
Overcoming the Challenges of Implementing a Multi-
mission Distributed Workflow System

Elias Sayfi
Jet Propulsion Laboratory

California Institute of Technology
Pasadena, Ca 91109, USA
Elias.Sayfi@jpl.nasa.gov

Cecilia Cheng, Hyun Lee, Rajesh Patel, Atsuya Takagi, Dan Yu

Jet Propulsion Laboratory
California Institute of Technology

Pasadena, Ca 91109, USA

Abstract— A multi-mission approach to solving the same
problems for various projects is enticing. However, the
multi-mission approach leads to the need to develop a
configurable, adaptable and distributed system to meet
unique project requirements. That, in turn, leads to a set of
challenges varying from handling synchronization issues to
coming up with a smart design that allows the “unknowns”
to be decided later.

This paper discusses the challenges that the Multi-mission
Automated Task Invocation Subsystem (MATIS) team has
come up while designing the distributed workflow system,
as well as elaborates on the solutions that were implemented.
The first is to design an easily adaptable system that requires
no code changes as a result of configuration changes. The
number of formal deliveries is often limited because each
delivery costs time and money. Changes such as the
sequence of programs being called, a change of a parameter
value in the program that is being automated should not
result in code changes or redelivery.

Project requirements are often unclear in the beginning of
the development cycle, or they may change during the
development cycle. While it is often understandable that
requirements changes result in code changes, the MATIS
team has also investigated into the possibility of making the
system flexible enough to accommodate “some” requirement
changes without another software delivery. In those cases
where code changes are necessary, they should be kept
simple and isolated such that the impact to the original
developed system is kept to a minimum.

Since MATIS manages multiple threads in a distributed
environment, the team members have also come across
challenges in handling synchronization issues, such as
multiple threads accessing the file system across hosts and
other race conditions.

MATIS uses an open source software package called jBPM
(JBOSS Business Process Manager) for pipeline definition
and execution. At the conclusion of the paper, the pros and
cons of using this product shall also be discussed.

TABLE OF CONTENTS

1. INTRODUCTION .. 1
2. MATIS ARCHITECTURE ... 2
3. TECHNICAL CHALLENGES ON DEVELOPING MATIS
CORE .. 2
3.1 REQUIREMENTS CHANGES .. 2
3.2 PARALLEL FORKING ... 2
3.3 PROCESS DEFINITION VALIDATION 3
3.4 PROCESS DEFINITION VALIDATION 3
3.5 MESSAGING ... 3
3.6 SYNCHRONIZATION OF THE LOG FILES 3
4. TECHNICAL CHALLENGES ON DEVELOPING THE
PROJECT ADAPTATIONS .. 4
4.1 DESIGNING THE SCHEDULER, PIPELINE AND LOAD
CALCULATOR .. 4
4.2 CONFIGURATION ... 4
4.3 THE PD AND RUNTASKS .. 4
4.4 PERSISTENT STORE ... 5
4.5 SYNCHRONIZATION OF THE INSTRUMENT PRODUCTS . 5
5 LESSONS LEARNED ... 5
5.1 FROM JVM .. 5
5.2 FROM MESSAGING .. 6
5.3 FROM PHOENIX OPERATIONS 6
6 CONCLUSION ... 6
REFERENCES.. 6
BIOGRAPHY ... 6

1. INTRODUCTION
A multi-mission approach to solving the same problems for
various projects can be thought of as coming up with a
system that can be reused over and over again for those
projects. Reusability is defined as the “the likelihood a
segment of source code can be used again to add new
functionalities with slight or no modification.” [1] There are
various ways in which code is reused. The simplest form is
to reuse subroutines, functions and Application
Programming Interfaces (APIs). On a larger scale, the
software framework can be reused.

Three years ago at the Multi-mission Image Processing
Laboratory (MIPL) of the Jet Propulsion Laboratory (JPL),

 1

mailto:Elias.Sayfi@jpl.nasa.gov

a new software system framework was designed and
developed with the intent that it will be reused mission after
mission. This software system, the Multi-mission Automated
Task Invocation Subsystem (MATIS), was a workflow
manager that generates instrument data products under strict
time constraints. “The need for an automated system to
generate instrument products, such as Experiment Data
Records or Reduced Data Records, is driven by mission
performance requirements. High data volumes, rapid
product turnaround, product complexity, as well as the need
to keep operational costs low, lead different projects to
come up with similar approaches to address the issues.
However, JPL missions have independently developed
unique capabilities to manage production of critical
instrument data products with little or no inheritance.” [2]
MATIS was designed and implemented as a reusable system
by separating the system into a core portion that provides
common capabilities, and an additional set of project
adaptations that satisfies specific mission requirements.

This paper begins with a brief introduction to the MATIS
architecture. It is followed by detailed description of the
technical challenges that were encountered during design,
development and operations. Some of the challenges stem
from the fact that the team is trying to provide a generic
implementation for all missions, and some of the challenges
may be present regardless of whether the system is intended
for multi-mission use. The paper then concludes with our
lessons learned. To date, MATIS has been used for
instrument product generation for Phoenix, Lunar
Reconnaissance Orbiter (LRO), and Mars Reconnaissance
Orbiter (MRO). An implementation for the Mars Science
Laboratory (MSL) is under way.

2. MATIS ARCHITECTURE
MATIS is a workflow manager framework that executes a
set of programs in a specific order, when the given
conditions are met. Each of these executions is called a
pipeline. There are four servers in the MATIS Core:

1. Controller – The “brain” of the system. It
distributes the pipelines to each of the host for
processing.

2. ServiceFactory – The “worker” of the system. It
manages the given pipeline, from execution of the
first program to the last.

3. Perstore (Persistent Store) is responsible for storing
data about executing pipelines, machines in use,
users, permissions and some configurations. The
core consists of a default implementation that can
be overridden.

4. Logger – This server manages the log files.

Details of MATIS plus definitions of technical terms used in
this paper are described in more detail in " Multi-mission
Automated Instrument Product Generation Implemented
Capabilities." [2]

3. TECHNICAL CHALLENGES ON DEVELOPING
MATIS CORE

This section describes the technical challenges that the
development team faced during design and implementation.
The problem and the solution for each challenge are
provided.

3.1 REQUIREMENTS CHANGES
The first challenge was to design and develop a system for
supporting multiple missions, when the requirements for
those missions are not yet known. The system must also
support future missions. Leveraging off the domain
knowledge and experience of past missions, the solution was
to divide the system into two sections: a common Core and a
specific Project Adaptation. The Core would provide
common functionality needed by all implementations such
as distribution and pipeline execution. Functions that are
specific to a mission such as what programs the pipeline will
execute and when to start that execution are relegated to the
Project Adaptation. Default implementations of the
interfaces were provided for the Project Adaptation where
appropriate. If projects choose to use these default
implementations development time will be cut shorter. Also,
it should be noted that in all the Project Adaptations that the
team has implemented so far, not all the requirements were
known from the beginning. In some regards it may just be
the nature of this specific domain as all the issues are also
not known from the start. Nevertheless it is wise to plan for
requirement changes and design and implement the system
with this in mind.

3.2 PARALLEL FORKING
One of the desired capabilities missing from jBPM 3.0.2
was parallel forking. As a result, MATIS has to provide its
own implementation of parallel forking. In a non-parallel
mode, the engine running the process instance keeps
signaling the PI until the end state is reached.

In MATIS’s implementation of parallel fork, when a fork
state is encountered, the parent engine running the PI creates
child engines to execute each branch of the fork
independently and waits for all the children to finish. When
the last child process reaches the join state corresponding to
the fork state, the waiting parent engine is signaled and the
parent engine continues its execution from the join state. In
this implementation of parallel forking, each branch of the
fork is executed in a separate thread.

 2

3.3 PROCESS DEFINITION VALIDATION

This implementation of parallel forking created new issues
that had to do with loops and forks. To illustrate this,
consider a PD with a fork in it and one of the branches of the
fork loops back to the fork state. Now, when the parent
process reaches the fork state, it creates child engines and
waits. The child engine executing the branch with loop in it
also creates new child engines when it encounters the same
fork due to loop back; thus making it the new parent. When
the last of the newly created engine reaches the join state,
the new parent receives completion signal and it continues
its execution from the join state rather then from the point
after the loop back, leaving the old parent waiting for
completion signal and thus never ending the execution of the
process definition. To overcome this issue, a tool was
devised to check on a given process definition to catch this
and other errors. This tool was a challenge in itself, as it
required heavy use of some standard and some modified
graph traversal and validation algorithms.

3.4 PROCESS DEFINITION VALIDATION

Another missing capability from jBPM 3.0.2 had to do with
interrupting the execution of a process instance and allowing
the same process instance to resume execution from the
point of interruption. This required knowledge of where the
execution was interrupted on each branch of the PI and
should the program at a node be rerun if the execution was
interrupted before the program has ended. jBPM tracks
some of the high level information such what node the
branch is at. However, it didn’t support Task level
information that can aid during restart, such as if the task
should be restarted or not. As a result, this low level
information needs to be tracked and stored. All this
information has to be readily available during resume. This
low level information is stored the context of the PI. Since
the context is accessible by each branch, a new naming
scheme that avoids name collusion needs to be created.
Lastly, synchronization and clean up of context when
needed must be ensured.

Along the same line, the development team felt that the
capability provided by jBPM to control process flow was
not sufficient enough for our needs. The Decision node
provided by jBPM takes a BeanShell script or BeanShell
expression that can be used to decide on what should be the
leaving transition. However, it did not allow complex
decision making and was not useable at Task level. As a
result, a flexible yet powerful wrapper around the BeanShell
interpreter was provided to allow more complex decision
making that can be used with any node type.

3.5 MESSAGING
MATIS uses Java Message Service (JMS) to publish
messages containing information of processes running to
internal components of MATIS. This message includes a

process identification, name and location of the Service
Factory on which the process is running, execution progress
and much more. Apache ActiveMQ was selected as the JMS
implementation for various reasons. The primary reason is
that it allows the developers to control JMS provider
programmatically, giving them much more precise control
over JMS provider. Most of the JMS implementations
provide a script that starts up JMS provider and also another
script to shut down the provider. If everything goes well
every time the script was executed, then the approach has no
problem. However, if there is a problem during starting up
or shutting down JMS provider using the script, the
developer would probably need to analyze output from the
script just to find out if the execution went well or not. This
would be really tedious and time consuming because it
would probably require parsing the output.

However, ActiveMQ provides a class that represents JMS
provider and the class has methods to start and shut down
the JMS provider. Thus, the developer can instantiate an
object of the class and control the JMS provider
programmatically. In this approach, if there is a problem
during starting up and shutting down JMS provider, it is
much easier to detect it such since it would throw an
exception or return a value indicating a problem.

3.6 SYNCHRONIZATION OF THE LOG FILES
MATIS uses log4j logger for its internal logging and Java
logger for its pipeline logging. The assumption was that
there would always be one log file per pipeline. This
assumption was proven wrong for Phoenix. For Phoenix,
there was a case when two pipelines were processing the
same product and since for Phoenix the log file names were
named based on the product file, both pipelines were
logging to the same log file using two independent logger
objects and without any synchronization. This required
coming up with a logging scheme that allowed
synchronization with logger objects residing in separate
address space. Since it is not desirable to deviate from using
a standard logging scheme, the developers need to create a
logging that a) utilizes a standard logging scheme, b)
provides synchronization among loggers residing in different
address spaces, and c) provides a means to automatically
close log files and discard associated loggers, keeping in
mind that the logger objects resides in separate address
space. To tackle this, a log server that keeps track of
different loggers is implemented. Each logger is named
using the name of the log file it logs to. On the client side, a
serializable1 logger was implemented. This logger, named
proxy logger of type Java logger, forwards all log messages
to the log server. The proxy logger uses the log file name as
an identity for all its logging activities with the log server.
Each time a proxy logger is created, it informs the log server
to create a logger object to log to the specified log file. At

1 This is because all objects in the context are serialized when the context
is passed from one state to another.

 3

3

this time the log server, if needed, creates a logger object
and/or increments the user count for that logger object.
When the proxy logger is no longer used, its finalize method
is invoked which causes a deregistration with the log server
causing the log server to decrement that logger’s user count.
When there are no more users for that logger object the log
server closes the log file and discards that associated logger
object.

4. TECHNICAL CHALLENGES ON DEVELOPING
THE PROJECT ADAPTATIONS

The core MATIS engine distributes work across a cluster of
hosts and executes pipelines. [3] The Scheduler determines
when pipelines are ready for execution. At each node of the
Process Definition (PD), a Java class called RunTasks is
executed. RunTasks is responsible for creating any input
parameters, executing, logging any error and output streams,
and determining success or failure of the program at the
given node. The LoadCalculator determines how work is
distributed across the processing machines. The Scheduler,
PD, RunTasks, LoadCalculator, and Perstore make up the
Project Adaptation portion of a MATIS processing system.

4.1 DESIGNING THE SCHEDULER, PIPELINE AND
LOAD CALCULATOR

For the Phoenix Adaptation, four PD's were created that
divided the overall work strategically so as to take full
advantage of performance and minimize resource usage. It
did not make sense to do all the processing in one pipeline
because at nodes where all input is not yet generated (and
my never be generated) it may be possible to wait
indefinitely holding on to system resources. Other
advantages of multiple pipelines are better workload
distribution using the LoadCalculator and the ability to start
processing at each pipeline. The LoadCalculator is a plug-in
associated with the ServiceFactory that is called by the
MATIS engine whenever a pipeline starts or ends. The
LoadCalculator was implemented such that it would limit
the number of each type of pipeline that can be executed on
each machine and not overload it. In this way, each host was
configured to take full advantage of its processing power
while not overwhelming the resources. It also added the
ability to dedicate to a resource specific types of pipelines
with specific processing priorities. To accommodate the
multiple pipelines the Scheduler also had to have multiple
file listeners for triggering the processing. Each file listener
is referred to as an Event and is defined in the configuration
file that determines at what directory to listen and what PD
to execute with each file that appears. The Event name is
used to associate the pipeline, its configuration, and the
LoadCalculator.

The Mars Climate Sounder (MCS)2 Adaptation took
advantage of the Phoenix by inheriting the basic design of

2 MCS is an instrument on the Mars Reconnaissance Orbiter.

the Scheduler and LoadCalculator. MCS had few long
running programs to execute so more emphasis was placed
on distribution. To accommodate this, three pipelines were
created with few nodes in each that could easily be
distributed, as opposed to one pipeline that performed all the
processing, but had to be dedicated to one host. A challenge
that needs to be addressed was that some of the programs
that MATIS needed to execute were written in Interactive
Data Language (IDL). IDL requires run time licenses to
execute. This caused processing to be limited by the number
of available licenses not processing power. More licenses
were purchased to alleviate the bottleneck.

The Diviner adaptation also took advantage of both the
Phoenix and MCS adaptations. The challenge in Diviner
was developing a scheme for determining when to execute
the pipelines but also limiting the amount of processing. The
main program that needs to be executed takes almost an
hour to process one hour's worth of data. The system is
expected to process 24 hours of data per day. The Scheduler
must only process files when they are complete, and then
only reprocess them judiciously. Special attention was paid
to the LoadCalculator and multiple hosts to get the most
processing from this adaptation.

4.2 CONFIGURATION

A driving force in the Project Adaptation design is to enable
as much flexibility in modifying the system via configuration
as opposed to code change. This leads to a fair amount of
configuration, but the challenge is to keep it simple enough
so that it is still usable. The mantra that the development
team attempted to adhere to regarding configuration was to
make the routine things simple and the complicated things
possible. The configuration stores the parameters for the
programs executed by the pipeline allowing these
parameters to be changed or new parameters to be added
easily. To control the passing of data, such as the output of a
program, from one node to another, variables can be
specified in the configuration that will be replaced at run
time with actual values.

4.3 THE PD AND RUNTASKS
The PD and RunTasks are intimately interconnected and
together are responsible for controlling the flow of execution
in the pipeline. When executing a pipeline, the MATIS
engine traverses each node of the PD. At each node MATIS
calls RunTasks and waits for it to finish before continuing to
the next node. At each node of the pipeline there is a new
instance of RunTasks making it necessary to pass state
information using the context. It also makes synchronization
challenging because the project adaptation portion
relinquishes execution control to the Core and waits to be
invoked again. Keeping this in mind, the PD design is fairly
straightforward since it is dictated by the dependencies of
the programs that need to be executed. At junctures where
more than one program is dependent on the output of a

 4

4

program, it makes sense to introduce a parallel fork. Once
exception to this is for fast running short processes. The
overhead introduced by the split in these cases may not be
justified.

For maximum modifiability, such as the ability to change the
execution flow arbitrarily via the PD and configuration
without any code change, RunTasks should simply be a
wrapper for the program it is calling. In the case of Phoenix,
mainly to increase performance, RunTasks contained some
smarts that performed implicit steps and determined
execution flow. This gain in performance sacrificed the
ability to arbitrarily change the pipeline flow without code
change but was not a hindrance in this instance.

RunTasks gets most of the parameters for the programs it
executes from the configuration file, sometimes using
variables that are replaced with appropriated values at run
time. However, some parameters had to be determined at run
time based on the contents of input files. To handle this,
BeanShell scripting inside the configuration file is used. The
advantage of doing it this way is that the script can be
modified on the fly, since it is in the configuration file, and it
can be executed at run time to determine the needed
parameters.

4.4 PERSISTENT STORE
The MATIS team has developed a default implementation of
the Perstore using Hibernate. Hibernate provides a generic
layer for interacting with databases allowing the underlying
database implementation to change. For most Project
Adaptations this will suffice and provide all the needed
functionality, as was the case with Phoenix. The MCS and
Diviner adaptations were simple enough that they did not
need to be burdened with a database backend. The default
Perstore was overwritten and the database was replaced with
a text file. This was done relatively simply since the text file
implementation only kept track of vital information such as
what machines are available for processing but did not need
to store state information about processing pipeline. Of
course this meant that pipelines that failed half way could
not be restarted from the point of failure, but that was not a
problem because the desired functionality in these
implementations is to start from the beginning.

4.5 SYNCHRONIZATION OF THE INSTRUMENT
PRODUCTS

4.5.1 Versioning

Challenges that had to be dealt with in the Phoenix
adaptation stemmed from the fact that the same filename
could be sent to the Scheduler more than one time with the
assumption that the later file was better. This required that
output products be versioned. The first challenge is how to
determine the version number of a file. Keeping in mind the
execution pattern of a PD, there is no guarantee about the

order of execution if the same filename is received again
during the execution of the first one. A database solution
was implemented such that at each RunTasks the version
number of a product can be uniquely determined. A first
attempt was made to use the filesystem for versioning. This
showed to be unreliable because of the shared filesystem
(NFS) and the distributed nature of MATIS. The second
challenge was the requirement that the highest version
products had to be the best, meaning they had to be
processed with the latest received files. A simple solution
was to not process a later file until the processing of a
previous version has completed. This solution would
undoubtedly degrade throughput since a product that is
known to be overwritten is allowed to process to completion
and a better product is held back from processing which are
not good qualities of a system with time requirements. A
more elaborate scheme using the database was developed.
At each RunTasks, before executing the actual program at
that node, the system would ask the database if its inputs
were the latest version products. The inputs would be the
latest version products only if a higher version product was
not yet produced. This enabled the latest versioned products
to be executed as they were received and also ensured that
the latest version product would be the best. Any node that
did not have the latest version products would simple stop
itself knowing that a better product was being generated.

4.5.2 Directory Creation

RunTasks was responsible for copying output products to an
external repository. Products needed to be placed in specific
directories that had to be generated if they did not exist. A
race condition was revealed between multiple instances of
RunTasks checking to see if a directory exists and
attempting to create that directory. A single instance of
RunTasks could see that a directory does not exist but the
creation attempt would also fail because another instance
has already generated that directory. This was a minor
headache that was easily fixed but illustrates the pitfalls that
must be avoided when designing the Project Adaptation.

5 LESSONS LEARNED
While developing and supporting the various Project
Adaptations, the team came across interesting observations
and learned some helpful lessons. The hope is that future
adaptations will benefit from these observations.

5.1 FROM JVM

The RunTasks class from the project adaptation is
responsible for executing external programs. In general
RunTasks invokes these programs as external processes.
Since RunTasks is a Java class, it is also possible to invoke
external programs as a class if they are written in java.
Conventional wisdom would suggest that this is the
preferred method since it saves the overhead of starting a
new Java Virtual Machine (JVM). Our experience with
Phoenix brought to light some interesting caveats that must

 5

be considered when deciding to go this route. One program
that had a large memory footprint was implemented this
way. This program was called more than once in parallel
along each pipeline. Being used as a class, it was
instantiated and executed inside the same JVM as the
ServiceFactory. As multiple instances of this program were
started it put unusual stress on the JVM in terms of memory
and cpu usage that the ServiceFactory would grind to a halt
and unexpectedly crash. The other consequence is that
MATIS would now have to handle any expected crashes by
this code as opposed to starting an external process and
waiting for it to return. The final verdict was that it is safer
to call external programs as external processes unless there
is a compelling reason to do otherwise.

5.2 FROM MESSAGING

As mentioned before, MATIS uses JMS to publish messages
to its internal components. The messages are useless unless
a receiver can understand the message.

JMS allows us to publish various types of messages
including text message, XML message, and also object
message. There are pros and cons to this. The advantages
are that XML messages can be validated against an XML
schema, which then in turns guarantees that the message is
formatted in a certain way. The disadvantage is that this will
limit what can be contained in the message.

For that reason, it is decided to use object message as a way
to publish messages. Although validation is still necessary to
make sure that the message contains the information that
internal components expect to see in the message, adding
more information to the message does not create a problem.
This is because the existing internal components only try to
extract information they know they are in the message and
do no care about the rest of information in the message. This
provides flexibility to add more information to the message
later by simply adding the additional information that the
component expects to the message. This lets all existing
internal components work as they used to, and yet allows
providing more information to the new internal component.

5.3 FROM PHOENIX OPERATIONS

For Phoenix, MATIS is always running and ready to process
data as they arrive. It has generated roughly 220,000
products in 120 days. Under such situation, what the
operator cares most is not if everything is running fine, but
what went wrong. MATIS logs any significant errors to log
files. However, it is tedious and difficult to find out if there
is anything that went wrong solely from the log files. It
would be very useful if the operator could get notified when
such errors occurred, or could see them graphically.

A new GUI has been created to monitor messages published
from the internal components of MATIS and display
information on the processes that are currently running. This

would help to solve the difficulties experienced in Phoenix
operations.

6 CONCLUSION
The challenges that the team encountered during the initial
Core system implementation provided invaluable experience
and understanding that helped reduce the cost of the Project
Adaptations. The goal of providing a reusable system was
central in motivating the team to define clear lines between
what was common to all implementations and what needed
to be modifiable. Interfaces, with default implementations as
plug-ins, were provided for the modifiable parts and
visibility and configuration for the core components. This
proved to be the best quality of the system as different
Project Adaptations were integrated with ease. That's not to
say that the Project Adaptations were simple, as can be seen
from the technical challenges stated in this paper, but the
integration to the Core was simple which validates the
overall architecture. Furthermore, no changes to the Core
architecture were required for implementing the Project
Adaptations. The number one criteria for judging the
success of a system like MATIS is reusability. Can MATIS
be used on other missions and provide a cheaper yet
equivalently powerful solution opposed to developing from
scratch? From the missions supported so far, the resounding
answer is yes.

REFERENCES
[1] http://en.wikipedia.org/wiki/Reusability
[2] C. Cheng, R. Patel, E. Sayfi, H. Lee, “Multi-Mission
Automated Instrument Product Generation Implemented
Capabilities”, IEEE Aerospace Conference 2008, Big Sky,
Montana, March 2008.
[3] C. Cheng, C. Avis, H.Lee, R. Patel, E. Sayfi, P. Zamani,
"Using a Multi-mission Automated System for Product
Generation", SpaceOps Conference 2008, Heidelberg,
Germany, May 2008.

BIOGRAPHY
Elias Sayfi is a senior software engineer in the Instrument
Product Software Development Group at NASA's Jet
Propulsion Laboratory. During 9 years at JPL he has
contributed to the development of data processing systems
for various space missions, most notably: Mars Phoenix
Lander, Mars Reconnaissance Orbiter, Mars Exploration
Rovers, and the Cassini Orbiter. He is currently working on
the LRO Diviner data processing system and MRO Mars
Climate Sounder calibration. He has a BS in Computer
Science from California State Northridge and a MS in
Computer Science from the University of Southern
California.

 6

This research was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space
Administration.

 7

 8

	3.2 Parallel Forking
	3.6 Synchronization of The Log Files

