions about the final
desired pre-landing state of the spacecraft.

22



SUMMARY & CONCLUSIONS

This paper described the efforts taken to solve some of the problems associated with executing and manag-
ing the EDL flight system V&V campaign. The methodologies and tools that were constructed to solve these
problems were developed on an as-needed basis under a tight schedule – there were mistakes made along
the way, and the development process was not optimal since the end goal was not always clear. However,
through these efforts we were able to provide value to the V&V program by improving the efficiency of the
VI closure process and making the task more tractable. We hope our efforts will provide valuable lessons
to others implementing V&V programs in the development of current or future space systems, and also to
similar formidable systems engineering projects.

Lessons Learned

1. Implementation and adoption of a requirement classification scheme can save time, and also make the
problem of closure planning (and the closure itself) more tractable.

2. Documentation and configuration management of a rationale along with each requirement is very im-
portant to understanding requirement intent/context later in the verification process.

3. Having a well-defined process and workflow for a task greatly helps to define the scope of that task
and manage progress through it. However, when defining a workflow, make sure all the stakeholders
understand it and have bought in.

4. When working on a team, the ability to perform concurrent work on a common repository/database
of information is essential. There also must be clearly stated boundaries to make sure team members
don’t duplicate or interfere with others’ work.

5. For a V&V program, invest time and resources in development of progress management, execution,
and analysis tools as early as possible – this will certainly save time and frustration later. Also, having
these types of tools available will greatly improve test repeatability and enable regression later in the
process.

6. If a solution isn’t working for you, don’t be afraid to tackle the problem with another solution, even
when faced with schedule and cost pressure – however, always make sure to hedge your bets and have
a backup plan in case the new development does not work out.

7. Tool development while under schedule pressure is not completely efficient, it’s a trial-and-error pro-
cess. There will most likely be some extraneous, but unavoidable, effort.

8. When developing new tools (or just software in general) build up functionality in layers – make tools
extensible such that future functionality, whether planned or not, can be added later. Also, don’t waste
too much time chasing functionality that is nice to have but not entirely necessary; pursuing nice-to-
haves should not be allowed to hinder development of critical functionality.

ACKNOWLEDGMENT

The authors would like to thank all members of the EDL flight system team for making the V&V effort
successful and for providing input, suggestions, and other feedback while the solutions described herein
were developed and utilized. Additionally, the following people stand out in their contributions to the work
described in this paper: Marc Allen for the original idea to use JIRA to track the VI closure process and
helping to develop the original workflow and concept; Richard Hug for providing JIRA database support
and project configuration; Ann Devereaux for wholeheartedly supporting the development of JIRA as a VI
tracking tool; Richard Kornfeld for championing the idea of VI categorization and directing the debate that
led to our category definitions; Brian Schratz for learning the DXL scripting language and generating the
DOORS stats reporting script; and most of all – Dan Isla for his ingenious programming skills used to
construct and deploy both the EDL GUI and SLOPES tools.

23



The work described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration.

REFERENCES

[1] R. Prakash, P. Burkhart, A. Chen, K. Comeaux, C. Guernsey, D. Kipp, L. Lorenzoni, G. Mendeck,
R. Powell, T. Rivellini, A. M. San Martin, S. Sell, A. Steltzner, and D. Way, “Mars Science Labora-
tory Entry, Descent, and Landing System Overview,” IEEE Aerospace Conference, March 2008. doi:
10.1109/AERO.2008.4526283.

[2] A. Steltzner, “Mars Science Laboratory Entry, Descent and Landing System Overview,” Proceedings of
the 23rd AAS/AIAA Space Flight Mechanics Meeting, Kauai, Hawaii, February 2013. AAS 13-236.

[3] G. Mendeck and L. Craig, “Entry Guidance for the 2011 Mars Science Laboratory Mission,” AIAA
Atmospheric Flight Mechanics Conference, Portland, Oregon, August 2011. doi: 10.2514/6.2011-6639.

[4] National Aeronautics and Space Administration, NASA Systems Engineering Processes and Require-
ments w/Change 1 (11/04/09), March 2007. NASA Procedural Requirement: NPR 7123.1A.

[5] National Aeronautics and Space Administration, Systems Engineering Handbook, December 2007.
NASA/SP-2007-6105 Rev1.

[6] R. Kornfeld, R. Prakash, A. Chen, A. Devereaux, M. Greco, C. Harmon, D. Kipp, A. M. San Mar-
tin, S. Sell, and A. Steltzner, “Verification and Validation of the Mars Science Laboratory / Curiosity
Rover Entry Descent and Landing System,” Proceedings of the 23rd AAS/AIAA Space Flight Mechanics
Meeting, Kauai, Hawaii, February 2013. AAS 13-464.

[7] B. Pollard and C. Chen, “A Radar Terminal Descent Sensor for the Mars Science Laboratory Mission,”
IEEE Aerospace Conference, March 2009. doi: 10.1109/AERO.2009.4839463.

[8] A. Casillas and R. Baker, “MSL Descent Stage Integrated Propulsion Subsystem: Development and
Flight Performance,” Proceedings of the 23rd AAS/AIAA Space Flight Mechanics Meeting, Kauai,
Hawaii, February 2013. AAS 13-462.

[9] J. Weiss, “Design and Development of the MSL Descent Stage Propulsion System,” Proceedings of the
23rd AAS/AIAA Space Flight Mechanics Meeting, Kauai, Hawaii, February 2013. AAS 13-458.

[10] B. Schratz, P. Ilott, J. Shidner, A. Chen, and K. Bruvold, “UHF Relay Performance during the Entry
Descent and Landing of the Mars Science Laboratory,” Proceedings of the 23rd AAS/AIAA Space Flight
Mechanics Meeting, Kauai, Hawaii, February 2013. AAS 13-312.

[11] K. Gostelow, “The Mars Science Laboratory Entry, Descent, and Landing Flight Software,” Proceedings
of the 23rd AAS/AIAA Space Flight Mechanics Meeting, Kauai, Hawaii, February 2013. AAS 13-426.

[12] A. M. San Martin, S. Lee, and E. Wong, “The Development of the MSL Guidance, Navigation, and
Control System for Entry, Descent, and Landing,” Proceedings of the 23rd AAS/AIAA Space Flight
Mechanics Meeting, Kauai, Hawaii, February 2013. AAS 13-238.

[13] M. Munk, “The Mars Science Laboratory (MSL) Entry, Descent, and Landing Instrumentation
(MEDLI) Hardware,” Proceedings of the 23rd AAS/AIAA Space Flight Mechanics Meeting, Kauai,
Hawaii, February 2013. AAS 13-310.

[14] C. Roumeliotis, J. Grinblat, and G. Reeves, “The Intense Systems Engineering of MSLs Backup Entry,
Descent, and Landing System: Second Chance,” IEEE/INCOSE 8th Annual System of Systems Engi-
neering Conference, Maui, Hawaii, June 2013. (pending).

[15] A. Toorian and E. Aguilar, “System Testbeds: Workhorses in the Success of Mars Science Laboratory,”
IEEE Aerospace Conference, Big Sky, Montana, March 2013. (pending).

[16] D. Henriquez, T. Canham, J. Chang, and E. McMahon, “Workstation-Based Avionics Simulator to
Support Mars Science Laboratory Flight Software Development,” AIAA Modeling and Simulation Tech-
nologies Conference and Exhibit, August 2008. doi: 10.2514/6.2008-6550.

24


	Introduction
	Problem & Scope
	MSL Systems Engineering Process Background
	EDL V&V Framework & Initial Conditions
	Domain Decomposition.
	EDL Event Tree.

	Task & Problems Encountered

	Avionics & EDL FSW Architecture
	Avionics Architecture
	EDL Flight Software Architecture

	Challenge 1: Requirements Documentation, Organization, & Understanding
	Requirements Documentation
	Problem.
	Solution – Functional Documentation.

	Requirements Organization
	Problem.
	Solution – Functional and Priority Categorizations.

	Requirements Understanding
	Problem.
	Solution – Requirements Scrub and Cleanup.


	Challenge 2: VI Closure & Progress Tracking
	Problems
	Solutions
	Unsuccessful.
	Successful.


	Challenge 3: Test Execution & Data Analysis Management
	Test Objectives
	Test Venues
	Test Flow
	Problems
	Solutions
	Execution.
	Analysis.


	Summary & Conclusions
	Lessons Learned

	Acknowledgment

