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Abstract— A multi-mission approach to solving the same 
problems for various projects is enticing. However, the 
multi-mission approach leads to the need to develop a 
configurable, adaptable and distributed system to meet 
unique project requirements. That, in turn, leads to a set of 
challenges varying from handling synchronization issues to 
coming up with a smart design that allows the “unknowns” 
to be decided later. 

This paper discusses the challenges that the Multi-mission 
Automated Task Invocation Subsystem (MATIS) team has 
come up while designing the distributed workflow system, 
as well as elaborates on the solutions that were implemented. 
The first is to design an easily adaptable system that requires 
no code changes as a result of configuration changes. The 
number of formal deliveries is often limited because each 
delivery costs time and money. Changes such as the 
sequence of programs being called, a change of a parameter 
value in the program that is being automated should not 
result in code changes or redelivery.  

Project requirements are often unclear in the beginning of 
the development cycle, or they may change during the 
development cycle. While it is often understandable that 
requirements changes result in code changes, the MATIS 
team has also investigated into the possibility of making the 
system flexible enough to accommodate “some” requirement 
changes without another software delivery.  In those cases 
where code changes are necessary, they should be kept 
simple and isolated such that the impact to the original 
developed system is kept to a minimum. 

Since MATIS manages multiple threads in a distributed 
environment, the team members have also come across 
challenges in handling synchronization issues, such as 
multiple threads accessing the file system across hosts and 
other race conditions.  

MATIS uses an open source software package called jBPM 
(JBOSS Business Process Manager) for pipeline definition 
and execution. At the conclusion of the paper, the pros and 
cons of using this product shall also be discussed. 
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1. INTRODUCTION 
A multi-mission approach to solving the same problems for 
various projects can be thought of as coming up with a 
system that can be reused over and over again for those 
projects.  Reusability is defined as the “the likelihood a 
segment of source code can be used again to add new 
functionalities with slight or no modification.” [1] There are 
various ways in which code is reused. The simplest form is 
to reuse subroutines, functions and Application 
Programming Interfaces (APIs). On a larger scale, the 
software framework can be reused. 

Three years ago at the Multi-mission Image Processing 
Laboratory (MIPL) of the Jet Propulsion Laboratory (JPL), 

 1 

mailto:Elias.Sayfi@jpl.nasa.gov


a new software system framework was designed and 
developed with the intent that it will be reused mission after 
mission. This software system, the Multi-mission Automated 
Task Invocation Subsystem (MATIS), was a workflow 
manager that generates instrument data products under strict 
time constraints. “The need for an automated system to 
generate instrument products, such as Experiment Data 
Records or Reduced Data Records, is driven by mission 
performance requirements. High data volumes, rapid 
product turnaround, product complexity, as well as the need 
to keep operational costs low, lead different projects to 
come up with similar approaches to address the issues. 
However, JPL missions have independently developed 
unique capabilities to manage production of critical 
instrument data products with little or no inheritance.” [2] 
MATIS was designed and implemented as a reusable system 
by separating the system into a core portion that provides 
common capabilities, and an additional set of project 
adaptations that satisfies specific mission requirements. 

This paper begins with a brief introduction to the MATIS 
architecture. It is followed by detailed description of the 
technical challenges that were encountered during design, 
development and operations. Some of the challenges stem 
from the fact that the team is trying to provide a generic 
implementation for all missions, and some of the challenges 
may be present regardless of whether the system is intended 
for multi-mission use. The paper then concludes with our 
lessons learned. To date, MATIS has been used for 
instrument product generation for Phoenix, Lunar 
Reconnaissance Orbiter (LRO), and Mars Reconnaissance 
Orbiter (MRO).  An implementation for the Mars Science 
Laboratory (MSL) is under way. 

2. MATIS ARCHITECTURE 
MATIS is a workflow manager framework that executes a 
set of programs in a specific order, when the given 
conditions are met. Each of these executions is called a 
pipeline. There are four servers in the MATIS Core: 

1. Controller – The “brain” of the system. It 
distributes the pipelines to each of the host for 
processing. 

2. ServiceFactory – The “worker” of the system. It 
manages the given pipeline, from execution of the 
first program to the last. 

3. Perstore (Persistent Store) is responsible for storing 
data about executing pipelines, machines in use, 
users, permissions and some configurations. The 
core consists of a default implementation that can 
be overridden. 

4. Logger – This server manages the log files. 

Details of MATIS plus definitions of technical terms used in 
this paper are described in more detail in " Multi-mission 
Automated Instrument Product Generation Implemented 
Capabilities." [2] 

3. TECHNICAL CHALLENGES ON DEVELOPING 
MATIS CORE 

This section describes the technical challenges that the 
development team faced during design and implementation. 
The problem and the solution for each challenge are 
provided. 

3.1 REQUIREMENTS CHANGES 
The first challenge was to design and develop a system for 
supporting multiple missions, when the requirements for 
those missions are not yet known. The system must also 
support future missions. Leveraging off the domain 
knowledge and experience of past missions, the solution was 
to divide the system into two sections: a common Core and a 
specific Project Adaptation. The Core would provide 
common functionality needed by all implementations such 
as distribution and pipeline execution. Functions that are 
specific to a mission such as what programs the pipeline will 
execute and when to start that execution are relegated to the 
Project Adaptation. Default implementations of the 
interfaces were provided for the Project Adaptation where 
appropriate. If projects choose to use these default 
implementations development time will be cut shorter. Also, 
it should be noted that in all the Project Adaptations that the 
team has implemented so far, not all the requirements were 
known from the beginning. In some regards it may just be 
the nature of this specific domain as all the issues are also 
not known from the start. Nevertheless it is wise to plan for 
requirement changes and design and implement the system 
with this in mind.  

3.2 PARALLEL FORKING  
One of the desired capabilities missing from jBPM 3.0.2 
was parallel forking. As a result, MATIS has to provide its 
own implementation of parallel forking. In a non-parallel 
mode, the engine running the process instance keeps 
signaling the PI until the end state is reached. 
 
In MATIS’s implementation of parallel fork, when a fork 
state is encountered, the parent engine running the PI creates 
child engines to execute each branch of the fork 
independently and waits for all the children to finish. When 
the last child process reaches the join state corresponding to 
the fork state, the waiting parent engine is signaled and the 
parent engine continues its execution from the join state. In 
this implementation of parallel forking, each branch of the 
fork is executed in a separate thread. 
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3.3 PROCESS DEFINITION VALIDATION 

This implementation of parallel forking created new issues 
that had to do with loops and forks. To illustrate this, 
consider a PD with a fork in it and one of the branches of the 
fork loops back to the fork state. Now, when the parent 
process reaches the fork state, it creates child engines and 
waits. The child engine executing the branch with loop in it 
also creates new child engines when it encounters the same 
fork due to loop back; thus making it the new parent. When 
the last of the newly created engine reaches the join state, 
the new parent receives completion signal and it continues 
its execution from the join state rather then from the point 
after the loop back, leaving the old parent waiting for 
completion signal and thus never ending the execution of the 
process definition. To overcome this issue, a tool was 
devised to check on a given process definition to catch this 
and other errors. This tool was a challenge in itself, as it 
required heavy use of some standard and some modified 
graph traversal and validation algorithms. 

3.4 PROCESS DEFINITION VALIDATION 

Another missing capability from jBPM 3.0.2 had to do with 
interrupting the execution of a process instance and allowing 
the same process instance to resume execution from the 
point of interruption. This required knowledge of where the 
execution was interrupted on each branch of the PI and 
should the program at a node be rerun if the execution was 
interrupted before the program has ended. jBPM tracks 
some of the high level information such what node the 
branch is at. However, it didn’t support Task level 
information that can aid during restart, such as if the task 
should be restarted or not. As a result, this low level 
information needs to be tracked and stored. All this 
information has to be readily available during resume. This 
low level information is stored the context of the PI. Since 
the context is accessible by each branch, a new naming 
scheme that avoids name collusion needs to be created. 
Lastly, synchronization and clean up of context when 
needed must be ensured. 
 
Along the same line, the development team felt that the 
capability provided by jBPM to control process flow was 
not sufficient enough for our needs. The Decision node 
provided by jBPM takes a BeanShell script or BeanShell 
expression that can be used to decide on what should be the 
leaving transition. However, it did not allow complex 
decision making and was not useable at Task level. As a 
result, a flexible yet powerful wrapper around the BeanShell 
interpreter was provided to allow more complex decision 
making that can be used with any node type. 

3.5 MESSAGING 
MATIS uses Java Message Service (JMS) to publish 
messages containing information of processes running to 
internal components of MATIS. This message includes a 

process identification, name and location of the Service 
Factory on which the process is running, execution progress 
and much more. Apache ActiveMQ was selected as the JMS 
implementation for various reasons. The primary reason is 
that it allows the developers to control JMS provider 
programmatically, giving them much more precise control 
over JMS provider. Most of the JMS implementations 
provide a script that starts up JMS provider and also another 
script to shut down the provider. If everything goes well 
every time the script was executed, then the approach has no 
problem. However, if there is a problem during starting up 
or shutting down JMS provider using the script, the 
developer would probably need to analyze output from the 
script just to find out if the execution went well or not. This 
would be really tedious and time consuming because it 
would probably require parsing the output. 
 
However, ActiveMQ provides a class that represents JMS 
provider and the class has methods to start and shut down 
the JMS provider. Thus, the developer can instantiate an 
object of the class and control the JMS provider 
programmatically. In this approach, if there is a problem 
during starting up and shutting down JMS provider, it is 
much easier to detect it such since it would throw an 
exception or return a value indicating a problem. 

3.6 SYNCHRONIZATION OF THE LOG FILES  
MATIS uses log4j logger for its internal logging and Java 
logger for its pipeline logging. The assumption was that 
there would always be one log file per pipeline. This 
assumption was proven wrong for Phoenix. For Phoenix, 
there was a case when two pipelines were processing the 
same product and since for Phoenix the log file names were 
named based on the product file, both pipelines were 
logging to the same log file using two independent logger 
objects and without any synchronization. This required 
coming up with a logging scheme that allowed 
synchronization with logger objects residing in separate 
address space. Since it is not desirable to deviate from using 
a standard logging scheme, the developers need to create a 
logging that a) utilizes a standard logging scheme, b) 
provides synchronization among loggers residing in different 
address spaces, and c) provides a means to automatically 
close log files and discard associated loggers, keeping in 
mind that the logger objects resides in separate address 
space. To tackle this, a log server that keeps track of 
different loggers is implemented. Each logger is named 
using the name of the log file it logs to. On the client side, a 
serializable1 logger was implemented. This logger, named 
proxy logger of type Java logger, forwards all log messages 
to the log server. The proxy logger uses the log file name as 
an identity for all its logging activities with the log server. 
Each time a proxy logger is created, it informs the log server 
to create a logger object to log to the specified log file. At 

1 This is because all objects in the context are serialized when the context 
is passed from one state to another. 
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this time the log server, if needed, creates a logger object 
and/or increments the user count for that logger object. 
When the proxy logger is no longer used, its finalize method 
is invoked which causes a deregistration with the log server 
causing the log server to decrement that logger’s user count. 
When there are no more users for that logger object the log 
server closes the log file and discards that associated logger 
object. 

4. TECHNICAL CHALLENGES ON DEVELOPING 
THE PROJECT ADAPTATIONS 

The core MATIS engine distributes work across a cluster of 
hosts and executes pipelines. [3] The Scheduler determines 
when pipelines are ready for execution. At each node of the 
Process Definition (PD), a Java class called RunTasks is 
executed. RunTasks is responsible for creating any input 
parameters, executing, logging any error and output streams, 
and determining success or failure of the program at the 
given node. The LoadCalculator determines how work is 
distributed across the processing machines. The Scheduler, 
PD, RunTasks, LoadCalculator, and Perstore make up the 
Project Adaptation portion of a MATIS processing system. 

4.1 DESIGNING THE SCHEDULER, PIPELINE AND 
LOAD CALCULATOR 

For the Phoenix Adaptation, four PD's were created that 
divided the overall work strategically so as to take full 
advantage of performance and minimize resource usage. It 
did not make sense to do all the processing in one pipeline 
because at nodes where all input is not yet generated (and 
my never be generated) it may be possible to wait 
indefinitely holding on to system resources. Other 
advantages of multiple pipelines are better workload 
distribution using the LoadCalculator and the ability to start 
processing at each pipeline. The LoadCalculator is a plug-in 
associated with the ServiceFactory that is called by the 
MATIS engine whenever a pipeline starts or ends. The 
LoadCalculator was implemented such that it would limit 
the number of each type of pipeline that can be executed on 
each machine and not overload it. In this way, each host was 
configured to take full advantage of its processing power 
while not overwhelming the resources. It also added the 
ability to dedicate to a resource specific types of pipelines 
with specific processing priorities. To accommodate the 
multiple pipelines the Scheduler also had to have multiple 
file listeners for triggering the processing. Each file listener 
is referred to as an Event and is defined in the configuration 
file that determines at what directory to listen and what PD 
to execute with each file that appears. The Event name is 
used to associate the pipeline, its configuration, and the 
LoadCalculator. 
 
The Mars Climate Sounder (MCS)2 Adaptation took 
advantage of the Phoenix by inheriting the basic design of 

2 MCS is an instrument on the Mars Reconnaissance Orbiter. 

the Scheduler and LoadCalculator. MCS had few long 
running programs to execute so more emphasis was placed 
on distribution. To accommodate this, three pipelines were 
created with few nodes in each that could easily be 
distributed, as opposed to one pipeline that performed all the 
processing, but had to be dedicated to one host. A challenge 
that needs to be addressed was that some of the programs 
that MATIS needed to execute were written in Interactive 
Data Language (IDL). IDL requires run time licenses to 
execute. This caused processing to be limited by the number 
of available licenses not processing power. More licenses 
were purchased to alleviate the bottleneck. 
 
The Diviner adaptation also took advantage of both the 
Phoenix and MCS adaptations. The challenge in Diviner 
was developing a scheme for determining when to execute 
the pipelines but also limiting the amount of processing. The 
main program that needs to be executed takes almost an 
hour to process one hour's worth of data. The system is 
expected to process 24 hours of data per day. The Scheduler 
must only process files when they are complete, and then 
only reprocess them judiciously. Special attention was paid 
to the LoadCalculator and multiple hosts to get the most 
processing from this adaptation. 

4.2 CONFIGURATION 

A driving force in the Project Adaptation design is to enable 
as much flexibility in modifying the system via configuration 
as opposed to code change. This leads to a fair amount of 
configuration, but the challenge is to keep it simple enough 
so that it is still usable. The mantra that the development 
team attempted to adhere to regarding configuration was to 
make the routine things simple and the complicated things 
possible. The configuration stores the parameters for the 
programs executed by the pipeline allowing these 
parameters to be changed or new parameters to be added 
easily. To control the passing of data, such as the output of a 
program, from one node to another, variables can be 
specified in the configuration that will be replaced at run 
time with actual values.  

4.3 THE PD AND RUNTASKS 
The PD and RunTasks are intimately interconnected and 
together are responsible for controlling the flow of execution 
in the pipeline. When executing a pipeline, the MATIS 
engine traverses each node of the PD. At each node MATIS 
calls RunTasks and waits for it to finish before continuing to 
the next node. At each node of the pipeline there is a new 
instance of RunTasks making it necessary to pass state 
information using the context. It also makes synchronization 
challenging because the project adaptation portion 
relinquishes execution control to the Core and waits to be 
invoked again. Keeping this in mind, the PD design is fairly 
straightforward since it is dictated by the dependencies of 
the programs that need to be executed. At junctures where 
more than one program is dependent on the output of a 
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program, it makes sense to introduce a parallel fork. Once 
exception to this is for fast running short processes. The 
overhead introduced by the split in these cases may not be 
justified.  
 
For maximum modifiability, such as the ability to change the 
execution flow arbitrarily via the PD and configuration 
without any code change, RunTasks should simply be a 
wrapper for the program it is calling. In the case of Phoenix, 
mainly to increase performance, RunTasks contained some 
smarts that performed implicit steps and determined 
execution flow. This gain in performance sacrificed the 
ability to arbitrarily change the pipeline flow without code 
change but was not a hindrance in this instance. 
 
RunTasks gets most of the parameters for the programs it 
executes from the configuration file, sometimes using 
variables that are replaced with appropriated values at run 
time. However, some parameters had to be determined at run 
time based on the contents of input files. To handle this, 
BeanShell scripting inside the configuration file is used. The 
advantage of doing it this way is that the script can be 
modified on the fly, since it is in the configuration file, and it 
can be executed at run time to determine the needed 
parameters. 

4.4 PERSISTENT STORE 
The MATIS team has developed a default implementation of 
the Perstore using Hibernate. Hibernate provides a generic 
layer for interacting with databases allowing the underlying 
database implementation to change. For most Project 
Adaptations this will suffice and provide all the needed 
functionality, as was the case with Phoenix. The MCS and 
Diviner adaptations were simple enough that they did not 
need to be burdened with a database backend. The default 
Perstore was overwritten and the database was replaced with 
a text file. This was done relatively simply since the text file 
implementation only kept track of vital information such as 
what machines are available for processing but did not need 
to store state information about processing pipeline. Of 
course this meant that pipelines that failed half way could 
not be restarted from the point of failure, but that was not a 
problem because the desired functionality in these 
implementations is to start from the beginning. 

4.5 SYNCHRONIZATION OF THE INSTRUMENT 
PRODUCTS 

4.5.1 Versioning 

Challenges that had to be dealt with in the Phoenix 
adaptation stemmed from the fact that the same filename 
could be sent to the Scheduler more than one time with the 
assumption that the later file was better. This required that 
output products be versioned. The first challenge is how to 
determine the version number of a file. Keeping in mind the 
execution pattern of a PD, there is no guarantee about the 

order of execution if the same filename is received again 
during the execution of the first one. A database solution 
was implemented such that at each RunTasks the version 
number of a product can be uniquely determined. A first 
attempt was made to use the filesystem for versioning. This 
showed to be unreliable because of the shared filesystem 
(NFS) and the distributed nature of MATIS. The second 
challenge was the requirement that the highest version 
products had to be the best, meaning they had to be 
processed with the latest received files. A simple solution 
was to not process a later file until the processing of a 
previous version has completed. This solution would 
undoubtedly degrade throughput since a product that is 
known to be overwritten is allowed to process to completion 
and a better product is held back from processing which are 
not good qualities of a system with time requirements. A 
more elaborate scheme using the database was developed. 
At each RunTasks, before executing the actual program at 
that node, the system would ask the database if its inputs 
were the latest version products. The inputs would be the 
latest version products only if a higher version product was 
not yet produced. This enabled the latest versioned products 
to be executed as they were received and also ensured that 
the latest version product would be the best. Any node that 
did not have the latest version products would simple stop 
itself knowing that a better product was being generated. 
 
4.5.2 Directory Creation 

RunTasks was responsible for copying output products to an 
external repository. Products needed to be placed in specific 
directories that had to be generated if they did not exist. A 
race condition was revealed between multiple instances of 
RunTasks checking to see if a directory exists and 
attempting to create that directory. A single instance of 
RunTasks could see that a directory does not exist but the 
creation attempt would also fail because another instance 
has already generated that directory. This was a minor 
headache that was easily fixed but illustrates the pitfalls that 
must be avoided when designing the Project Adaptation. 

5 LESSONS LEARNED 
While developing and supporting the various Project 
Adaptations, the team came across interesting observations 
and learned some helpful lessons. The hope is that future 
adaptations will benefit from these observations. 

5.1 FROM JVM 

The RunTasks class from the project adaptation is 
responsible for executing external programs. In general 
RunTasks invokes these programs as external processes. 
Since RunTasks is a Java class, it is also possible to invoke 
external programs as a class if they are written in java. 
Conventional wisdom would suggest that this is the 
preferred method since it saves the overhead of starting a 
new Java Virtual Machine (JVM). Our experience with 
Phoenix brought to light some interesting caveats that must 
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be considered when deciding to go this route. One program 
that had a large memory footprint was implemented this 
way. This program was called more than once in parallel 
along each pipeline. Being used as a class, it was 
instantiated and executed inside the same JVM as the 
ServiceFactory. As multiple instances of this program were 
started it put unusual stress on the JVM in terms of memory 
and cpu usage that the ServiceFactory would grind to a halt 
and unexpectedly crash. The other consequence is that 
MATIS would now have to handle any expected crashes by 
this code as opposed to starting an external process and 
waiting for it to return. The final verdict was that it is safer 
to call external programs as external processes unless there 
is a compelling reason to do otherwise. 

5.2 FROM MESSAGING 

As mentioned before, MATIS uses JMS to publish messages 
to its internal components. The messages are useless unless 
a receiver can understand the message. 
 
JMS allows us to publish various types of messages 
including text message, XML message, and also object 
message. There are pros and cons to this. The advantages 
are that XML messages can be validated against an XML 
schema, which then in turns guarantees that the message is 
formatted in a certain way. The disadvantage is that this will 
limit what can be contained in the message.  
 
For that reason, it is decided to use object message as a way 
to publish messages. Although validation is still necessary to 
make sure that the message contains the information that 
internal components expect to see in the message, adding 
more information to the message does not create a problem. 
This is because the existing internal components only try to 
extract information they know they are in the message and 
do no care about the rest of information in the message. This 
provides flexibility to add more information to the message 
later by simply adding the additional information that the 
component expects to the message. This lets all existing 
internal components work as they used to, and yet allows 
providing more information to the new internal component. 

5.3 FROM PHOENIX OPERATIONS 

For Phoenix, MATIS is always running and ready to process 
data as they arrive. It has generated roughly 220,000 
products in 120 days. Under such situation, what the 
operator cares most is not if everything is running fine, but 
what went wrong. MATIS logs any significant errors to log 
files. However, it is tedious and difficult to find out if there 
is anything that went wrong solely from the log files. It 
would be very useful if the operator could get notified when 
such errors occurred, or could see them graphically. 
 
A new GUI has been created to monitor messages published 
from the internal components of MATIS and display 
information on the processes that are currently running. This 

would help to solve the difficulties experienced in Phoenix 
operations. 

6 CONCLUSION 
The challenges that the team encountered during the initial 
Core system implementation provided invaluable experience 
and understanding that helped reduce the cost of the Project 
Adaptations. The goal of providing a reusable system was 
central in motivating the team to define clear lines between 
what was common to all implementations and what needed 
to be modifiable. Interfaces, with default implementations as 
plug-ins, were provided for the modifiable parts and 
visibility and configuration for the core components. This 
proved to be the best quality of the system as different 
Project Adaptations were integrated with ease. That's not to 
say that the Project Adaptations were simple, as can be seen 
from the technical challenges stated in this paper, but the 
integration to the Core was simple which validates the 
overall architecture. Furthermore, no changes to the Core 
architecture were required for implementing the Project 
Adaptations. The number one criteria for judging the 
success of a system like MATIS is reusability. Can MATIS 
be used on other missions and provide a cheaper yet 
equivalently powerful solution opposed to developing from 
scratch? From the missions supported so far, the resounding 
answer is yes. 
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