


(the Classes specified in the Timeline Ontology) as well
as many Timeline instances. Using TXI, we are able to
store Timeline instances and transform them between various
formats, allowing the data to be visualized in various forms
(e.g. diagrams, mathematical equations, tables, plots) that
are useful for better understanding the dynamic aspects of a
system design.

Using the TXI as a base, we were able to addionally create
Timeline-related tools. First, we created a Timeline Solver for
computing values of Timeline instance variables, including
instant event times as well as dependent variables over time.
Timeline instant event times are specified as tn, and are
related to other times via constraints, such as tn = tn−1+5.0,
ultimately linking back to the start time of the Timeline. The
Timeline Solver computes numerical values for each of those
variables; using that information, we can then solve for the
dependent variable values over time. Second, we built upon
the Timeline Solver, creating a Timeline Viewer for plotting
the dependent variable of a Timeline instance over time.

Timelines in System Design and Mission Operations

To further ground the needs for Timeline and the TXI, we
examine the tools used in the Mission Operations Systems
(MOS) at the Jet Propulsion Laboratory (JPL). For a given
project, analysis tools (e.g. power analysis tools, telecom
analysis tools, attitude analysis tools, sequencing tools) are
integrated as necessary in a rather ad hoc manner. These
integrated tools exchange data in various formats, where
the exchange can only occur with customized conversion
scripts. Due to lack of well-specified semantics for these
formats, developing these conversion scripts is non-trivial and
the effort required for their development is highly uncertain.
Accordingly, the project has to allocate extra time and effort
to develop these scripts. By using Timeline as the common
representation between these tools, this adaptation overhead
can be mitigated, reducing the resources required by the
project to perform this tool integration.

We also describe a use of Timelines during the early design
phase of a project lifecycle. Specifically, we found Timeline
to be useful for storing and analyzing scenario-based power
load profiles and power and energy margins. While dis-
cussing this use case, we will focus on the ability to compute
using Timelines.

Finally, we look at future extensions to this work, includ-
ing creating a user interface for Timeline instance editing,
integrating with ontology validation tools, and extending
Timeline to include relationships to other pre-existing JPL
ontologies.

2. RELATED WORK
Attempts to model variables changing over time has been
done in various ways.

The Architecture Analysis and Design Language (AADL)
allows the modeling of synchronous data flows within a sys-
tem. The Unified Modeling Language (UML) and Systems
Modeling Language (SysML) provide Timing Diagrams, In-
teraction Diagrams, and Sequence Diagrams. These diagrams
have notions of TimeConstraints which can be used to express
durations between events. UML MARTE is a UML extension
that focuses on modeling real-time embedded systems.

While all of these options have many features that are

Timeline-like, there are a few features missing: 1) Constraints
on variables (ValueProperties) are handled in an ad hoc
manner and 2) although these diagrams are good for showing
specific execution traces, they are less good at showing the
entire space of possible behaviors for a system.

We strove to create a system that could accomplish all of these
things.

Previous work has been done in defining time ontologies with
the intent of performing analyses based on temporal logic
[1][2]. The current incarnation of the described Timeline
Ontology does not extend from these efforts, but we are
looking into which ontologies would be beneficial to import.

3. TIMELINE
A Timeline constrains time-varying information over time. A
simple and common example of time-varying information is a
position x(t) of some object. While the codomain of a time-
varying position is a three dimensional vector, i.e. D(x) ∈
R3, a timeline may be associated with more complex and less
conventional codomains, e.g. a set of discrete data, such as
camera images. In the case of camera images, the dependent
variable would be the image state and events would represent
image processing operations, e.g. gaussian blurring, channel
extraction, thresholding, hough transformations, etc.

For a more formal mathematical definition of Timeline,
please refer to [3].

Timeline Ontology

Generally speaking, we define Timeline as a representation
of time-varying information; specifically, a representation of
events in time. While some only associate the word “event”
with an occurrence at a specific point in time, we use a more
general and broader definition of event that includes a notion
of an occurrence over a period of time (a time interval). To
disambiguate these usages, we denote an event at a given
time as an instant event and an event over a time period as
a durative event.

To create a rigorous definition of Timeline, we used Protégé
[4], an open-source ontology editor which can export on-
tologies written in the Web Ontology Language (OWL) [5]
to the Resource Description Framework (RDF) standard, a
World Wide Web Consortium (W3C) specification [6]. Any
standards-based ontology editor would be fine; we chose to
use Protégé because of its user interface, export to various
standard representations, and its Java interface. In this section
we first describe how OWL is used to define terminology and
then define the Timeline ontology.

OWL: Class and NamedIndividual

The Web Ontology Language (OWL) standard has a dis-
tinction between Classes and NamedIndividuals, where a
NamedIndividual is an individual or “instance” of a Class.
This terminology originates from philosophy, and subse-
quently Artificial Intelligence, under which a class is a cat-
egory of being or concept and an individual is an instance
that is a member of a class. It is possible to specify both
Classes and NamedIndividuals in a same database. We chose
to define our Classes in a separate database from that of the
NamedIndividuals.

The organization of our databases is depicted in Figure 2. The

2





Figure 4. Diagram showing the inheritance of different Events as well as some relationships between Events. (The
black-diamond is a Directed Composition relationship and indicates the ‘has a’ relationship).

Figure 5. Diagram showing the inheritance of different Constraints some relationships between Constraints and
Variables

• DependentVariableConstraint - A relationship between
multiple DependentVariables and/or a ReferenceTimeVari-
able. For example,

powerCBE [FlightSystem] == powerCBE [Payload]

+ powerCBE [Bus]

or
powerCBE [foo] == 1.5 · ln (t− e1start).

Additional types of constraints will be explored further in
future iterations of this infrastructure.

Example NamedIndividual

NamedIndividuals were used to store Timeline instances.
An snippet from a specific Timeline instance is shown in
Figure 6.

4. TIMELINE EXCHANGE INFRASTRUCTURE
(TXI)

The Timeline eXchange Infrastructure (TXI) was created
to support the exchange of temporal information between
various formats and tools. It is a centralized repository for
temporal information along with utilities for querying that
information in a meaningful way.

Timeline Database

To store the Timeline Ontology and to store Timeline in-
stances, we used Sesame [7], an open-source framework

for storing RDF data in a queriable database. This type of
database is commonly called a “triple-store” as the RDF data
comes in triples: <Subject, Predicate, Object>. Our plan is
to extract the reusable behaviors into Event Classes to store in
the Classes database, but this has not yet been implemented.

Java-based TXI API

We decided to use Java as the language for our TXI glue
because many tools come with the ability to add in Java
plugins. Additionally, our database (Sesame), ontology editor
(Protégé ), and various tools (e.g. Maple, Mathematica,
MagicDraw) all have Java interfaces.

We are looking into using Alibaba, an open-source tool in
Sesame which can be used to generate Java code from an
ontology. This would mean that the Timeline portion of
the TXI API would always be consistent with the defined
Timeline Ontology. As it currently stands, the two are inde-
pendent entities and consistency between the two is managed
manually.

Standard Timeline Transformations

The TXI API includes the classes and structure for Time-
line, but in order for that to be useful, the API additionally
needed the ability to transform Timeline information between
standard formats. While the Java-based Timeline objects are
useful at runtime, they are not helpful for storing information
for offline use or for later retrieval. For those uses, it is better
to store a Timeline instances in a database or file.

The format exchanges we provide are:

4



Figure 6. This is a screenshot of a NamedIndividual file representing a Timeline instance. Specifically, this
NamedIndividual stores the power information for the SMAP’s Launch Scenario. See Section 6 for more information.

• Timeline File Parser - Parses a Timeline instance
RDF/XML file or Timeline instance DSL file and generates a
corresponding Timeline object in Java.
• Timeline File Writer - Takes a Timeline object in Java and
writes a Timeline instance RDF/XML or DSL file.
• Sesame Querier - Queries Sesame for Timeline instance
information given a timeline name and generates a corre-
sponding Timeline object in Java.
• Sesame Publisher - Takes a Timeline object in Java and
pushes all RDF statements in it to the triplestore database.

All other transformations must be written for the specific
application.

Expected Usage

We expect the Timeline API to be included in a plugin to
a specific tool. The plugin would use the Timeline API to
generate, mutate, and destroy Timeline instance information
in various formats.

As an example, we created a plugin to MagicDraw which
included the Timeline API. The purpose of the plugin was to
1) transform a SysML Activity to a Timeline instance; 2) save
the result in the Sesame database; and 3) write an RDF/XML
file locally. This tool has been successfully implemented and
tested. It is discussed in detail in Section 5.

5. TXI TOOLS
In this section we will discuss some of the tools we have
created for performing operations on Timeline instances.

SysML Activity To Timeline Instance Transform

SysML is used on several tasks at JPL for modeling various
facets of systems including behaviors, structure, require-
ments, test procedures, test configurations, etc. In order to
integrate the ideas of Timeline into those tasks, we decided
to add in an Activity-to-Timeline-Instance transformation
capability.

SysML has many of the concepts we need for defining Time-
line concepts; where it fell short, we were able to augment
SysML by creating stereotypes to capture the additional data
and metadata. We only found the need to create a single
additional stereotype: << Scenario >>.

The << Scenario >> stereotype allows the user to specify
certain fields thare are relevant for Timeline. Specifically,
the stereotype has a field for the collection of Dependent-
Variables of interest, a field for the root component of the
physical decomposition (which is used to determine “rollup”
constraints), and several string fields for capturing the vari-
able names used for tstart, tend, t− tstart, and t.

The mapping from a SysML Activity to a Timeline instance
is as follows:

• SysML Constraints constraining an Activity or an Activity
Node are mapped to TemporalConstraints.
• Actions (specifically CallBehaviorActions) are mapped to
DurativeEvents. As DurativeEvents can contain other Events,
we follow the Action’s Behavior back to an Activity to find
its child-Actions.
• Initial and Final Nodes are mapped to Start and End Instan-
tEvents of a DurativeEvent.
• Fork and Join nodes are mapped to InstantEvents.
• ActivityFlows (Control Flow and Data Flow) are mapped
to TemporalConstraints that replicate the token-flow of how
Activities execute. That is to say that an ActivityFlow that
indicates that an Action starts when the previous Action ends
is mapped to a Temporal constraint equating the start time of a
DurativeEvent to the end time of the previous DurativeEvent.
• All other aspects of SysML Activity Diagrams are unsup-
ported.

Timeline Solver

As a proof of concept, we wanted a tool that could take a
perfectly constrained Timeline instance and solve for all the
unknown variables.

For example, imagine a simple Timeline instance T for
x(t) with two serial DurativeEvents, A and B. Each Dura-
tiveEvent has a start and end InstantEvent with a correspond-
ing TimeVariable, Tstart, Tend, Astart, Aend, Bstart, and
Bend. Let us further assume that:

• T starts at t = 0;
• A lasts for 5.0 time units and restricts x such that x ==
1.0; and
• B lasts for 7.0 time units and restricts x such that x = 0.0.

These variables are all related to one another as follows:

5



• Tstart == Astart, from structure;
• Aend == Bstart, from structure;
• Bend == Tend, from structure;
• Tstart == 0.0, from given start time;
• Aend == Astart + 5.0, from given duration;
• Bend == Bstart + 7.0, from given duration;
• and the dependent variable constraint

x(t) ==

1.0, Astart < t < Aend

0.0, Bstart < t < Bend

undef, otherwise

This is a perfectly specified Timeline instance. Each variable
can be unambiguously determined from this information. We
first solve for each of the TimeVariables, and from that,
assuming we have the piecewise definition of the dependent
variable, we can determine the dependent variable at any
point in time.

As in our example, the Timeline Solver starts by extracting
all the constraints from the Timeline instance. All temporal
constraints and dependent variable constraints are written to
a file in solver-specific syntax. The purpose of this file is
twofold. First, it provides a trace that allows us to debug
any issues with the transformation. Second, it allows for a
snapshot of the Timeline instance that can be used in the
solver for various analyses (instead of having to run the
transformation each time). We chose to use Maplesoft’s
Maple [8] for our solver, but the transformation could just as
easily have written source code for another symbolic solver
tool.

The solver is asked to solve for the values for all the
TimeVariables so that the temporal extent of each part of each
piecewise equation is known. Once we had a “solved” piece-
wise representation of each DependentVariable over time, we
can query the solver for the DependentVariable we care about
at any level by specifying both the DependentVariable and the
time at which we want to know its value.

Timeline Viewer

The Timeline Viewer was built on top of the Timeline Solver.
It uses the Timeline Solver to solve a perfectly constrained
Timeline instance. It then samples a specified Dependent-
Variable in that solved Timeline instance n times from t =
Tstart to t = Tend and plots the results on a graph in a new
window. The time-sampled data is also written to a file for
external analyses if needed.

6. APPLICATIONS
While working on this project, we focused on two distinct
stakeholders who need to store data in the form of timelines.
These stakeholders were 1) Flight Systen Engineers, who
require information in the form of timelines for various
scenario-based analyses; and 2) The Mission Operations
System and Ground Data System (MOS/GDS) engineers,
who require temporal information of resources in order to
determine schedules for various activities.

Application for Flight System Engineering (SMAP)

The Soil Moisture Active/Passive (SMAP) mission is a flight
project with a joint radiometer/radar instrument which will
be used to map soil moisture and the freeze-thaw cycle of
water on the Earth’s surface. We took notional scenarios
from SMAP and put them in our Timeline format so we could

look at the power usage of each component, subsystem, and
system over time.

Modeling Power for SMAP’s Launch Scenario—The SMAP
project chose to model flight system power consumption over
various scenarios using a mixure of artifacts, including

• An Activity-like diagram representing the notional se-
quence of events along with the components responsible for
performing those events (see Figure 7);
• A Sequence spreadsheet representing the actual flight sys-
tem configuration, specifying the power mode for each com-
ponent for each event; and
• A Mode spreadsheet enumerating the modes of each com-
ponent along with a power consumption static value for each
of those modes.

While SMAP’s approach to modeling sequences works, there
is one major shortcoming. There is no direct connection
between their Activity-like Diagram (the graphical represen-
tation of the sequence) and the Sequence spreadsheet (the se-
quence play-by-play). This means that both documents need
to be updated manually to ensure that they are synchronized.
By using a Model-Based Systems Engineering approach to
this modeling effort, the disconnect between the graphical
and analytical models can be remedied.

Using Timeline for Power Scenario Modeling— We began
by modeling the components in SysML, showing how those
components are collected into subsystems and ultimately
systems. This physical decomposition imposes “rollup” con-
straints in our Timeline instance. That is to say that the
DependentVariable (e.g. powerCBE ) of a component in our
physical decomposition tree is related by some mathematical
expression (e.g. RSS, RMS, or in this case, a summation Σ)
to that component’s children’s DependentVariables. These
constraints are not added explicitly in the SysML model
as constraints; they exist implicitly based on the physical
decomposition. As part of the transformation from SysML
Scenario to Timeline instance, these implicit constraints are
added explicitly to the Timeline instance. There is no analogy
to this in SMAP’s modeling approach as structural informa-
tion is implicit based on the equations in the spreadsheet and
general layout of the spreadsheet. Because these physical-
decomposition-based constraints are independent of the Sce-
nario, future work will include adding these constraints to the
database for all Timeline instances to reference, instead of
creating similar constraints for each Timeline instance, which
is what we currently do.

Once we had a physical decomposition of our system, we cre-
ated a behavior specification for each of the leaf-level com-
ponents, specifying their operational modes and transitions
between operational modes. This specification is analogous
to SMAP’s Mode spreadsheet. However, unlike the Mode
spreadsheet, which presumes constant power consumption on
a mode, these modes can have dependent variable constraints
(in this case power consumptions) that are arbitrary functions
of time, using references to both absolute time (t) and relative
time (time since entry into that mode, t − tstart). Another
distinction is that our specification has an understanding of
the mode transitions, making certain sequences of modes
impossible.

Upon completion of this behavior specification for each of
the components, we generated Scenarios (see Figure 8).
There are no rules on the structure of the Scenario’s Activity
tree. One assumption made during the transformation from

6



Figure 7. This is a sanitized version of SMAP’s Activity diagram specifying the sequence of events during Launch.

Figure 8. This is a snippet from our Scenario which
amalgamates the information provided to us by SMAP
into a single model. This snippet more closely resembles
the Sequence spreadsheet, but each of these actions de-
composes into an activity diagram that looks similar to
SMAPs original activity diagram.

Scenario to Timeline is that the recursive transformation
from Action to DurativeEvent can be stopped when either
an Action has no associated Behavior or an Action has a
Behavior that specializes the Template Behavior (specified
at the Scenario Root). By that, we mean that the Scenario
(in this case Launch Scenario) specifies that it is tracking
a Template Behavior (in this case PowerTemplateActivity),
which defines several DependentVariables that we may want
to track over time (in this case powerCBE , powerMargin ,
powerContingency , and powerAllocation), and that all the

Behaviors in the Behavior Specification for each leaf compo-
nent specialize that Template Behavior (in this case giving
each of them the desired DependentVariable powerCBE .
The rationale for the assumption that we can prune the trans-
formation at Actions with Behaviors that specialize the Tem-
plate Behavior is that a Behavior specializing the Template
Behavior constrains the DependentVariable for a specified
interval of time. As such, there is no useful additional
information that can be gained by digging deeper into the
Scenario’s Activity tree. Elaboration of a Scenario as the
project evolves can be done via a two step process: 1)
remove the specialization of the Behavior to the Template
Behavior and 2) add child Behaviors that each specialize the
Template Behavior. An example Template Behavior is shown
in Figure 9.

Figure 9. This is an example of a Template Behav-
ior. It has several properties which can be tracked over
time (DependentVariables). In this case, we tracked
powerCBE .

After specifying the Scenario, we were able to use the
Activity-To-Timeline-Instance transformation (discussed in
Section 5) to export the scenario specification to a Timeline
instance, allowing us to use our Timeline Solver (discussed

7



in Section 5) and Timeline Viewer (discussed in Section 5)
to produce a full power analysis for SMAP for the specified
Scenario. An example plot for a subsystem is shown in
Figure 10. Note that the Scenario starts before t = 0 as t = 0
corresponds with the actual launch of the FlightSystem. The
Scenario includes pre-launch activities.

Figure 10. This plot shows a notional power profile
for one of the SMAP’s subsystems during the Launch
Scenario (power in watts over time in minutes).

Application for MOS/GDS Engineering (EPOXI)

The second part of this project has looked at the current
structure for MOS/GDS tools to see how Timeline could be
used to make our system better. We focused on the Extrasolar
Planet Observation and Characterization (EPOXI) mission
and how it used the planning tool Activity Plan Generator
(APGEN) to orchestrate various power, telecommunications,
thermal, trajectory, and attitude simulation tools to develop
sequences.

APGEN, as the orchestrator, needs to be aware of the be-
havior of all of these tools. Each of the tools orchestrated
by APGEN has its own unique behavior. Many of these
tools has its own definition of time and how time steps are
realized. For example, the Multi-Mission Power Analysis
Tool (MMPAT) maintains power-related state information for
each component in a system. When asked to step time and
update the power-state information, MMPAT occasionally
decides that it needs to break that time-step into multiple steps
because the power information is changing too rapidly. In
order to account for this, APGEN must loop on its call to
MMPAT until MMPAT has stepped to the desired time.

Behavior Modeling for APGEN—Instead of modeling a single
execution trace (as we did with SMAP), we wanted to use
Timeline to model the entire behavior space of a tool. This
involved taking C++ code and domain-specific language files
representing APGEN’s orchestration of the different tools
and transforming those into our Timeline constructs. Further
discussion on this modeling effort will be deferred to a future

publication.

7. NEXT STEPS
Timeline Ontology Work

Timeline Specialization—The current Timeline Ontology is
not explicit about what type of information is expected in the
Timeline. Timelines currently constrain a DependentVariable
over time. This constraint can be to a mathematical function,
but it could instead be to a state string. Additionally, although
it is possible to define a discrete Timeline of instant events
representing some sampled signal, there is nothing formal to
restrict a Timeline to contain only discrete sampled informa-
tion. To remedy this, we propose adding at least the following
types of Timelines to the ontology:

• Discrete Event Timeline: a Timeline in which all leaf-level
events are InstantEvents.
• Discrete State Timeline: a Timeline in which all constraints
constrain DependentVariables to a member of a set of strings
defined in an enumeration for each Component.

Necessary Timeline augmentations—While modeling EPOXI’s
use of APGEN, we found that in order to properly model
behavior, we need to add additional constructs to the Time-
line Ontology. Specifically, we need specialized Events for
handling conditional branching (e.g. If-Then-Else) and a
representation for loops (e.g. For, While, and Do-While).
While these events are not necessary for describing traces of
as-executed behavior, they are very necessary for describing
the entire space of possible behaviors.

Timeline eXchange Infrastructure Work

Currently, the Timeline infrastructure we have created as-
sumes a single DependentVariable type. Using this infras-
tructure, we can make a Timeline instance for powerCBE
for each component in the system, but if we wanted to
create a Timeline instance for dataRateCBE , we would
have to recreate the same structure described in the Timeline
instance. It would be better to allow for multiple Dependent-
Variable types within the same Timeline instance so we would
not have to separately track consistency between Timeline
instance structures for the same “Scenario”. That is to say
that instead of having a LaunchPower Timeline instance and a
separate LaunchDataRate Timeline instance, we would prefer
to have a single Launch Timeline instance that tracks both
powerCBE and dataRateCBE .

TXI Tool Work

One assumption we made while developing the TXI tools was
that all Constraints in a Timeline instance are purely mathe-
matical. Our tools have no understanding of discrete “state”
strings (e.g. “On”, “Off”, “Warmup”), although they are not
precluded by the Timeline Ontology. The Timeline Solver
would not be able to solve for the dependent variable over
time (in thise case powerCBE) for a component specified in
this way, and as all components are related via the implicit
physical decomposition constraints, we would not be able to
solve for any parent component in that tree, all the way up to
the FlightSystem. As the Timeline Solver would not be able
to solve the timeline instance, the Timeline Viewer would not
be able to plot the results.

This issue is currently not a big problem; however, as we
plan to add explicit discrete state Timelines to the Timeline
Ontology, we will need to update our tools accordingly.

8



Planned Tool Extensions

Currently, the only way to edit an existing Timeline instance
is to manipulate the Timeline instance in Java code. We
would like to instead create a Timeline Editor tool, a front-
end to our Timeline instance (NamedIndividual) database that
allows us to:

• view a Timeline instance’s structure, relationships, and
values; and
• manipulate a Timeline instance’s structure, relationships,
and values via insertion, deletion, and mutation of Timeline
elements.

OWL Reasoner Integration

Currently, all our Timeline instances are assumed to be valid,
but there is no rigorous check to ensure Timeline instance
conformance with the Timeline Ontology. This check can
be performed by using an OWL reasoner to validate the
instances. We plan to integrate Pellet [9] into our system to
perform these checks.

Future Direction

With the TXI currently storing information about power for
systems, we would like to start adding in other state variables
of interest, like DataRate, Mass, Attitude, Trajectory, etc.
and linking those Timeline instances together. This has the
potential to be a very powerful infrastructure for capturing
time-varying information in a fully integrated way.

ACKNOWLEDGMENTS

This work was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the
National Aeronautics and Space Administration.

REFERENCES
[1] A DAML Ontology of Time. [Online]. Available:

https://dspace.ist.utl.pt/bitstream/2295/40765/1/ADAMLOntologyOfTime.pdf
[2] Time Ontology in OWL. [Online]. Available:

http://www.w3.org/TR/owl-time/
[3] S. H. Chung and D. L. Bindschadler, “Timeline-based

mission operations architecture: An overview,” in Pro-
ceedings of the 12th International Conference on Space
Operations (SpaceOps 2012), Stockholm, Sweden, June
11–15 2012.

[4] The Protégé Ontology Editor and Knowledge Acquisition
System. [Online]. Available: http://protege.stanford.edu/

[5] OWL - Semantic Web Standards. [Online]. Available:
http://www.w3.org/OWL/

[6] RDF - Semantic Web Standards. [Online]. Available:
http://www.w3.org/RDF/

[7] openRDF.org: Home. [Online]. Available:
http://www.openrdf.org/

[8] Maple 16 - Technical Computing Software for
Engineers, Mathematicians, Scientists, Instructors
and Students - Maplesoft. [Online]. Available:
http://www.maplesoft.com/products/maple/

[9] Pellet: OWL 2 Reasoner for Java. [Online]. Available:
http://clarkparsia.com/pellet/

BIOGRAPHY[

Kenneth Donahue is a member of
the System Architectures and Behaviors
Group at the Jet Propulsion Laboratory.
He holds key roles on several projects
spearheading Model-Based Systems En-
gineering at JPL. He is also the Ra-
diometer Flight Software Cognizant En-
gineer on CHARM, a small flight project
collaboration between JPL and Ames
Research Center. He received his Bach-

elor of Science and Masters of Engineering from the Mas-
sachusetts Institute of Technology.

Seung Chung is the Technical Group
Supervisor of the Modeling and Verifica-
tion Group at the Jet Propulsion Labo-
ratory. His group is responsible for de-
veloping and maintaining the tools used
to verify and validate spacecraft com-
mand sequences and for developing the
spacecraft models and the operational
rules needed to verify and validate these
sequences. He also holds leadership

roles in architecting model-based approaches to systems en-
gineering for both ground and flight systems, including the
Europa mission concept studies. He received his Ph.D. in
Autonomy from the Massachusetts Institute of Technology.

9


