
Using XML Configuration-Driven Development to Create
a Customizable Ground Data System

Brent Nash, Martha DeMore
Jet Propulsion Laboratory

4800 Oak Grove Drive
Pasadena, CA 91109

bnash@jpl.nasa.gov, mdemore@jpl.nasa.gov

Abstract—12The Mission data Processing and Control
Subsystem (MPCS) is being developed as a multi-mission
Ground Data System with the Mars Science Laboratory
(MSL) as the first fully supported mission. MPCS is a fully
featured, Java-based Ground Data System (GDS) for
telecommand and telemetry processing based on
Configuration-Driven Development (CDD). The eXtensible
Markup Language (XML) is the ideal language for CDD
because it is easily readable and editable by all levels of
users and is also backed by a World Wide Web Consortium
(W3C) standard and numerous powerful processing tools
that make it uniquely flexible. The CDD approach adopted
by MPCS minimizes changes to compiled code by using
XML to create a series of configuration files that provide
both coarse and fine grained control over all aspects of GDS
operation.

The MPCS development team has implemented a generic,
hierarchical architecture for specification of and access to
system configuration information that allows configuration
parameters to be specified at the system, mission, and user
levels, transparent to the application that employs the
information. The resulting implementation is an XML-
based design, implemented in Java and Python, which is
useful not only for MPCS or ground data systems in
particular, but to any application.

While using XML-based CDD allows MPCS to have an
exoteric functional interface that can be easily reconfigured
(for different mission phases or even different missions) at
runtime instead of compile time, the challenges of
developing a sufficiently flexible configuration are
significant. In order to create a reusable multi-mission GDS,
it is necessary to balance the added complexity of
developing configuration-driven code with the ability to
create an overall configuration strategy that both developers
and users can understand and utilize effectively.

This paper will discuss the configuration and development
strategies employed by the MPCS development team and the
associated lessons learned in developing an XML
configuration-driven GDS to be used for the life of the MSL
mission and future missions.

1 Copyright 2008 California Institute of Technology. Government
sponsorship acknowledged.
2 IEEEAC paper#1256, Version 1, Updated Oct. 26, 2008

TABLE OF CONTENTS

1. INTRODUCTION .. 1
2. CONFIGURATION-DRIVEN DEVELOPMENT (CDD) 2
3. MPCS AND CDD ... 4
4. CONCLUSIONS .. 9
5. ACKNOWLEDGEMENTS .. 10
REFERENCES.. 10
BIOGRAPHY ... 10

1. INTRODUCTION
The Mission data Processing and Control Subsystem
(MPCS) is the next-generation Ground Data System (GDS)
under development for the Mars Science Laboratory (MSL).
 In addition to being a large component of the ground system
for MSL, MPCS is also in varying degrees of use on the
Mars Exploration Rovers (MER), the Diviner instrument on
the Lunar Reconnaissance Orbiter (LRO), and the DAWN
mission as well as other internal projects.

MPCS is being developed as a multi-mission ground system
that will experience its first operational use on MSL, but will
be easily adaptable to future missions. MPCS is responsible
for the reliable interpretation, real-time distribution, and
archival of spacecraft information for a wide range of
science and operations customers. This information
includes spacecraft telecommand data (“uplink”) and
spacecraft telemetry (“downlink”). For MSL, MPCS has
two distinct targets for telecommanding and receiving
telemetry:

• Flight Software (FSW) – The software interface
into the flight hardware onboard the MSL vehicle
itself.

• Simulation and Support Equipment (SSE) – The
software interface into the Ground Support
Equipment (GSE) that is part of the mission
lifecycle up until the launch.

MPCS is unique in that it will be the first GDS to be used
throughout the entire mission lifecycle of FSW
development, test, and operations. MPCS is responsible for
handling spacecraft telecommand and telemetry in a variety
of different venues including:

 1

1

• WorkStation TestSet (WSTS) – Individual FSW
developers and other spacecraft team testers work
on their individual development workstations sends
commands to and receiving telemetry from a flight
system emulator.

• Mission Testbeds – FSW Developers and
spacecraft team testers do integration, verification,
and validation procedures with various
subcomponents of the actual flight system
hardware.

• Assembly, Test and Launch Operations (ATLO) –
The FSW and GDS systems are integrated with the
assembled flight hardware in a flight-like test
environment.

• Operations – The various phases of the operational
mission from launch to the end of life of the
mission.3

Each venue provides its own adaptation challenges as many
of the Application Programming Interfaces (APIs) and
transmitted data formats change based on the venue that is
being used.

The major challenge for MPCS is providing a single
software package that can be flexible enough to support all
of the different venues in all different phases of a mission.
Furthermore, MPCS not only has to handle the complex
requirements of the various phases of the MSL mission, but
it must be agile enough to be easily adaptable to future
missions.

In tackling these significant software development
challenges, MPCS has adopted an XML-based
Configuration Driven Development (CDD) approach for
writing object-oriented software, which has been extremely
useful in providing a product flexible enough to be used in a
variety of scenarios and agile enough to quickly adapt to
new requirements and new missions. The following sections
will first describe CDD as an abstract object-oriented
software design methodology and will then delve into how
MPCS has used CDD to meet its customers’ needs.

2. CONFIGURATION-DRIVEN DEVELOPMENT
(CDD)

Overview

The following section provides an overview of the benefits
of adopting a CDD-based approach to software development
and then discusses how to use CDD including how to choose
a configuration representation, what information should be

3 MPCS will not be used for telecomand in the MSL Operations phase.

placed in the configuration and how code should be written
to best leverage the configuration.

Why CDD?

As the name implies, CDD places the primary focus of
software development on configuration written outside of
the code. Just as models are built first in Model-Driven
Development or tests are written first in Test-Driven
Development, CDD involves writing basic configuration file
structure and content before developing the business code
that utilizes the configuration. By writing configuration
first, it forces developers to focus on what information and
business logic can be represented independent of the code
that will operate on it. It also forces developers to determine
if any pertinent information is already present in existing
configuration and thereby cuts down on duplication of
information and processing logic. Another benefit of CDD
is that configuration files are easy to manage from a
Configuration Management (CM) standpoint because they
can be source-controlled and stored in a versioning system
such as Subversion or CVS in the same way that source code
is managed. CDD is not tied to one specific programming
language either; because configuration is represented in a
neutral format, the same configuration files can be used
across a number of different programming languages. The
biggest advantage of CDD is that the behavior of the
software may be changed drastically without having to
recompile or redeliver code.

Configuration Strategies

The first major choice to make when adopting a CDD
approach is deciding how configuration files will be stored
and represented. There is no single configuration
representation used unilaterally across CDD-based projects,
but the most popular choices are:

• Environment Variables – Configuration
information is identified and given values at the
Operating System (OS) level. Environment
variables are useful in making the same information
available to a number of separate processes, but can
cause consistency issues between different users,
shells, and environments.

• Homegrown Formats – Configuration information
is specified in a format created by the developers
who have complete control over the format and
content restrictions of the configuration. The main
disadvantage of a homegrown configuration format
is that the parsing and validation business logic
must generally be written from scratch, adding to
development time. In addition, the format is
difficult to share with other development teams and
systems when integration becomes necessary.

 2

2

• Keyword-Value Format – Configuration
information is identified in a simple name=value
format, generally one entry per line, in a
configuration file. Keyword value formats are
generally very easy to read, write, and interpret and
most programming languages have existing parsers
for keyword value formats. The main disadvantage
is that keyword-value is a loosely defined format
and it can be difficult to enforce organizational
restrictions or validate the values of particular
configuration entries.

• XML Format – Configuration information is
identified in a World-Wide Web Consortium
(W3C) standard language that has a well-
understood format and wide user base. XML
writing and parsing software is widely available
and XML additionally provides the ability to do
schema-based validation that can be further used to
restrict configuration format and even restrict
values on particular entries. The main
disadvantage is that XML is a verbose language
and can be confusing and intimidating to users who
are not software developers or are unfamiliar with
XML.

The choice of a configuration representation format is very
important because it will affect the entire future of the CDD-
based project. Once a configuration format is chosen, it can
be very difficult and costly to change formats further down
the road. Once the choice has been made on what
configuration representation format to use, the next issue is
deciding what should actually be placed in the configuration.

What To Configure

One of the most difficult parts of CDD is determining what
information should be made configurable and what should
be implemented in code. There are classes of information
that should be made into configuration values:

• Common Information – Information that is
repeated in multiple places in the code and has a
nonzero chance of needing to change at some point
in the software’s lifetime. By pointing all code to a
single location for a common piece of information,
developers ensure that the software’s behavior will
remain consistent when the desired information
needs to change.

• Default Information – Information that represents
part of the standard out-of-the-box behavior of the
software. By pulling default values from a
configuration file, the out-of-the-box functionality
of the software may be adjusted with little effort.

• Unstable Information – Information that is
unknown or in flux at the time of development.

This information that has a high likelihood of
changing once the software has been delivered.

• Configuration-Dependent Information –
Information that is dependent on another piece of
configurable information.

In addition, there are classes of information that generally
should not be configurable:

• Static Information – Information that has no
likelihood of changing throughout the life of the
software. Adding values that will never change to
the configuration clutters the configuration while
providing no tangible benefit.

• Compound Information – Information whose value
can be completely determined based on other
information already represented in the
configuration. This information can easily be
represented in software whereas representing it in
configuration can lead to conflicting configuration
values.

• Complex Logic – Configuration values are
information that can be used in code to alter basic
software flow and operation, but it is not the job of
configuration to provide any type of logical
assertions that would normally be written in code.

Unfortunately, not all information falls nicely into one of the
described categories and in many cases CDD becomes a
process of trial and error to determine what works well as
configuration and what should remain written in code. As
developers become more comfortable with CDD, the
distinction between what should be configurable and what
should not becomes more clear. In CDD, always err on the
side of configurability rather than hard-coding information
into code.

In conjunction with deciding what information should be
made configurable, the development team must also make
the decision of how configuration should be stored,
represented and accessed from within the software itself.
Though CDD can be used in any software development
environment, the focus of the following discussion will be
on object-oriented software design.

Software Design Patterns for CDD

As object-oriented programming languages have grown in
popularity, a number of useful development paradigms,
known as “design patterns”, for solving recurring object-
oriented design problems have arisen. In CDD, external
configuration files will grow in size over the life of the
project and the configuration information they contain will
be needed in many different places in the code, so it is
important to implement the configuration representation in

 3

software in a way that is both efficient and scalable. There
is an infinite number of ways to represent configuration in
code, but some of the most popular strategies for
configuration are described by the following design patterns:

• Singleton – Read the configuration into a single
shared object that is globally accessible to all other
objects.

• Dependency Injection – Read the configuration into
one or more configuration objects and hand a
configuration object to any other object that needs
it.

• Monostate/Borg – Read the configuration into an
internal state that is shared between a set of
globally accessible configuration objects that
behave as though they were a single object.

Using any of these design patterns will provide a uniform
method of accessing configuration information in code.
Representing the configuration in code is the core of CDD,
but there are also other design patterns, such as the Abstract
Factory (a.k.a. Kit) that harmonize well with the use of a
CDD strategy.

An Abstract Factory pattern provides an interface for
creating sets of objects without specifying their concrete
classes. The power of the Abstract Factory design pattern in
object-oriented languages such as Java is based on the use of
reflective programming. Many popular object-oriented
programming languages, such as C++, C#, Smalltalk, Java,
Python, and Ruby, support a reflective-programming
interface that allows objects to be dynamically instantiated
at runtime by providing information to identify the object
(e.g. the name of the object’s class) rather than directly
instantiating the object itself. By supplying reflection
information in the configuration, reflective programming can
dynamically determine what objects to instantiate at runtime
based on configuration information rather than hard-coding
the instantiation of one particular type of object. With an
Abstract Factory pattern, a calling object can pass in the
relevant information, the factory can look up the name of the
class to instantiate in configuration, and then using reflection
the requested object can be instantiated dynamically and
handed back to the caller. CDD can be used without ever
using design patterns, but by mixing CDD with creational
design patterns like the Abstract Factory developers can
achieve a new level of flexibility.

A CDD strategy was combined with an XML-based
configuration solution and well-known object-oriented
design patterns to create the MPCS GDS, the next
generation GDS for MSL.

3. MPCS AND CDD

Overview

The following section provides an overview of the MPCS
software system by explaining the MPCS data flow,
providing an overview of the MPCS software architecture,
describing the MPCS configuration file format and structure,
and then discussing how the MPCS software architecture
uses a configuration-oriented approach to achieve added
flexibility. Though MPCS is used in both uplink and
downlink scenarios, the following discussion will focus
solely on the MPCS downlink telemetry flow.

MPCS Input Stream

Spacecraft produce a great deal of telemetry with varying
characteristics according to the type of mission and stage in
the mission lifecycle. Data is generally transmitted from the
spacecraft via transfer frames that are encoded to prevent
data corruption during transmission. Transfer frames
contain data packets that in turn contain varying types of
telemetry information. Each packet has an Application
Identifier (APID) that specifies what type of telemetry it
contains. There are three major types of telemetry read from
packets and processed by MPCS:

• Engineering, Housekeeping, and Analysis (EHA) –
Also known as “channels”, EHA data describes
measurements of hardware and software state (e.g.
attitude pointing, temperature readings, etc.).

• Event Records (EVRs) – EVR data describes both
expected and unexpected events that have occurred
onboard.

• Data Products – Products are files containing
science or engineering data such as images and
instrument measurements.

MPCS receives either transfer frames or packets, in various
forms, as input and it is the responsibility of MPCS to
extract and interpret the telemetry items within the frames
and packets and make them available to end-users. MPCS
provides a realtime telemetry interface via a Java Messaging
Service (JMS) bus and a historical telemetry interface via a
relational database. In addition, constructed data products
are stored on a Network File System (NFS) disk to make
them available to users. MPCS performs many other
functions during data processing, such as marking EHA
channels with alarms to indicate potential anomalies, but
these more in-depth functions are outside the scope of this
discussion.

The interpretation of data flowing into MPCS happens in a
pipelined fashion. First, frames go through synchronization
to remove encoding and spurious data. Then, packets are

 4

extracted from frames. Next, telemetry items, such as
EVRs, EHA channels, and data products, are constructed
from packet contents. Finally, telemetry items are made
available to end-users via the realtime JMS bus, the
historical relational database, and the networked filesystem.

MPCS Sessions

As a tool that is used throughout every stage of the mission
lifecycle from low-level tests through operations, MPCS had
to be built with data retention and archival in mind. All tests
run with MPCS in the testbed and ATLO venues, as well as
some tests in the WSTS venue, are stored in relational
databases so that past tests may be re-analyzed and re-run in
the future. The MPCS development team devised the notion
of a “session” to store all of the specific information that
would be needed to recreate a given test (e.g. telemetry
dictionaries used, host where the test was run, etc.). In
addition, an MPCS session also contains metadata such as a
test name and unique test identifier that allow users to easily
track down past sessions. At the beginning of every run of
the MPCS software, users supply session information that
MPCS uses for a variety of purposes including determining
what venue (e.g. WSTS, testbed, ATLO) it is running in.

MPCS Architecture

The structure of the internal MPCS software architecture
was designed to handle the pipelined processing flow of
spacecraft telemetry. MPCS is built around a series of
pipelined adapters that handle the various stages in telemetry
processing and communicate with one another via a high-
speed intra-process message bus that employs a
publish/subscribe communication model between Java
objects. The general telemetry processing architecture of
MCPS is shown in Figure 1.

Figure 1 demonstrates the entire MPCS downlink flow from
telemetry receipt to data availability via the JMS bus,
relational database, and filesystem. The Raw Input Adapter
is responsible for reliably receiving input telemetry and
publishing it on the internal bus to be consumed. The Frame
Sync Adapter performs frame synchronization on input
transfer frames (if necessary). The Packet Extract adapter
ingests transfer frames and extracts the packets contained in
the frames (if necessary). The EVR Adapter, EHA Adapter,
and Data Product Adapter all ingest packets and extract the
type of information they’re interested in (based on the
packet APID) to construct EVRs, EHA channel values, and
data products respectively. The data product adapter also
writes data product files to the filesystem as they are

constructed. The Database Adapter stores all relevant
information in the relational database. Similarly, the JMS

Figure 1 – MPCS Downlink Architecture

 5

Bus Adapter publishes all relevant information to the JMS
Message Bus4. The Session Information and GDS
Configuration are read on startup and made globally
available to all of the adapters in the downlink processing
flow.

Adapters communicate with one another by publishing and
subscribing to messages via the internal message bus.
Adapters only communicate through the internal bus, they
never communicate directly between one another. In this
fashion, each adapter can act as an independent entity and
function with no knowledge of what other adapters have
been loaded as a part of the downlink processing stream.
The set of adapters that are loaded each time MPCS is run is
determined by three factors:

(1) The mission being run (e.g. MSL).

(2) The venue specified by the user in the session
information (e.g. ATLO).

(3) Special override values in the MPCS configuration.

Using these three pieces of information, MPCS can
dynamically determine what adapters are needed to process
telemetry in the current test or operational scenario.

When adapting MPCS to do telemetry processing for a
specific mission, the MPCS team must determine what
adapters are needed for processing the new mission’s
telemetry. Some functionality, such as packet extraction, is
based on a Consultative Committee for Space Data Systems
(CCSDS) standard and will likely not change from one
mission to the next. Processing of data such as EVRs and
EHA, however, is very mission-dependent and it is highly
likely that each mission will need its own custom adapters
for processing these telemetry items. By using the notion of
adapters to partition telemetry processing into independent
pieces, MPCS can quickly adapt to new missions by simply
building the necessary new adapters. If a new mission has
very similar telemetry to an existing mission already
supported by MPCS, the adaptation cost is minimal.

One of the major benefits of using a CDD approach in
MPCS is that MPCS can use configuration to determine
what adapters should be instantiated for each mission and
each venue. In addition, each adapter has access to all of the
MPCS configuration information, so the internal behavior of
the adapters themselves can also be modified based on
configuration entries. The following sections will describe
the configuration strategy adopted by MPCS and
demonstrate how the MPCS configuration is used at the
object-oriented design level to dynamically affect MPCS
telemetry processing behavior.

4 Currently only telemetry items such as EVRs, EHA, and Data Products
are published to the realtime bus. Frames and packets are not published.

MPCS Configuration Format

The MPCS software architecture is built around a set of
XML configuration files. The MPCS team chose XML
because of its well-structured format and its human-
readability. It was the belief of the MPCS team that if an
intuitive XML layout structure could be defined for the
configuration, individual end-users would be able to easily
edit parts of the configuration to customize their use of
MPCS.

The actual structure of the MPCS configuration was
designed so that related configuration values could be
organized into different subsections in the configuration
structure itself. The minimalist schema for the MPCS
configuration defines only three types of configuration
elements:

• Configuration Block – Used to define a subgroup
in the configuration with no associated value.

• Configuration Value – Used to define a
configuration entry with a single value that can be
read from the configuration and used in code.

• Configuration List – Used to define a configuration
entry with a set of values that can be read from the
configuration and used in code.

Each type of configuration element is given a unique name
to identify it in the context of the global configuration. A
small sample MPCS configuration file is shown in Figure 2
below.

<GdsConfiguration>

 <config name=”propertyName”>value1</config>

 <configList name=”listPropertyName”>

 <listItem>value2</listItem>

 <listItem>value3</listItem>

 </configList>

 <configBlock name=”blockName”>

 <config name=”nestedPropertyName”>value4</config>

 </configBlock>

 <configBlock name=”outer”>

 <configBlock name=”inner”>

 <config name=”myProperty”>value5</config>

 6

6

 </configBlock>

 </configBlock>

</GdsConfiguration>

Figure 2 – Sample MPCS Configuration File

The MPCS configuration file organization, shown in Figure
2, uses <configBlock> elements to group related
configuration values together and uses <configList> and
<config> elements to provide actual configurable values.
To represent a simple configuration entry with a single
value, a <config> element is used. In the example in Figure
2, the property named ”propertyName” has a value of
“value1”. Similarly, to represent a simple list of values, a
<configList> element can be used. In the example in Figure
2, the “listPropertyName” property provides a list of two
values “value2” and “value3” that can be read as an array of
values in code.

For more complex cases, configuration values can be placed
into configuration block subgroups to provide a namespace
mechanism that will prevent naming conflicts and allow
hierarchical organization of properties. Configuration
properties defined within configuration blocks have names
that are prefaced with the configuration block name and a
“.” character. In the example in Figure 2, the property
“blockName.nestedPropertyName” would have a value of
“value4”. Configuration blocks can be nested arbitrarily
deep and properties in the nested blocks will follow the
same name prefixing convention as described above. To
access the value of “myProperty” in the example in Figure 2,
the property name “outer.inner.myProperty” would be used.

MPCS Configuration File Hierarchy

As a multi-mission product used by many different users in a
number of different environments, it was important for
MPCS to provide a simple way for different users and
different missions to have their own configuration values
that would override the default values put in place by the
basic MPCS system configuration. Rather than use a single
central configuration file, the MPCS team chose to use a
hierarchy of configuration files to increase flexibility. The
MPCS system can be configured at the system level, the
project/mission level, and the user level. The hierarchy of
MPCS configuration files is shown in Figure 3.

Figure 3 – MPCS Configuration Hierarchy

The system configuration is the complete set of all
configuration properties and their values that are defined for
MPCS. Everything that is made configurable should always
be placed in the system configuration file. The project
configuration file contains a subset of the contents of the
system configuration file. If the same property is defined in
the system configuration and project configuration, the value
from the project configuration will be used. By providing a
separate mechanism for project configuration, MPCS can
use much of the same core code to do processing for
different missions such as MER and MSL. Finally, MPCS
provides the ability to specify a user configuration file that
can override both the project and system configurations.
This capability allows individual users to tweak MPCS
behavior to suit their own testing and development needs.
The system configuration is the only file that is absolutely
necessary for MPCS to run; the project and user
configurations are optional. Furthermore, the user
configuration file may be disabled for controlled
environments like flight operations where it is undesirable to
allow users to override normal system behavior.

MPCS Configuration In Action

The overall structure of the MPCS code mirrors the structure
of the configuration files at the system and project level.
The majority of the MPCS code is written as a common,
mission-independent core that uses dynamically instantiated
adapters to handle venue-specific or mission-specific
business logic.

MPCS uses a singleton design pattern to represent its
configuration internally in code. The singleton
configuration allows any piece of code to be able to easily
pull information out of the MPCS configuration and because
the majority of the MPCS design is single-threaded, the

 7

scalability and synchronization issues of the singleton
pattern are minimized.

The earlier discussion of the MPCS downlink architecture
described how MPCS downlink uses a series of adapters to
perform various sequential tasks in the telemetry processing
chain. The diagram in Figure 1 represents a snapshot of the
MPCS downlink processing as it is running, but what
remains to be discussed is how MPCS determines what
adapters to load before downlink processing begins. MPCS
has the idea of a supervisory “Downlink Manager” object
whose responsibility it is to instantiate all of the necessary
adapters before telemetry processing begins. Refer back to
Figure 1 throughout the following discussion to recall where
each adapter fits in the telemetry processing pipeline.

The first and foremost adapter to be instantiated is the Raw
Input Adapter that will read raw telemetry from an input
source. The Raw Input Adapter to load is not known until
runtime because it is dependent on the venue and data
format information supplied by the user’s MPCS session.
MPCS has the ability to ingest a wide array of data including
either frames or packets in various forms. In addition,
MPCS can read its data from a file, a network socket, or any
number of other APIs such as the interface to the Telemetry
Delivery Subsystem (TDS) piece of Deep Space Network
(DSN) where telemetry will be received operationally for
MSL. The MPCS Downlink Manager uses an Abstract
Factory design pattern that examines the session information
and the configuration and then dynamically instantiates the
proper input adapter for the given scenario. For example, in
the MSL WSTS environment, MPCS must ingest transfer
frames from a software socket whereas in the MSL testbed
and ATLO environments MPCS ingests transfer frames from
hardware that emulates the DSN. As part of the Abstract
Factory pattern, all raw input adapters share a common
interface and are therefore interchangeable in the MPCS
telemetry flow shown in Figure 1.

The Frame Sync Adapter and Packet Extract Adapter work
in a different paradigm than the Raw Input Adapter. Frame
synchronization and packet extraction are based on CCSDS
standards, so they are multi-mission adapters that will
generally not change based on a particular mission. Based
on the format of the input data, however, one or both of
these adapters may be superfluous. The MPCS Downlink
Manager looks at the input data format in the session
information and then checks the configuration to determine
if frame synchronization or packet extraction is necessary
for that particular data format. For instance, if MPCS is
configured to read a stream of data packets (recall that data
packets are normally extracted from frames), then frame
synchronization and packet extraction are both unnecessary
since they have already been performed prior to the data
reaching MPCS. Through configuration, MPCS is able to
determine that based on a packet input format it should not
instantiate these two adapters that serve no purpose.

The EVR, EHA, and data product adapters follow yet
another configuration strategy to determine what should be
loaded. As mentioned previously, extracting and
constructing these particular telemetry items from packets is
generally a mission-specific operation. In the MPCS system
configuration, there is a property specifying a default
adapter for processing each of these types of telemetry, but
MPCS needs the ability to override what adapter is loaded
based on the mission. Using the MPCS project
configuration file, each mission can specify its own adapter
to instantiate based on mission-specific needs. The MPCS
Downlink Manager uses an Abstract Factory design pattern
to examine the configuration properties that specify the
names of the EVR, EHA, and data products adapters, and
then instantiate the proper adapter for the given mission.
Figure 4 demonstrates how the MPCS Downlink Manager
instantiates the proper EVR adapter with the help of an
Abstract Factory object.

Figure 4 – MPCS EVR Adapter Instantiation

Another feature of the MPCS configuration is the control of
whether EVR, EHA, or data product processing is done at
all. At the system and project levels of the MPCS
configuration, all of the EVR, EHA, and data product
processing is always enabled5. At the user level, however,
the configuration entries may be overridden to force MPCS
not to process particular telemetry items. For instance, if a
user is only interested in EVRs, then they can use the MPCS
user configuration file to disable EHA and data product
processing to reduce the MPCS processing load and
improve throughput.

The remaining adapters, the Database Adapter and the JMS
Bus Adapter, are a hybrid of the previously discussed
scenarios. Like Frame Sync and Packet Extraction,
Database and JMS operations are generally mission-

5 The MPCS adaptations for Diviner and DAWN only process EHA
telemetry, so no EVR or data product processing adapters exist.

 8

8

independent so they are not overridden on a per-mission
basis. In addition, like EVRs, EHA channels, and data
products, database and JMS operation are generally
desirable, so they are enabled by default at the system and
project levels. In certain testing and debugging scenarios,
however, it is desirable to disable one or both of these
adapters. Enabling and disabling database and JMS usage
can be done using the MPCS user configuration file in a
similar manner to how the EVR, EHA, and data product
adapters can be enabled and disabled.

In this manner, the MPCS Downlink Manager can use the
MPCS configuration and session information combined with
an Abstract Factory design patterns to dynamically alter
every aspect of MPCS telemetry processing.

4. CONCLUSIONS
Over the course of its development, MPCS has come to find
CDD an invaluable tool for maintaining flexibility in a
constantly growing and evolving software architecture.
MPCS is currently in use for testing through many different
phases, including the WSTS, testbed and ATLO venues, of
five different missions including the upcoming MSL
mission. In working through the entire lifecycle of the MSL
mission, MPCS has discovered that the MSL FSW and SSE
systems are in flux and often the MPCS processing flow
must change drastically from release to release.

CDD has proven very valuable in its flexibility in keeping
up with changing needs and requirements across the
different mission phases of all MPCS’ customers. There
have been numerous occasions where MPCS has been able
to quickly adapt to feature requests and bug fixes solely
based on editing entries in a configuration file. The MPCS
team has been able to save a lot of time and effort by making
fixes via configuration so that the MPCS software does not
have to be redelivered to customers.

Although CDD has proven very useful in maintaining an
agile software development process, the added flexibility
and adaptability comes at a high initial cost. Developing a
configuration-driven infrastructure involves spending up-
front time and effort designing a configuration file format
and developing parsing infrastructure. Once the
infrastructure is in place, however, massive changes can be
made to functionality in a much smaller timeframe. For
inexperienced developers or developers new to MPCS,
however, there is also a steep learning curve. Using CDD
effectively involves developers adhering to particular design
patterns and coding standards and it takes developers time to
come up to speed with these restrictions.

CDD as a design strategy states that configuration structure
and content should always be written prior to writing any
business logic in code, but the MPCS team has discovered
that CDD is better utilized as an iterative process.

Developers will initially examine the configuration file and
potentially make additions prior to doing code development,
but it is impossible to know everything to put in the
configuration before any development has been done. The
MPCS team has found that the best practice is to write basic
configuration, then write the business logic to leverage the
configuration, and finally, iteratively refactor the code and
configuration simultaneously to achieve as much flexibility
as possible.

From a coding standpoint, CDD has also proven valuable in
allowing the technology base of MPCS to expand. The
MPCS core code is written solely in Java, but in the past
year MPCS has also added a Python-based automated
scripting tool as part of its delivery. Although MPCS is now
composed of two distinct languages, Java and Python, both
languages still easily share the same XML configuration
base for modifying their functionality. Changes to the
MPCS configuration affect both the Java and Python code
uniformly. On a similar note, another advantage of CDD
has been avoiding code duplication in the MPCS
environment. By pulling common values out into the
configuration, MPCS has been able to greatly cut down on
the “ripple effect” of small changes propagating throughout
all of the code.

One major concern that has arisen is that the MPCS
configuration files have grown very large. The split of the
MPCS hierarchy out into system, project, and user
configuration files has helped contain some of the
configuration bloat, but as MPCS continues to grow in size
and scope, the configuration files continue to grow with it.
For the future of MPCS as well as any other projects that
plan on using a CDD strategy, it would be beneficial to split
up configuration across a dynamically sizeable set of
configuration files rather than trying to concentrate all
configuration information into a fixed number of files. The
MPCS team has also found that the configuration file(s)
need occasional reexamination and pruning to prevent them
from becoming bloated with redundant or vestigial
information.

One of the more surprising limitations of the MPCS CDD
approach has been the reluctance of users to take advantage
of the user configuration file. By using XML, an inherently
human-readable format in conjunction with the ability to
adjust software behavior based on a user-supplied configure
file, MPCS expected to have users easily modify the
behavior of the software on their own with no necessary
intervention from the MPCS team. In reality, however,
MPCS has found that the average end user is still adverse to
XML and either does not understand it or does not want to
write it. A helpful strategy has been to provide a set of user
configuration files for common override behaviors and then
allow users to simply copy these files for their own use.
Any needed user configuration overrides that do not fall into
this category are rare and have been handled on a case-by-
case basis without issue.

 9

Overall, the benefits of the MPCS CDD strategy have
greatly outweighed the issues that have been encountered.
The MPCS CDD design has been flexible enough to adapt
to a number of different missions and agile enough to keep
up with the constantly shifting needs and requirements of the
MSL mission.

5. ACKNOWLEDGEMENTS
The authors would like to thank the past and current MPCS
team members Jesse Wright, Jim McKelvey, Mark Palm,
Josh Choi, Clark Williams, Ashley Shamilian, Kyran Owen-
Mankovich, Dan Allard, Lloyd DeForrest, Michael
Tankenson, and Jordan Lei of the Jet Propulsion Laboratory
for their contributions.

The work described in this paper was conducted at the Jet
Propulsion Laboratory, California Institute of Technology,
under contract with the National Aeronautics and Space
Administration.

REFERENCES
[1] Aerospace Conference Web site http://www.aeroconf.org/

[2] Dan Allard, “Development of a Ground Data Messaging
Infrastructure for the Mars Science Laboratory and
Beyond,” 2008 IEEE Aerospace Conference Proceedings,
March 1-8, 2008.

[3] Martin Fowler, Inversion of Control Containers and the
Dependency Injection Pattern, MartinFowler.com,
http://martinfowler.com/articles/injection.html, January 23,
2044.

[4] Erich Gamma, Richard Helm, Ralph Johnson, and John
M. Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley Professional,
1994.

[5] Jacques Malenfant, Reflection in Logic, Functional, and
Object-Oriented Programming: A Short Comparative
Study, 1995 IJCAI Workshop on Reflection and Metalevel
Architectures and Their Applications in AI, August 20-25,
1995.

[6] Robert C. Martin, The Principles, Patterns, and Practices
of Agile Software Development, Prentice Hall, 2002.

[7] Steve McDuff, “Configuration Driven Development: A
practical approach to code modification and duplication”,
IBM DeveloperWorks,
http://www.ibm.com/developerworks/library/wa-
configdev/, December 12, 2006.

BIOGRAPHY
Brent Nash has been a software engineer
at the Jet Propulsion Laboratory (JPL)
for three years. He currently works on the
MPCS Ground Data System for the Mars
Science Laboratory and other missions.
He has also worked on a framework for
agent-based systems and researched
enterprise architecture best practices. He
has a BS in Computer Science and

Computer Engineering as well as an MS in Computer
Science from the University of Southern California.

Marti DeMore is a software engineer at
JPL and is currently the cognizant
engineer for the MPCS Ground Data
System for the Mars Science Laboratory
and other missions. She has 23 years of
experience in software architecture,
design, and development, primarily in the
areas of enterprise messaging and
distributed data and device management.

 10

http://www.aeroconf.org/
http://martinfowler.com/articles/injection.html

She has a B.S. in Computer Science from California State
Polytechnic University at Pomona.

 11

