
Safe Maritime Autonomous Path Planning in a High Sea State*

Masahiro Ono, Marco Quadrelli, and Terrance L. Huntsberger1

Abstract— This paper presents a path planning method for
sea surface vehicles that prevents capsizing and bow-diving in a
high sea-state. A key idea is to use response amplitude operators
(RAOs) or, in control terminology, the transfer functions from
a sea state to a vessel’s motion, in order to find a set of speeds
and headings that results in excessive pitch and roll oscillations.
This information is translated to arithmetic constraints on the
ship’s velocity, which are passed to a model predictive control
(MPC)-based path planner to find a safe and optimal path
that achieves specified goals. An obstacle avoidance capability
is also added to the path planner. The proposed method is
demonstrated by simulations.

I. INTRODUCTION

One of the major motivations for developing unmanned
robotic vehicles, either on the ground, in the air, or in/on
the water, is to operate in a situation that is too risky for
human pilots. For this reason, unmanned surface vehicles
(USVs) are particularly useful for a mission that requires
continuous operation regardless of the sea state, such as
patrol and environmental monitoring. An important technical
challenge here is to develop an autonomous path planning
capability that avoids the risk of capsizing and bow-diving
in a high sea state.

Although there is significant body of work on USV
path planning, the majority of existing researches focus on
obstacle and collision avoidance [1], [2], [3]. A dynamic
programming (DP)-based path planning method proposed by
[4] computes the fastest path to arrive at a goal given a
maximum attainable speed and a minimum turning radius
as time-dependent functions of the vessel’s heading and
location. However, as we show in this paper, avoiding the risk
of capsizing and bow-diving sometimes requires a minimum
speed at a certain direction. The computational complexity of
DP is another issue of this method. A closely related method,
[5], achieves optimal path following with roll constraints
using MPC. This method is different from our method in
that it focuses on roll response to rudder and propeller inputs,
while our work considers roll and pitch responses to waves.
To the best of our knowledge, [6] is the only prior work
that considers path planning that avoids the risk of capsizing

*Work supported by the Defense Advanced Research Projects Agency
Contract NNN13R305T. The views expressed are those of the authors and
do not reflect the official policy or position of the Department of Defense
or the U.S. Government.

1Masahiro Ono, Marco Quadrelli, and Terrance L. Huntsberger are
with the Jet Propulsion Laboratory, California Institute of Technol-
ogy, Pasadena, CA 91109, USA {ono, marco.b.quadrelli,
terry.huntsberger}@jpl.nasa.gov

c©2013 California Institute of Technology. Government sponsorship
acknowledged. Distribution Statement A (Approved for Public Release,
Distribution Unlimited)

and/or bow-diving in a high sea state. It proposes a PID-
based path planner to reach a target with a tacking maneuver
(i.e., taking a zigzag path) when a ship heads towards an
unsafe direction. The unsafe heading directions are found by
a simulation-based analysis that assumes a constant sea state.
However, in reality, the sea state dynamically changes over
time and location. Also, potential USV missions, such as
patrol and environmental monitoring, typically require more
complicated behaviors than just reaching a target. There are
solid body of work on control strategies for the stabilization
of ship oscillations; among them the most relevant to our
work is [7], which uses the extremum seeking methodology
as well as MPC to decide the ship’s speed and heading
to optimize the encounter frequency with waves so that
parametric roll resonance is avoided. However, in this line
of work, the emphasis is placed on the stabilization of
oscillation while the path planning aspect is not explicitly
considered.

Given these contexts, a challenge that we are going to
address is to build a path planning capability combined with
a rigorous handling of roll/pitch motions. More specifically,
we develop a maritime path planning method that provides
the following three capabilities:

1) Avoiding the risk of capsizing and bow-diving,
2) Adapting to a dynamically changing sea state in real

time, and
3) Achieving various high-level mission goals, such as

patrolling a pre-specified path, chasing a moving target,
and going through waypoints with the minimum time.

Additionally, the new path planning method should be able
to be combined with existing collision/obstacle avoidance
capabilities.

The key idea to provide the first two capabilities is to use
response amplitude operators (RAOs). A RAO is essentially
a Bode plot that describes the frequency response of each
of the six ship motions (i.e., roll, pitch, yaw, heave, sway,
and surge) to a sea state (i.e., wave spectrum) [8]. RAO
is obtained from a linearized model of ship motions of a
specific vessel hull shape at a specific ship speed and the
direction of wave relative to the ship’s heading. Commercial
software is available to compute RAOs based on computa-
tional fluid dynamics (Such as MOSES by Bentley Systems).
In order to enable online path planning, we pre-compute
RAOs for all combinations of speed and wave heading at
a certain interval and store them in memory. Then, during
the online path planning, we use the RAOs to evaluate the
maximum pitch and roll angles that are expected to occur
when moving with a given speed and heading. This process



is repeated on a discrete set of velocities, which are classified
into safe and unsafe velocities by checking if the maximum
pitch and roll angles are within pre-specified thresholds
that guarantee that capsizing and bow-diving do not occur.
This classification result is transformed into an arithmetic
constraint on velocity by a newly developed algorithm, which
is presented in Section II-C. The resulting constraint is
typically non-convex.

The third capability mentioned above is developed by
building upon the model predictive control (MPC)-based
path planning method that was initially proposed by [9]. It
provides obstacle avoidance capability by encoding a non-
convex state constraint into mixed-integer linear constraints.
In our case, the non-convex velocity constraint obtained
from the previous step can be handled in the same manner.
This path planning approach meets our need since mixed-
integer programming (MIP) is expressive enough to represent
various high-level goals. For example, it can be used to
execute a qualitative state plan (QSP), which specifies a
sequence of time-evolved goals and temporal constraints,
such as “go to Point A within 10 seconds” and “stay within
Area B for at least 30 seconds” [10].

Existing collision/obstacle avoidance capabilities can be
easily incorporated into the proposed path planning method.
In Section IV-D we integrate the obstacle avoidance capa-
bility of [9] into the proposed path planning method. Also,
although this is beyond the scope of this paper, the proposed
path planner can be combined with the collision avoidance
method developed by [1]. It implements International Reg-
ulations for Preventing Collisions at Sea (COLREG), which
is considered to be the standard ”rules of the road” for
vessels, by translating the rules into velocity obstacles (VOs)
or infeasible regions in the velocity space. Since our method
specifies feasible regions in velocity space, the capabilities
of the two methods can be combined simply by computing
the intersection of their feasible sets in the velocity space.

The rest of the paper is structured as follows. In Section II,
we present the method to specify safe velocity regions using
RAOs. Then, in Section III, we develop an MPC-based path
planner that respects the velocity constraints obtained in the
previous step. Finally, we demonstrate the proposed method
by simulations in Section IV.

II. RAO-BASED IDENTIFICATION OF SAFE VELOCITIES

A. Evaluation of Maximum Roll and Pitch Angles using RAO

We represent a sea state by a superimposition of a finite
number of sinusoidal waves, each of which is specified by
three parameters: wave height h, wave frequency ω0, and
wave direction α. We denote by U and ψ a ship’s speed and
heading angle relative to the north.

Like a Bode plot, a RAO comes with two plots, one for
magnitude and the other for phase. There are six RAOs
corresponding to the six degrees of freedom of a ship’s
motion: roll, pitch, yaw, heave, sway, and surge, but in this
work we use only the ones for roll and pitch. Let Gφ(ω;U, β)
and Gθ(ω;U, β) be the magnitude of the roll and pitch RAOs
at speed U and heading angle β. Note that the heading β is

0.5 1 2
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Freqency of encounter [rad/sec]

M
ag
ni
tu
de
 [r
ad
/m
]

Roll

0.5 1 2
0

0.2

0.4

0.6

0.8

1
Pitch

Fig. 1. An example of roll and pitch RAO at U = 10 knots and β = 45◦.
A sharp peak in pitch is observed approximately at ω = 0.37 rad/sec.

relative to the wave direction; it is zero when the wave comes
from behind the ship and 90◦ when it comes from the left.
Therefore,

β = ψ − α. (1)

Also note that the input argument of RAO, ω, is not the wave
frequency but the frequency of encounter, meaning how often
the ship encounters waves. In deep water, it is known that
the natural frequency of a wave, ω0 and its wave number,
k, is related by ω0 =

√
gk, where g is the acceleration of

gravity. Using this equation, the frequency of encounter is
obtained as follows [11]:

ω = ω0 − kU cosβ. (2)

Figure 1 shows roll and pitch RAOs at U = 10 knots and
β = 0.

We now consider a sea state consisting of N sinusoidal
waves each of which is indexed by a subscript i and
characterized by (hi, ω0,i, αi). For each sinusoidal wave, the
heading angle relative to the wave direction, βi, and the
frequency of encounter, ωi, are computed by (1) and (2).
The magnitudes of roll and pitch oscillations caused by the
wave are computed from the RAOs.

The ship motion in a sea state is approximated by a super-
imposition of the contributions from all individual sinusoidal
waves [11]. With this approximation, the upper bound of the
roll and pitch angles, φmax and θmax, are given by the 1-
norm of the oscillation magnitudes caused by all sinusoidal
waves as follows:

φmax =
N∑
i=1

hiGφ(ωi;U, βi) (3)

θmax =
N∑
i=1

hiGθ(ωi;U, βi). (4)

B. Classification into Safe and Unsafe Velocities

We use (1)-(4) to evaluate the maximum roll and pitch
angles online as functions of the ship’s velocity, or equiv-
alently, U and ψ, at a given sea state. However, of course,
these functions are not obtained analytically. This subsection
discusses numerical approximation of φmax and θmax as well
as the classification of safe and unsafe velocities.



RAOs, Gφ(ω;U, β) and Gθ(ω;U, β), cannot be obtained
as analytical functions of ω, U , and β. Instead, they are
numerically evaluated at discretized points in the space of
(ω,U, β) with reasonably small intervals, such as 15◦ for β
and 2 knots for U . The computation of RAOs is performed
off-line and the results are stored in memory as a table.

The maximum pitch and roll angles are evaluated online
at a discrete set of the ship’s speeds and headings, as shown
in Figure 2(a). More precisely, we enumerate discrete sets,

U = {U1, U2, · · · , UM}, Ψ = {ψ1, ψ2, · · · , ψL},

and evaluate (φmax, θmax) for all (U,ψ) ∈ U × Ψ. RAOs
are interpolated if necessary. If the angles, (φmax, θmax), are
both below prespecified thresholds at a velocity specified by
(U,ψ) ∈ U ×Ψ, then that velocity is classified as safe; it is
classified as unsafe otherwise. Figure 2(a) shows an example
of the classification results for a sea state consisting of two
waves.

C. Conversion to Arithmetic Constraints in Velocity Space

The sets of safe and unsafe velocities obtained in the previ-
ous subsection must be translated into arithmetic constraints
in order to be used by the path planner that we describe
in Section III. More specifically, the constraints must be
represented by a set of convex regions in the velocity space.
Every safe velocity must be included in at least one of the
convex regions, but an unsafe velocity must not be inside
of any of the convex regions. In other words, we need to
convert Figure 2(a) into the convex regions shown in Figure
2(c).

This subsection develops an algorithm that finds such
convex regions from given sets of safe and unsafe velocities.
A challenge is to make the algorithm simple enough to be
able to run online. At the same time, it must results in
a reasonably small number of convex sets because having
an additional convex set increases the number of integer
variables in the MIP that is solved in the path planning phase.
Note that the complexity of a MIP grows exponentially with
the number of integer variables.

The key idea to overcome this challenge is to start from
the fewest number of convex regions that together include all
safe velocities, and iteratively divide a set into two pieces if
it includes unsafe velocities. This iteration is repeated until
all the unsafe velocities are excluded from the convex sets.

Algorithm 1 describes the outline of the algorithm. We
denote by conv(C) the convex hull of a set C.

From here, we explain the algorithm line by line. The
algorithm takes two sets of safe and unsafe velocities, Vsafe
and Vunsafe, as inputs. Each element in the sets are velocities
in Cartesian space, i.e.,

v =

[
U cosψ
U sinψ

]
∈
{
Vsafe iff (U,ψ) is safe
Vunsafe Otherwise.

In Line 2, a queue and a set is initialized as empty sets. In
Line 3, the velocities in the safe set is grouped into clusters,
C1, C2, · · ·CN . Two velocities v1, v2 ∈ Vsafe are put in the
same cluster if they are neighbors, meaning that the two

Algorithm 1 Convex Sets for Safe Velocities
1: Inputs : Vsafe, Vunsafe
2: queue← {}, hulls← {}
3: {C1, C2, · · · , CN} ← group(Vsafe)
4: queue← {queue, C1, C2, · · · , CN}
5: while queue is not empty do
6: C ← removeFirstElement(queue)
7: H ← conv(C)
8: if ∃v ∈ Vunsafe such that v ∈ H then
9: vd ← arg maxv∈Vunsafe d(v,H)

10: {CA, CB} ← divide(C, vd)
11: queue← {queue, CA, CB}
12: else
13: hulls← {hulls,H}
14: end if
15: end while
16: return hulls

velocities have the same heading angle and adjacent speeds,
or the same speed and adjacent heading angles. (Recall that
speed and heading angle are discretized.) For example, the
set of safe velocities given in Figure 2(a) are grouped into
three clusters, C1, C2, and C3, as shown in Figure 2(b).

Then, in Line 6, one of the clusters are removed from the
queue, and its convex hull is computed in Line 7. The green
polygons in Figure 2(b) are the convex hulls of the three
clusters. Since C is a set of discrete points, H is always a
polygon. Let n be the number of vertices of the polygon. We
define an n-by-2 matrix, P , and an n-dimensional column
vector, q, such that:

v ∈ H ⇐⇒ Pv � q,

where � is the elementwise inequality. We scale P and q so
that the 2-norm of each row of P is one. In this way, each row
of q−Pv represents a signed distance from the corresponding
edge of the polygon. In Line 8, the algorithm checks if the
convex hull includes an unsafe velocity by checking the signs
of q − Pv for all v ∈ Vunsafe.

If there is no unsafe velocities in H , then H is added
to hulls in Line 13. Otherwise, the algorithm splits C into
two subclusters. For example, in Figure 2(b), C3 includes an
unsafe velocity. We find a cutting line that goes through the
unsafe velocity as shown in Figure 2(b). The safe velocities
in C3 are regrouped into two subclusters. The convex hulls
of the two subclusters do not include any unsafe velocities,
as shown in Figure 2(c).

There are two questions that need to be answered. The
first question is, if there are multiple unsafe velocities in a
convex hull, how to choose a velocity that a cutting line goes
through. Intuitively, the algorithm chooses the velocity that
is the deepest inside the convex hull. For all v ∈ Vunsafe, the
algorithm computes the following scalar metric d:

d(v,H) := min
i

(q − Pv)i,

where (·)i is the i-th element of a vector. If v is in the interior
of H , d(v,H) is the distance from v to the closest edge of





as “safety regions” that do not involve risks of capsizing and
bow-diving. In this section we develop a path planner that
achieves given control objectives while making sure that the
velocity is within the convex regions.

We assume N safe convex regions, H1 · · ·HN , are found.
Since these are convex hulls of a finite number of points, the
convex regions are polygons. Let Pi and qi be a matrix and
a vector such that

v ∈ Hi ⇐⇒ Piv � qi.

In order to avoid the risk of capsizing and bow-diving, the
velocity of the vessel must satisfy the following constraint
for all the time:

N∨
i=1

Piv � qi, (8)

where
∨

represents the logical disjunction. Note that this is
a non-convex constraint.

Let x(k) and u(k) be the vessel’s state and control
variables at time step k. The following general discrete-time
dynamics is assumed:

x(k + 1) = g(x(k), u(k)).

We also assume that the vessel’s velocity, v, is represented
as a function of x and u:

v(k) = h(x(k), u(k)).

We design a model predictive controller with horizon
length T . At each time step, the current state x(0) is
observed, and the following mixed integer programming
(MIP) is solved:

min
u(0)···u(T−1)

T−1∑
k=0

fk(x(k), u(k)) + fT (x(T )) (9)

s.t.

x(k + 1) = g(x(k), u(k)), ∀k ∈ K (10)
v(k) = h(x(k), u(k)), ∀k ∈ K (11)

Piv(k) � qi +Mzi(k), ∀k ∈ K, ∀i ∈ I (12)
N∑
i=1

zi(k) ≤ N − 1, ∀k (13)

zi(k) ∈ {0, 1}, ∀k ∈ K,∀i ∈ I (14)
K = {0,1, · · · , T − 1}, I = {1, 2, · · · , N}, (15)

where zi(k) is a binary integer variable and M is a large
positive constant. Note that the nonconvex constraint (8) is
transformed into a mixed-integer linear constraint (12) using
the “big-M” method [12]. Any additional constraints can be
incorporated into the optimization problem if necessary. For
example, in Section IV-D, we add mixed-integer constraints
on the vessel’s position to provide an obstacle avoidance
capability.

By solving the optimization problem above, an optimal
control sequence u?(0) · · ·u?(T − 1) is obtained. As the
regular MPC, we only apply u?(0) and discard the rest.
In the next time step, the latest state is observed, and the

0 5 10 15 20
0

0.01

0.02

0.03

0.04

0.05

Number of waves in a sea state

Co
m

pu
ta

tio
n 

tim
e 

[s
]

Fig. 4. Computation time to obtain convex feasible regions in the velocity
space from RAOs. The algorithm is run 100 times for each case with a
randomized sea state. The plot shows the average while the error bars show
the standard deviation. The computation time is measured on a machine
with an eight-core Intel(R) Xeon(R) CPU clocked at 3.10 GHz and a 16
GB RAM. The algorithm is implemented in Matlab.

optimization problem is solved again to obtain the next
control input. Also, the sea state is observed at an appropriate
time interval, and Pi and qi are updated accordingly.

IV. RESULTS

A. Computation of Feasible Velocity Space

We first demonstrate the method presented in Section II,
which takes RAOs as inputs and outputs a set of convex
feasible regions in the velocity space. The RAOs are numer-
ically computed from the hull shape of a vessel by using the
MOSES software. What we demonstrate here is a combined
algorithm of the classification of safe and unsafe velocities
(presented in Sections II-A and II-B) and the conversion to
arithmetic constraints (presented in Section II-C).

In order to evaluate the computation time, we conduct a
Monte-Carlo analysis. We run the algorithm with sea states
consisting of multiple sinusoidal waves, each of which has
randomly generated parameters. For each wave, its three
parameters are drawn from uniform distributions in the
following intervals:
• Height: h ∈ [0, 10] m
• Frequency: ω0 ∈ [0.3, 0.6] rad/sec
• Directions: α ∈ [0, 2π] rad

We conduct the analysis on sea states from one to 20 waves;
for each number of waves, the algorithm is run 100 times
with randomized parameters. For this analysis we assume
that see states are directly observable; when deployed on a
hardware the algorithm can be integrated with existing on-
board sea state estimators, such as [13], [14]. The threshold
on roll and pitch angles are set to 30 degrees.

Figure 4 shows the average and standard deviation of
the computation time. It is observed from the figure that
the computation time shows slow increasing tendency; the
average computation time is about 0.05 seconds even for a
complex sea state consisting of 20 waves. Figure 5 visualizes
representative results with 2, 4, 6, and 8 waves in a sea state.



-15 -10 -5 0 5 10 15

-10

-5

0

5

10

15

20

x [m]

y [
m
]

 

 

1 23
4

56

78

910
11
12

13
14
15
16
17
18
19 2021

1
2

3
4

5

6

7

8
9

10
11

12

13

14

15

16

17

18
19

20 21

Wave 1

Wave 2

Reference Trajectory
Vessel Trajectory 1
Vessel Trajectrory 2

(a) Position Space

-4 -2 0 2 4
-5

-4

-3

-2

-1

0

1

2

3

4

5

1

2

3

4

5

6

7

89

10

11
12
13 14

15 16
1718

19
20

1

23

4

56
7

8
9

10
1112
13

14
15 16

17

18

19

20

vx [m/s]

vy
 [m
/s
]

(b) Velocity Space

Fig. 6. Path planning with circular reference trajectories. The figure shows two simulation results with different radius of the reference trajectory. (a) shows
the trajectories in the position space while (b) shows the trajectories in the velocity space. The feasible velocity regions are shown by green polygons.

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

8

X velocity [m/s]

Y 
ve

lo
ci

ty
 [m

/s
]

0.4 m
0.39 rad/s

7.8 m
0.51 rad/s

2 waves

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

X velocity [m/s]

Y 
ve

lo
ci

ty
 [m

/s
]

2.6 m
0.58 rad/s

0.1 m
0.41 rad/s

2.2 m
0.37 rad/s

6.7 m
0.44 rad/s

4 waves

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

X velocity [m/s]

Y 
ve

lo
ci

ty
 [m

/s
]

0.7 m
0.35 rad/s

2.3 m
0.58 rad/s

0.6 m
0.33 rad/s

0.6 m
0.57 rad/s

0.1 m
0.47 rad/s

3.1 m
0.35 rad/s

6 waves

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

8

X velocity [m/s]

Y 
ve

lo
ci

ty
 [m

/s
]

0.6 m
0.45 rad/s

1.9 m
0.33 rad/s

0.2 m
0.45 rad/s

3.0 m
0.54 rad/s

2.7 m
0.34 rad/s

2.8 m
0.58 rad/s

1.9 m
0.40 rad/s

1.2 m
0.52 rad/s

8 waves

Fig. 5. Four representative examples of the convex feasible regions in the
velocity space computed by the proposed method, with a randomized sea
state consisting of 2, 4, 6, and 8 waves. The arrows show the direction of
waves. The height and frequency of a wave is shown by the texts next to
each arrow.

B. Path Planning

We next present path planning results. In our simulations
we assume a 2-D single-integrator dynamics, where the state
vector x is the vessel’s position and the control vector u is
the velocity. Gaussian white noise is added to the model
in order to demonstrate the robustness of the path planner.

Therefore (10) and (11) are replaced with:

x(k + 1) =

[
1 0
0 1

]
x(k) +

[
∆t 0
0 ∆t

]
u(k) +

[
wx(k)
wy(k)

]
v(k) = u(k), wx(k), wy(k) ∼ N (0, σ2),

where σ = 0.1 m. The horizon length of MPC is set to T =
5. With this linear dynamics, the optimization problem (9-
(15) becomes a mixed-integer linear programming (MILP).
We note that a non-holonomic/non-linear dynamics can also
be handled in the same framework, but it requires solution
of more complex optimization problem. The path planning
algorithm is implemented in Matlab while the MILP is solved
by a commercial solver, CPLEX.

The control objective in this example is to follow a
reference trajectory. Let xr(1) · · ·xr(T ) be a given reference
trajectory over the current prediction horizon. The objective
function in (9) is defined as:

T∑
k=1

{
γk‖xr(k)− x(k)‖2 + c‖x(k)− x(k − 1)‖2

}
,

where γ is a discount factor and c is a weighting factor. We
set γ = 0.5 and c = 0.01. The first term of the objective
function penalizes the distance between the reference trajec-
tory and the planned path, while the second term penalizes
the path length. Note that this objective function is not linear.
In order to use an efficient MILP solver, we apply a linear
approximation. More specifically, an objective function with
a 2-norm,

min
x∈X
‖x‖2,

is approximated by a linear objective function with additional
variable d and constraint as follows:

min
x∈X,d≥0

d s.t. Rx ≤ d,



-10 -5 0 5 10

-10

-5

0

5

10

x [m]

y [
m
]

Fig. 7. Path planning with changing sea state. The sea state consists of
two waves, whose height, frequency, and direction are chosen randomly. At
each lap the vessel observes the lateset sea state and updates the feasible
control regions.

where R is a N -by-2 matrix whose i th row is:

(R)i = [cos(2πi/N), sin(2πi/N)].

Figure 6(a) shows the path planning results for two circular
reference trajectories with different radius. For both cases,
the vessel occasionally tacks to avoid unsafe velocities.
Figure 6(b) shows the trajectories in the velocity space. As
shown in the figure, the vessel successfully avoids unsafe
velocities for all the times. Average computation time was
0.0652 seconds per time step.

C. Path Planning with Changing Sea State

We next demonstrate the capability of the proposed path
planning method to adapt to a changing sea state. For this
demo we use the path planner to go around the same circular
reference trajectory ten times. For each lap we randomly
generate a sea state with two waves, and the path planner
updates the feasible velocity regions accordingly. Figure 7
shows the vessel’s trajectory. The trajectory varies between
laps for two reasons; one is the disturbance added to the
vessel’s simulated dynamics, and the other is the changes in
sea state. Sometimes the path deviates significantly from the
reference trajectory in order to avoid unsafe velocities.

D. Path Planning with Obstacles

We finally demonstrated that obstacle avoidance capability
can be added to the proposed method. For this simulation, we
set the position of a goal, xg , and use the following objective
function:

‖xg − x(T )‖2 + c
T∑
k=1

‖x(k)− x(k − 1)‖2.

Obstacles are represented by polygons, which are encoded
into mixed-integer constraints by the method developed by

0 20 40 60 80
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0 1 2 3 4 5 6 7 8 9 10
1112

1314
15

16
17
1819

20
21

22
23
24

252627
28
29
30
3132

3334

x [m]

y 
[m

] Wave 1

Wave 2

Goal

Start

Fig. 8. Example run of the proposed Path planning method combined with
obstacle avoidance capability. The start and goal are located at [0, 0] and
[100, −100], respectively.

[9]. We use the feasible velocity regions shown in Figure
2(c). The goal is located at [100, −100]. The result is shown
in Figure 8. The vessel successfully reaches the goal without
hitting obstacles while avoiding unsafe velocities by tacking
maneuvers.

V. CONCLUSION

This paper presented a path planning method that avoids
the risk of capsizing and bow-diving. The key idea is to
compute safe regions in the velocity space, in which the max-
imum roll and pitch angles are below given thresholds. We
use MPC to plan a path that satisfies the velocity constraints.
The proposed method is demonstrated by simulations. It can
be combined with a sea state estimator, such as [13], [14],
to close the loop and deploy on a hardware system. One of
the interesting and practically valuable future directions is
an integration with the COLREG planner presented by [1]
so that the planner can handle the risks of high sea state and
collision in a unified framework.

ACKNOWLEDGMENT

The research described in this paper was carried out at the
Jet Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space
Administration. We would like to thank the sponsor program
manager, Mr. Scott Littlefield at the Defense Advanced
Research Projects Agency for his support of the effort.

REFERENCES

[1] Y. Kuwata, M. T. Wolf, D. Zarzhitsky, and T. L. Huntsberger, “Safe
maritime navigation with COLREGS using velocity obstacles,” in
Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2011.

[2] M. Benjamin, J. Curcio, J. Leonard, and P. Newman, “Navigation of
unmanned marine vehicles in accordance with the rules of the road,” in
Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE
International Conference on, 2006, pp. 3581–3587.



[3] T. Statheros, G. Howells, and K. M. Maier, “Autonomous ship collision
avoidance navigation concepts, technologies and techniques,” Journal
of Navigation, vol. 61, pp. 129–142, 1 2008.

[4] I. S. Dolinskaya, “Optimal path finding in direction, location,
and time dependent environments,” Naval Research Logistics
(NRL), vol. 59, no. 5, pp. 325–339, 2012. [Online]. Available:
http://dx.doi.org/10.1002/nav.21492

[5] Z. Li, J. Sun, and S. Oh, “Handling roll constraints for path following
of marine surface vessels using coordinated rudder and propulsion
control,” in American Control Conference (ACC), 2010, 2010, pp.
6010–6015.

[6] R. F. Reinhart, J. J. Steil, T. L. Huntsberger, and A. Stoica,
“Tacking reduces bow-diving of high-speed unmanned sea surface
vehicles,” in Proceedings of the 2010 International Conference
on Emerging Security Technologies, ser. EST ’10. Washington,
DC, USA: IEEE Computer Society, 2010, pp. 177–182. [Online].
Available: http://dx.doi.org/10.1109/EST.2010.12

[7] D. Breu, L. Feng, and T. Fossen, “Optimal speed and heading control
for stabilization of parametric oscillations in ships,” in Parametric
Resonance in Dynamical Systems, T. I. Fossen and H. Nijmeijer, Eds.
Springer New York, 2012, pp. 213–238.

[8] O. M. Faltinsen, Sea Loads on Ships and Off-
shore Structures (Cambridge Ocean Technology Se-
ries). Cambridge University Press, 1990. [Online]. Avail-
able: http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-
20&path=ASIN/0521458706

[9] A. Richards, T. Schouwenaars, J. P. How, and E. Feron, “Spacecraft
trajectory planning with avoidance constraints using mixed-integer lin-
ear programming,” AIAA Journal of Guidance, Control, and Dynamics,
vol. 25, no. 4, 2002.

[10] T. Léauté and B. C. Williams, “Coordinating agile systems through
the model-based execution of temporal plans,” in Proceedings of the
Twentieth National Conference on Artificial Intelligence (AAAI), 2005.

[11] N. Salvesen, E. O. Tuck, and O. Faltinsen, “Ship motions and sea
loads,” in The Society of Naval Architects and Marine Engineers, no. 6,
1970.

[12] I. Griva, S. Nash, and A. Sofer, Linear and Nonlinear Optimization.
Society for Industrial and Applied Mathematics, 2009. [Online].
Available: http://books.google.com/books?id=u63u iNcnRkC

[13] U. Nielsen and D. Stredulinsky, Onboard sea state estimation based
on measured ship motions, 2011.

[14] E. Tannuri, J. Sparano, A. Simos, and J. da Cruz,
“Estimating directional wave spectrum based on stationary
ship motion measurements,” Applied Ocean Research, vol. 25,
no. 5, pp. 243 – 261, 2003. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0141118704000070




