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Abstract—12The Mission data Processing and Control 
Subsystem (MPCS) is being developed as a multi-mission 
Ground Data System with the Mars Science Laboratory 
(MSL) as the first fully supported mission.  MPCS is a fully 
featured, Java-based Ground Data System (GDS) for 
telecommand and telemetry processing based on 
Configuration-Driven Development (CDD). The eXtensible 
Markup Language (XML) is the ideal language for CDD 
because it is easily readable and editable by all levels of 
users and is also backed by a World Wide Web Consortium 
(W3C) standard and numerous powerful processing tools 
that make it uniquely flexible.  The CDD approach adopted 
by MPCS minimizes changes to compiled code by using 
XML to create a series of configuration files that provide 
both coarse and fine grained control over all aspects of GDS 
operation.  

The MPCS development team has implemented a generic, 
hierarchical architecture for specification of and access to 
system configuration information that allows configuration 
parameters to be specified at the system, mission, and user 
levels, transparent to the application that employs the 
information.  The resulting implementation is an XML-
based design, implemented in Java and Python, which is 
useful not only for MPCS or ground data systems in 
particular, but to any application. 

While using XML-based CDD allows MPCS to have an 
exoteric functional interface that can be easily reconfigured 
(for different mission phases or even different missions) at 
runtime instead of compile time, the challenges of 
developing a sufficiently flexible configuration are 
significant.  In order to create a reusable multi-mission GDS, 
it is necessary to balance the added complexity of 
developing configuration-driven code with the ability to 
create an overall configuration strategy that both developers 
and users can understand and utilize effectively. 

This paper will discuss the configuration and development 
strategies employed by the MPCS development team and the 
associated lessons learned in developing an XML 
configuration-driven GDS to be used for the life of the MSL 
mission and future missions. 

1 Copyright 2008 California Institute of Technology. Government 
sponsorship acknowledged. 
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TABLE OF CONTENTS 

1. INTRODUCTION ................................................................ 1 
2. CONFIGURATION-DRIVEN DEVELOPMENT (CDD) ......... 2 
3. MPCS AND CDD ............................................................. 4 
4. CONCLUSIONS .................................................................. 9 
5. ACKNOWLEDGEMENTS .................................................. 10 
REFERENCES...................................................................... 10 
BIOGRAPHY ....................................................................... 10 

1. INTRODUCTION 
The Mission data Processing and Control Subsystem 
(MPCS) is the next-generation Ground Data System (GDS) 
under development for the Mars Science Laboratory (MSL). 
 In addition to being a large component of the ground system 
for MSL, MPCS is also in varying degrees of use on the 
Mars Exploration Rovers (MER), the Diviner instrument on 
the Lunar Reconnaissance Orbiter (LRO), and the DAWN 
mission as well as other internal projects.   

MPCS is being developed as a multi-mission ground system 
that will experience its first operational use on MSL, but will 
be easily adaptable to future missions.  MPCS is responsible 
for the reliable interpretation, real-time distribution, and 
archival of spacecraft information for a wide range of 
science and operations customers.  This information 
includes spacecraft telecommand data (“uplink”) and 
spacecraft telemetry (“downlink”).  For MSL, MPCS has 
two distinct targets for telecommanding and receiving 
telemetry: 

• Flight Software (FSW) – The software interface 
into the flight hardware onboard the MSL vehicle 
itself. 

• Simulation and Support Equipment (SSE) – The 
software interface into the Ground Support 
Equipment (GSE) that is part of the mission 
lifecycle up until the launch. 

MPCS is unique in that it will be the first GDS to be used 
throughout the entire mission lifecycle of FSW 
development, test, and operations.  MPCS is responsible for 
handling spacecraft telecommand and telemetry in a variety 
of different venues including: 
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• WorkStation TestSet (WSTS) – Individual FSW 
developers and other spacecraft team testers work 
on their individual development workstations sends 
commands to and receiving telemetry from a flight 
system emulator. 

• Mission Testbeds – FSW Developers and 
spacecraft team testers do integration, verification, 
and validation procedures with various 
subcomponents of the actual flight system 
hardware. 

• Assembly, Test and Launch Operations (ATLO) – 
The FSW and GDS systems are integrated with the 
assembled flight hardware in a flight-like test 
environment. 

• Operations – The various phases of the operational 
mission from launch to the end of life of the 
mission.3 

Each venue provides its own adaptation challenges as many 
of the Application Programming Interfaces (APIs) and 
transmitted data formats change based on the venue that is 
being used. 

The major challenge for MPCS is providing a single 
software package that can be flexible enough to support all 
of the different venues in all different phases of a mission.  
Furthermore, MPCS not only has to handle the complex 
requirements of the various phases of the MSL mission, but 
it must be agile enough to be easily adaptable to future 
missions. 

In tackling these significant software development 
challenges, MPCS has adopted an XML-based 
Configuration Driven Development (CDD) approach for 
writing object-oriented software, which has been extremely 
useful in providing a product flexible enough to be used in a 
variety of scenarios and agile enough to quickly adapt to 
new requirements and new missions.  The following sections 
will first describe CDD as an abstract object-oriented 
software design methodology and will then delve into how 
MPCS has used CDD to meet its customers’ needs.  

2. CONFIGURATION-DRIVEN DEVELOPMENT 
(CDD)  

Overview 

The following section provides an overview of the benefits 
of adopting a CDD-based approach to software development 
and then discusses how to use CDD including how to choose 
a configuration representation, what information should be 

3 MPCS will not be used for telecomand in the MSL Operations phase. 

placed in the configuration and how code should be written 
to best leverage the configuration. 

Why CDD? 

As the name implies, CDD places the primary focus of 
software development on configuration written outside of 
the code.  Just as models are built first in Model-Driven 
Development or tests are written first in Test-Driven 
Development, CDD involves writing basic configuration file 
structure and content before developing the business code 
that utilizes the configuration.  By writing configuration 
first, it forces developers to focus on what information and 
business logic can be represented independent of the code 
that will operate on it.  It also forces developers to determine 
if any pertinent information is already present in existing 
configuration and thereby cuts down on duplication of 
information and processing logic.  Another benefit of CDD 
is that configuration files are easy to manage from a 
Configuration Management (CM) standpoint because they 
can be source-controlled and stored in a versioning system 
such as Subversion or CVS in the same way that source code 
is managed.  CDD is not tied to one specific programming 
language either; because configuration is represented in a 
neutral format, the same configuration files can be used 
across a number of different programming languages.  The 
biggest advantage of CDD is that the behavior of the 
software may be changed drastically without having to 
recompile or redeliver code.  

Configuration Strategies 

The first major choice to make when adopting a CDD 
approach is deciding how configuration files will be stored 
and represented.  There is no single configuration 
representation used unilaterally across CDD-based projects, 
but the most popular choices are:   

• Environment Variables – Configuration 
information is identified and given values at the 
Operating System (OS) level. Environment 
variables are useful in making the same information 
available to a number of separate processes, but can 
cause consistency issues between different users, 
shells, and environments. 

• Homegrown Formats – Configuration information 
is specified in a format created by the developers 
who have complete control over the format and 
content restrictions of the configuration.  The main 
disadvantage of a homegrown configuration format 
is that the parsing and validation business logic 
must generally be written from scratch, adding to 
development time.  In addition, the format is 
difficult to share with other development teams and 
systems when integration becomes necessary. 
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• Keyword-Value Format – Configuration 
information is identified in a simple name=value 
format, generally one entry per line, in a 
configuration file.  Keyword value formats are 
generally very easy to read, write, and interpret and 
most programming languages have existing parsers 
for keyword value formats.  The main disadvantage 
is that keyword-value is a loosely defined format 
and it can be difficult to enforce organizational 
restrictions or validate the values of particular 
configuration entries.  

• XML Format – Configuration information is 
identified in a World-Wide Web Consortium 
(W3C) standard language that has a well-
understood format and wide user base.  XML 
writing and parsing software is widely available 
and XML additionally provides the ability to do 
schema-based validation that can be further used to 
restrict configuration format and even restrict 
values on particular entries.  The main 
disadvantage is that XML is a verbose language 
and can be confusing and intimidating to users who 
are not software developers or are unfamiliar with 
XML. 

The choice of a configuration representation format is very 
important because it will affect the entire future of the CDD-
based project.  Once a configuration format is chosen, it can 
be very difficult and costly to change formats further down 
the road.  Once the choice has been made on what 
configuration representation format to use, the next issue is 
deciding what should actually be placed in the configuration.  

What To Configure 

One of the most difficult parts of CDD is determining what 
information should be made configurable and what should 
be implemented in code.  There are classes of information 
that should be made into configuration values: 

• Common Information – Information that is 
repeated in multiple places in the code and has a 
nonzero chance of needing to change at some point 
in the software’s lifetime. By pointing all code to a 
single location for a common piece of information, 
developers ensure that the software’s behavior will 
remain consistent when the desired information 
needs to change. 

• Default Information – Information that represents 
part of the standard out-of-the-box behavior of the 
software.  By pulling default values from a 
configuration file, the out-of-the-box functionality 
of the software may be adjusted with little effort. 

• Unstable Information – Information that is 
unknown or in flux at the time of development.  

This information that has a high likelihood of 
changing once the software has been delivered.  

• Configuration-Dependent Information – 
Information that is dependent on another piece of 
configurable information. 

In addition, there are classes of information that generally 
should not be configurable:  

• Static Information – Information that has no 
likelihood of changing throughout the life of the 
software.  Adding values that will never change to 
the configuration clutters the configuration while 
providing no tangible benefit. 

• Compound Information – Information whose value 
can be completely determined based on other 
information already represented in the 
configuration.  This information can easily be 
represented in software whereas representing it in 
configuration can lead to conflicting configuration 
values. 

• Complex Logic – Configuration values are 
information that can be used in code to alter basic 
software flow and operation, but it is not the job of 
configuration to provide any type of logical 
assertions that would normally be written in code. 

Unfortunately, not all information falls nicely into one of the 
described categories and in many cases CDD becomes a 
process of trial and error to determine what works well as 
configuration and what should remain written in code.  As 
developers become more comfortable with CDD, the 
distinction between what should be configurable and what 
should not becomes more clear.  In CDD, always err on the 
side of configurability rather than hard-coding information 
into code. 

In conjunction with deciding what information should be 
made configurable, the development team must also make 
the decision of how configuration should be stored, 
represented and accessed from within the software itself.  
Though CDD can be used in any software development 
environment, the focus of the following discussion will be 
on object-oriented software design. 

Software Design Patterns for CDD 

As object-oriented programming languages have grown in 
popularity, a number of useful development paradigms, 
known as “design patterns”, for solving recurring object-
oriented design problems have arisen.  In CDD, external 
configuration files will grow in size over the life of the 
project and the configuration information they contain will 
be needed in many different places in the code, so it is 
important to implement the configuration representation in 
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software in a way that is both efficient and scalable.  There 
is an infinite number of ways to represent configuration in 
code, but some of the most popular strategies for 
configuration are described by the following design patterns: 

• Singleton – Read the configuration into a single 
shared object that is globally accessible to all other 
objects. 

• Dependency Injection – Read the configuration into 
one or more configuration objects and hand a 
configuration object to any other object that needs 
it. 

• Monostate/Borg – Read the configuration into an 
internal state that is shared between a set of 
globally accessible configuration objects that 
behave as though they were a single object. 

Using any of these design patterns will provide a uniform 
method of accessing configuration information in code.  
Representing the configuration in code is the core of CDD, 
but there are also other design patterns, such as the Abstract 
Factory (a.k.a. Kit) that harmonize well with the use of a 
CDD strategy.   

An Abstract Factory pattern provides an interface for 
creating sets of objects without specifying their concrete 
classes.  The power of the Abstract Factory design pattern in 
object-oriented languages such as Java is based on the use of 
reflective programming.  Many popular object-oriented 
programming languages, such as C++, C#, Smalltalk, Java, 
Python, and Ruby, support a reflective-programming 
interface that allows objects to be dynamically instantiated 
at runtime by providing information to identify the object 
(e.g. the name of the object’s class) rather than directly 
instantiating the object itself.  By supplying reflection 
information in the configuration, reflective programming can 
dynamically determine what objects to instantiate at runtime 
based on configuration information rather than hard-coding 
the instantiation of one particular type of object.  With an 
Abstract Factory pattern, a calling object can pass in the 
relevant information, the factory can look up the name of the 
class to instantiate in configuration, and then using reflection 
the requested object can be instantiated dynamically and 
handed back to the caller.  CDD can be used without ever 
using design patterns, but by mixing CDD with creational 
design patterns like the Abstract Factory developers can 
achieve a new level of flexibility.   

A CDD strategy was combined with an XML-based 
configuration solution and well-known object-oriented 
design patterns to create the MPCS GDS, the next 
generation GDS for MSL.  

 
3. MPCS AND CDD  

Overview 

The following section provides an overview of the MPCS 
software system by explaining the MPCS data flow, 
providing an overview of the MPCS software architecture, 
describing the MPCS configuration file format and structure, 
and then discussing how the MPCS software architecture 
uses a configuration-oriented approach to achieve added 
flexibility.  Though MPCS is used in both uplink and 
downlink scenarios, the following discussion will focus 
solely on the MPCS downlink telemetry flow. 

MPCS Input Stream 

Spacecraft produce a great deal of telemetry with varying 
characteristics according to the type of mission and stage in 
the mission lifecycle.  Data is generally transmitted from the 
spacecraft via transfer frames that are encoded to prevent 
data corruption during transmission.  Transfer frames 
contain data packets that in turn contain varying types of 
telemetry information.  Each packet has an Application 
Identifier (APID) that specifies what type of telemetry it 
contains.  There are three major types of telemetry read from 
packets and processed by MPCS: 

• Engineering, Housekeeping, and Analysis (EHA) – 
Also known as “channels”, EHA data describes 
measurements of hardware and software state (e.g. 
attitude pointing, temperature readings, etc.). 

• Event Records (EVRs) – EVR data describes both 
expected and unexpected events that have occurred 
onboard. 

• Data Products – Products are files containing 
science or engineering data such as images and 
instrument measurements. 

MPCS receives either transfer frames or packets, in various 
forms, as input and it is the responsibility of MPCS to 
extract and interpret the telemetry items within the frames 
and packets and make them available to end-users.  MPCS 
provides a realtime telemetry interface via a Java Messaging 
Service (JMS) bus and a historical telemetry interface via a 
relational database.  In addition, constructed data products 
are stored on a Network File System (NFS) disk to make 
them available to users.  MPCS performs many other 
functions during data processing, such as marking EHA 
channels with alarms to indicate potential anomalies, but 
these more in-depth functions are outside the scope of this 
discussion. 

The interpretation of data flowing into MPCS happens in a 
pipelined fashion.  First, frames go through synchronization 
to remove encoding and spurious data.  Then, packets are 
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extracted from frames.  Next, telemetry items, such as 
EVRs, EHA channels, and data products, are constructed 
from packet contents.  Finally, telemetry items are made 
available to end-users via the realtime JMS bus, the 
historical relational database, and the networked filesystem. 

MPCS Sessions 

As a tool that is used throughout every stage of the mission 
lifecycle from low-level tests through operations, MPCS had 
to be built with data retention and archival in mind.  All tests 
run with MPCS in the testbed and ATLO venues, as well as 
some tests in the WSTS venue, are stored in relational 
databases so that past tests may be re-analyzed and re-run in 
the future.  The MPCS development team devised the notion 
of a “session” to store all of the specific information that 
would be needed to recreate a given test (e.g. telemetry 
dictionaries used, host where the test was run, etc.).  In 
addition, an MPCS session also contains metadata such as a 
test name and unique test identifier that allow users to easily 
track down past sessions.  At the beginning of every run of 
the MPCS software, users supply session information that 
MPCS uses for a variety of purposes including determining 
what venue (e.g. WSTS, testbed, ATLO) it is running in.   

MPCS Architecture 

The structure of the internal MPCS software architecture 
was designed to handle the pipelined processing flow of 
spacecraft telemetry.  MPCS is built around a series of 
pipelined adapters that handle the various stages in telemetry 
processing and communicate with one another via a high-
speed intra-process message bus that employs a 
publish/subscribe communication model between Java 
objects.  The general telemetry processing architecture of 
MCPS is shown in Figure 1.  

Figure 1 demonstrates the entire MPCS downlink flow from 
telemetry receipt to data availability via the JMS bus, 
relational database, and filesystem.  The Raw Input Adapter 
is responsible for reliably receiving input telemetry and 
publishing it on the internal bus to be consumed.  The Frame 
Sync Adapter performs frame synchronization on input 
transfer frames (if necessary).  The Packet Extract adapter 
ingests transfer frames and extracts the packets contained in 
the frames (if necessary).  The EVR Adapter, EHA Adapter, 
and Data Product Adapter all ingest packets and extract the 
type of information they’re interested in (based on the 
packet APID) to construct EVRs, EHA channel values, and 
data products respectively.  The data product adapter also 
writes data product files to the filesystem as they are 

constructed.  The Database Adapter stores all relevant 
information in the relational database.  Similarly, the JMS 

Figure 1 – MPCS Downlink Architecture 
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Bus Adapter publishes all relevant information to the JMS 
Message Bus4.  The Session Information and GDS 
Configuration are read on startup and made globally 
available to all of the adapters in the downlink processing 
flow. 

Adapters communicate with one another by publishing and 
subscribing to messages via the internal message bus.  
Adapters only communicate through the internal bus, they 
never communicate directly between one another.  In this 
fashion, each adapter can act as an independent entity and 
function with no knowledge of what other adapters have 
been loaded as a part of the downlink processing stream.  
The set of adapters that are loaded each time MPCS is run is 
determined by three factors:   

(1) The mission being run (e.g. MSL). 

(2) The venue specified by the user in the session 
information (e.g. ATLO). 

(3) Special override values in the MPCS configuration. 

Using these three pieces of information, MPCS can 
dynamically determine what adapters are needed to process 
telemetry in the current test or operational scenario. 

When adapting MPCS to do telemetry processing for a 
specific mission, the MPCS team must determine what 
adapters are needed for processing the new mission’s 
telemetry.  Some functionality, such as packet extraction, is 
based on a Consultative Committee for Space Data Systems 
(CCSDS) standard and will likely not change from one 
mission to the next.  Processing of data such as EVRs and 
EHA, however, is very mission-dependent and it is highly 
likely that each mission will need its own custom adapters 
for processing these telemetry items.  By using the notion of 
adapters to partition telemetry processing into independent 
pieces, MPCS can quickly adapt to new missions by simply 
building the necessary new adapters.  If a new mission has 
very similar telemetry to an existing mission already 
supported by MPCS, the adaptation cost is minimal. 

One of the major benefits of using a CDD approach in 
MPCS is that MPCS can use configuration to determine 
what adapters should be instantiated for each mission and 
each venue.  In addition, each adapter has access to all of the 
MPCS configuration information, so the internal behavior of 
the adapters themselves can also be modified based on 
configuration entries.  The following sections will describe 
the configuration strategy adopted by MPCS and 
demonstrate how the MPCS configuration is used at the 
object-oriented design level to dynamically affect MPCS 
telemetry processing behavior.  

4 Currently only telemetry items such as EVRs, EHA, and Data Products 
are published to the realtime bus.  Frames and packets are not published. 

MPCS Configuration Format 

The MPCS software architecture is built around a set of 
XML configuration files.  The MPCS team chose XML 
because of its well-structured format and its human-
readability.  It was the belief of the MPCS team that if an 
intuitive XML layout structure could be defined for the 
configuration, individual end-users would be able to easily 
edit parts of the configuration to customize their use of 
MPCS. 

The actual structure of the MPCS configuration was 
designed so that related configuration values could be 
organized into different subsections in the configuration 
structure itself.  The minimalist schema for the MPCS 
configuration defines only three types of configuration 
elements:  

• Configuration Block – Used to define a subgroup 
in the configuration with no associated value. 

• Configuration Value – Used to define a 
configuration entry with a single value that can be 
read from the configuration and used in code.   

• Configuration List – Used to define a configuration 
entry with a set of values that can be read from the 
configuration and used in code.  

Each type of configuration element is given a unique name 
to identify it in the context of the global configuration.  A 
small sample MPCS configuration file is shown in Figure 2 
below. 

<GdsConfiguration> 

   <config name=”propertyName”>value1</config> 

   <configList name=”listPropertyName”> 

      <listItem>value2</listItem> 

      <listItem>value3</listItem> 

   </configList> 

   <configBlock name=”blockName”> 

      <config name=”nestedPropertyName”>value4</config> 

   </configBlock> 

   <configBlock name=”outer”> 

      <configBlock name=”inner”> 

         <config name=”myProperty”>value5</config> 
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      </configBlock> 

   </configBlock> 

</GdsConfiguration> 

Figure 2 – Sample MPCS Configuration File 

The MPCS configuration file organization, shown in Figure 
2, uses <configBlock> elements to group related 
configuration values together and uses <configList> and 
<config> elements to provide actual configurable values.  
To represent a simple configuration entry with a single 
value, a <config> element is used. In the example in Figure 
2, the property named ”propertyName” has a value of 
“value1”.  Similarly, to represent a simple list of values, a 
<configList> element can be used.  In the example in Figure 
2, the “listPropertyName” property provides a list of two 
values “value2” and “value3” that can be read as an array of 
values in code.   

For more complex cases, configuration values can be placed 
into configuration block subgroups to provide a namespace 
mechanism that will prevent naming conflicts and allow 
hierarchical organization of properties.  Configuration 
properties defined within configuration blocks have names 
that are prefaced with the configuration block name and a 
“.” character.  In the example in Figure 2, the property 
“blockName.nestedPropertyName” would have a value of 
“value4”.  Configuration blocks can be nested arbitrarily 
deep and properties in the nested blocks will follow the 
same name prefixing convention as described above.  To 
access the value of “myProperty” in the example in Figure 2, 
the property name “outer.inner.myProperty” would be used.  

MPCS Configuration File Hierarchy 

As a multi-mission product used by many different users in a 
number of different environments, it was important for 
MPCS to provide a simple way for different users and 
different missions to have their own configuration values 
that would override the default values put in place by the 
basic MPCS system configuration.  Rather than use a single 
central configuration file, the MPCS team chose to use a 
hierarchy of configuration files to increase flexibility.  The 
MPCS system can be configured at the system level, the 
project/mission level, and the user level.  The hierarchy of 
MPCS configuration files is shown in Figure 3. 

 

Figure 3 – MPCS Configuration Hierarchy 

The system configuration is the complete set of all 
configuration properties and their values that are defined for 
MPCS.  Everything that is made configurable should always 
be placed in the system configuration file.  The project 
configuration file contains a subset of the contents of the 
system configuration file.  If the same property is defined in 
the system configuration and project configuration, the value 
from the project configuration will be used.  By providing a 
separate mechanism for project configuration, MPCS can 
use much of the same core code to do processing for 
different missions such as MER and MSL.  Finally, MPCS 
provides the ability to specify a user configuration file that 
can override both the project and system configurations.  
This capability allows individual users to tweak MPCS 
behavior to suit their own testing and development needs.  
The system configuration is the only file that is absolutely 
necessary for MPCS to run; the project and user 
configurations are optional.  Furthermore, the user 
configuration file may be disabled for controlled 
environments like flight operations where it is undesirable to 
allow users to override normal system behavior. 

MPCS Configuration In Action 

The overall structure of the MPCS code mirrors the structure 
of the configuration files at the system and project level.  
The majority of the MPCS code is written as a common, 
mission-independent core that uses dynamically instantiated 
adapters to handle venue-specific or mission-specific 
business logic. 

MPCS uses a singleton design pattern to represent its 
configuration internally in code.  The singleton 
configuration allows any piece of code to be able to easily 
pull information out of the MPCS configuration and because 
the majority of the MPCS design is single-threaded, the 
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scalability and synchronization issues of the singleton 
pattern are minimized. 

The earlier discussion of the MPCS downlink architecture 
described how MPCS downlink uses a series of adapters to 
perform various sequential tasks in the telemetry processing 
chain.  The diagram in Figure 1 represents a snapshot of the 
MPCS downlink processing as it is running, but what 
remains to be discussed is how MPCS determines what 
adapters to load before downlink processing begins.  MPCS 
has the idea of a supervisory “Downlink Manager” object 
whose responsibility it is to instantiate all of the necessary 
adapters before telemetry processing begins.  Refer back to 
Figure 1 throughout the following discussion to recall where 
each adapter fits in the telemetry processing pipeline. 

The first and foremost adapter to be instantiated is the Raw 
Input Adapter that will read raw telemetry from an input 
source.  The Raw Input Adapter to load is not known until 
runtime because it is dependent on the venue and data 
format information supplied by the user’s MPCS session.  
MPCS has the ability to ingest a wide array of data including 
either frames or packets in various forms.  In addition, 
MPCS can read its data from a file, a network socket, or any 
number of other APIs such as the interface to the Telemetry 
Delivery Subsystem (TDS) piece of Deep Space Network 
(DSN) where telemetry will be received operationally for 
MSL.  The MPCS Downlink Manager uses an Abstract 
Factory design pattern that examines the session information 
and the configuration and then dynamically instantiates the 
proper input adapter for the given scenario.  For example, in 
the MSL WSTS environment, MPCS must ingest transfer 
frames from a software socket whereas in the MSL testbed 
and ATLO environments MPCS ingests transfer frames from 
hardware that emulates the DSN.  As part of the Abstract 
Factory pattern, all raw input adapters share a common 
interface and are therefore interchangeable in the MPCS 
telemetry flow shown in Figure 1. 

The Frame Sync Adapter and Packet Extract Adapter work 
in a different paradigm than the Raw Input Adapter.  Frame 
synchronization and packet extraction are based on CCSDS 
standards, so they are multi-mission adapters that will 
generally not change based on a particular mission.  Based 
on the format of the input data, however, one or both of 
these adapters may be superfluous.  The MPCS Downlink 
Manager looks at the input data format in the session 
information and then checks the configuration to determine 
if frame synchronization or packet extraction is necessary 
for that particular data format.  For instance, if MPCS is 
configured to read a stream of data packets (recall that data 
packets are normally extracted from frames), then frame 
synchronization and packet extraction are both unnecessary 
since they have already been performed prior to the data 
reaching MPCS.  Through configuration, MPCS is able to 
determine that based on a packet input format it should not 
instantiate these two adapters that serve no purpose. 

The EVR, EHA, and data product adapters follow yet 
another configuration strategy to determine what should be 
loaded.  As mentioned previously, extracting and 
constructing these particular telemetry items from packets is 
generally a mission-specific operation.  In the MPCS system 
configuration, there is a property specifying a default 
adapter for processing each of these types of telemetry, but 
MPCS needs the ability to override what adapter is loaded 
based on the mission.  Using the MPCS project 
configuration file, each mission can specify its own adapter 
to instantiate based on mission-specific needs.  The MPCS 
Downlink Manager uses an Abstract Factory design pattern 
to examine the configuration properties that specify the 
names of the EVR, EHA, and data products adapters, and 
then instantiate the proper adapter for the given mission.  
Figure 4 demonstrates how the MPCS Downlink Manager 
instantiates the proper EVR adapter with the help of an 
Abstract Factory object. 

  

Figure 4 – MPCS EVR Adapter Instantiation 

Another feature of the MPCS configuration is the control of 
whether EVR, EHA, or data product processing is done at 
all.  At the system and project levels of the MPCS 
configuration, all of the EVR, EHA, and data product 
processing is always enabled5.  At the user level, however, 
the configuration entries may be overridden to force MPCS 
not to process particular telemetry items.  For instance, if a 
user is only interested in EVRs, then they can use the MPCS 
user configuration file to disable EHA and data product 
processing to reduce the MPCS processing load and 
improve throughput. 

The remaining adapters, the Database Adapter and the JMS 
Bus Adapter, are a hybrid of the previously discussed 
scenarios.  Like Frame Sync and Packet Extraction, 
Database and JMS operations are generally mission-

5 The MPCS adaptations for Diviner and DAWN only process EHA 
telemetry, so no EVR or data product processing adapters exist. 
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independent so they are not overridden on a per-mission 
basis.  In addition, like EVRs, EHA channels, and data 
products, database and JMS operation are generally 
desirable, so they are enabled by default at the system and 
project levels.  In certain testing and debugging scenarios, 
however, it is desirable to disable one or both of these 
adapters.  Enabling and disabling database and JMS usage 
can be done using the MPCS user configuration file in a 
similar manner to how the EVR, EHA, and data product 
adapters can be enabled and disabled. 

In this manner, the MPCS Downlink Manager can use the 
MPCS configuration and session information combined with 
an Abstract Factory design patterns to dynamically alter 
every aspect of MPCS telemetry processing. 

4. CONCLUSIONS 
Over the course of its development, MPCS has come to find 
CDD an invaluable tool for maintaining flexibility in a 
constantly growing and evolving software architecture.  
MPCS is currently in use for testing through many different 
phases, including the WSTS, testbed and ATLO venues, of 
five different missions including the upcoming MSL 
mission.  In working through the entire lifecycle of the MSL 
mission, MPCS has discovered that the MSL FSW and SSE 
systems are in flux and often the MPCS processing flow 
must change drastically from release to release.  

CDD has proven very valuable in its flexibility in keeping 
up with changing needs and requirements across the 
different mission phases of all MPCS’ customers.  There 
have been numerous occasions where MPCS has been able 
to quickly adapt to feature requests and bug fixes solely 
based on editing entries in a configuration file.  The MPCS 
team has been able to save a lot of time and effort by making 
fixes via configuration so that the MPCS software does not 
have to be redelivered to customers.  

Although CDD has proven very useful in maintaining an 
agile software development process, the added flexibility 
and adaptability comes at a high initial cost.   Developing a 
configuration-driven infrastructure involves spending up-
front time and effort designing a configuration file format 
and developing parsing infrastructure.  Once the 
infrastructure is in place, however, massive changes can be 
made to functionality in a much smaller timeframe.  For 
inexperienced developers or developers new to MPCS, 
however, there is also a steep learning curve. Using CDD 
effectively involves developers adhering to particular design 
patterns and coding standards and it takes developers time to 
come up to speed with these restrictions. 

CDD as a design strategy states that configuration structure 
and content should always be written prior to writing any 
business logic in code, but the MPCS team has discovered 
that CDD is better utilized as an iterative process.  

Developers will initially examine the configuration file and 
potentially make additions prior to doing code development, 
but it is impossible to know everything to put in the 
configuration before any development has been done.  The 
MPCS team has found that the best practice is to write basic 
configuration, then write the business logic to leverage the 
configuration, and finally, iteratively refactor the code and 
configuration simultaneously to achieve as much flexibility 
as possible. 

From a coding standpoint, CDD has also proven valuable in 
allowing the technology base of MPCS to expand.  The 
MPCS core code is written solely in Java, but in the past 
year MPCS has also added a Python-based automated 
scripting tool as part of its delivery.  Although MPCS is now 
composed of two distinct languages, Java and Python, both 
languages still easily share the same XML configuration 
base for modifying their functionality.  Changes to the 
MPCS configuration affect both the Java and Python code 
uniformly.  On a similar note, another advantage of CDD 
has been avoiding code duplication in the MPCS 
environment.  By pulling common values out into the 
configuration, MPCS has been able to greatly cut down on 
the “ripple effect” of small changes propagating throughout 
all of the code. 

One major concern that has arisen is that the MPCS 
configuration files have grown very large.  The split of the 
MPCS hierarchy out into system, project, and user 
configuration files has helped contain some of the 
configuration bloat, but as MPCS continues to grow in size 
and scope, the configuration files continue to grow with it.  
For the future of MPCS as well as any other projects that 
plan on using a CDD strategy, it would be beneficial to split 
up configuration across a dynamically sizeable set of 
configuration files rather than trying to concentrate all 
configuration information into a fixed number of files.  The 
MPCS team has also found that the configuration file(s) 
need occasional reexamination and pruning to prevent them 
from becoming bloated with redundant or vestigial 
information. 

One of the more surprising limitations of the MPCS CDD 
approach has been the reluctance of users to take advantage 
of the user configuration file. By using XML, an inherently 
human-readable format in conjunction with the ability to 
adjust software behavior based on a user-supplied configure 
file, MPCS expected to have users easily modify the 
behavior of the software on their own with no necessary 
intervention from the MPCS team.  In reality, however, 
MPCS has found that the average end user is still adverse to 
XML and either does not understand it or does not want to 
write it. A helpful strategy has been to provide a set of user 
configuration files for common override behaviors and then 
allow users to simply copy these files for their own use.  
Any needed user configuration overrides that do not fall into 
this category are rare and have been handled on a case-by-
case basis without issue. 
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Overall, the benefits of the MPCS CDD strategy have 
greatly outweighed the issues that have been encountered.  
The MPCS CDD design has been flexible enough to adapt 
to a number of different missions and agile enough to keep 
up with the constantly shifting needs and requirements of the 
MSL mission. 
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