
Testing Flight Systems
With Machine Executable Scripts12

1 1-4244-1488-1/08/$25.00 ©2008 IEEE.
2 IEEEAC paper #TBD, Version 1, Updated TBD, 2008

Don Gibbs
Jet Propulsion Laboratory

4800 Oak Grove Drive
Pasadena, CA 91109

818-354-2990
Donald.E.Gibbs@jpl.nasa.gov

Brian Bone
Jet Propulsion Laboratory

4800 Oak Grove Drive
Pasadena, CA 91109

818-393-7405
Brian.D.Bone@jpl.nasa.gov

Abstract—The MSAP project at JPL has been testing
spacecraft avionics and flight software since 2005, in part
using computer executable scripts. The scripts are document
files of a common word processor and comply with the
format of a traditional, formal test procedure common at
JPL. These procedures use keywords to issue commands and
evaluate responses, mimicking a human test operator. In
effect, script lines are inserted into a normal procedure.
Even though the executable structure of the procedures is
limited to linear sequences of fairly simple operations, we
have found significant value in certain test regimes given the
repeatability, ease of execution, and readily understandable
intent of these procedures.

TABLE OF CONTENTS

1. INTRODUCTION ...1
2. AUTOMATED SCRIPT ATTRIBUTES2
3. SELECTED TECT KEYWORDS...3
4. SCRIPT EXAMPLES ...4
5. TYPES OF TESTING AMENABLE TO TECT5
6. RESULTS AND CHALLENGING ISSUES6
7. LOOKING FORWARD ..7
8. ACKNOWLEDGMENTS ..7
REFERENCES ..8
BIOGRAPHY ..8

1. INTRODUCTION
The Multi-Mission Systems Architecture Platform (MSAP)
project at the Jet Propulsion Laboratory (JPL) is chartered to
develop reusable, robotic spacecraft components. These
components may be divided into the categories of flight
software (FSW), avionics, and the ground system. The
avionics, FSW, and ground system components form a
catalog from which mission planners may choose selected
items, or the entire suite. Extensive documentation helps
guide mission planners deciding where to draw the lines
between “shrink wrap” usage, further development of
components, or building from scratch where none of the
components come close enough to meet a need.

The ground system has two main components: the Ground
Support Equipment (GSE) and the Ground Data System

(GDS). The GSE provides hardware and software interfaces
to the avionics and in some cases simulation of certain
components; the GDS provides the higher level capabilities,
such as command generation and telemetry presentation.
The ground system effectively surrounds the integrated
avionics/FSW, providing all avionics power,
telecommunications (uplink and downlink), and interfaces to
onboard sensors and devices controlled by the
avionics/FSW. Control and monitor activities of the ground
system are done on a distributed collection of computers, but
all activities can be done effectively at one GDS workstation
given modern computer-to-computer communication. See
Figure 1 for a simple context diagram of a typical test bed.

Figure 1 – Testbed Context Diagram

One of the features of the ground system is a script
interpreter called the Test script Execution and Control Tool
(TECT). TECT accepts procedures written as document files
with a conventional word processor. A component of TECT
called “document to script” (doc2scp) evaluates procedure
documents, extracting embedded scripts from them. doc2scp
extracts the scripts by looking for keywords which identify
actions for the interpreter to take, including configuring the
ground system, commanding the spacecraft, and evaluating
telemetry. Thus, a procedure written for use with TECT may

 1

1

perform autonomously any action available to an operator
sitting at a ground system workstation.

TECT’s development began at JPL in 1996 by Levesque et
al. [1] in an attempt to shorten spacecraft system testing
schedules, lower costs, and improve quality through test
script automation. This level of automation implies not only
the ability to execute a defined list of operations, but also to
access feedback, evaluate it, and act on it.

TECT’s native scripts are based on Tcl, a general purpose
programming language, and this alone is sufficient to
provide robust expression of test control. Tcl also provides
TECT with easy access to other networked computers, such
as the GSE, which implies the ability to send commands.
Access to spacecraft downlink telemetry, however, is a
different story. Access to the telemetry flow required a
considerable investment in GDS systems programming. This
reprogramming effort allowed TECT to sample individual
channels from the spacecraft telemetry as it flowed through
the GDS. Real time telemetry sampling gave TECT the
ability to conduct closed-loop testing under the control of a
Tcl script.

TECT supported SeaWinds/QuikSCAT and SIRTF before
getting adopted by MSAP.

In a completely separate development at JPL, another test
script tool developed by James Roberts and Michael
Hasbach was created for use on the Mars Exploration Rover
(MER) mission. This tool was aimed squarely at automating
traditional test procedures, not scripts written in a widely
used programming language. Test procedures were normally
printed out on paper and then conducted by a human
operator, who configured test equipment, issued commands,
and recorded results, step by step. In order to speed up
repetitious manual tests, a script interpreter was written. The
MER scripting tool was able to “execute” traditional scripts
(with slight extensions) – to the delight of those poor souls
who, due to limited test hardware resources, were
occasionally condemned to the 3rd shift! While this tool
suffered from a well understood limitation in the quality of
accessed telemetry, it was still applicable to many tests. (The
major deficiency was due to its sampling method, which
could not guarantee capture of transient values.) Still, it gave
script writers the ability to issue commands and compare
real time telemetry against predicted values in a
straightforward way.

Though the development efforts for the MSAP and MER
tools were separate they shared the same core goal:
automated test execution based on a procedure not
necessarily a script (in the sense of Tcl or Python). Up to
this point test engineers had been responsible for upkeep of
a test procedure and often times a corresponding test script.
If not watched vigilantly this dependence between procedure
and script could lead to a configuration management mess.
The MSAP approach eliminated this potential by doing

away with the corresponding stand alone script since the
script is embedded into the procedure, now the single source
document.

2. AUTOMATED SCRIPT ATTRIBUTES
At the outset of MSAP, the systems and test engineers
identified automated script based testing to be worth
investigating, even if the team members had differing
opinions as to its precise application. Rather than build a
new tool from scratch, it was natural to consider extending
TECT (with its exhaustive telemetry access) to accept
traditional test procedures a la MER. This section describes
the list of attributes MSAP’s test and systems engineers
determined TECT should have to meet MSAPs scripted
testing needs.

Without any adaptation to MSAP’s needs, TECT had
several desirable capabilities, viz., TECT could

(1) Issue commands to the spacecraft (and the support
equipment), and

(2) Intercept and evaluate spacecraft telemetry.

Unfortunately, TECT’s only scripting interface at time was
the Tcl programming language. While someone trained in a
programming language could generally be expected to
master the essentials of Tcl in a few weeks or months, the
team wanted to make the scripting accessible to a wider
range of engineers and scientists. With that motivation, a
series of meetings between MSAP testers and TECT
developers ensued, in which the following attributes were
added to the two above.

(3) Comprehensive test bed control

(4) Optional operator intervention (full automation
supported)

(5) Comprehensive test log generation

(6) Relaxed skill base for script authors (implies scripts
can be reviewed by non-programmers)

(7) Common word processing format for writing and
editing script source documents

(8) Machine execution of script source documents,
allowing for machine translation from a common word
processor format into one more readily executed

(9) Nested scripting (scripts may call other scripts)

(10) Conditional script execution based on telemetry
evaluation (branching and looping)

 2

A frequently stated goal for TECT was that it allow a
systems engineer (or instrument specialist) to write original
test scripts without first bothering to become a professional
programmer or an expert in test bed operations. A
consequence of this goal was it also let procedures be
reviewed by an individual with no scripting knowledge in a
format that is easily readable.

What we got was a tool that would accept MS Word®
document files with embedded keywords, corresponding to
the actions TECT should take. The keywords are loosely
“verbs” followed by objects, where meaningful. In general,
any line in the procedure that does not begin with a keyword
is discarded by TECT. As long as keywords cannot
reasonably be confused with ordinary word usage, TECT
scripts can be made compliant with an organization’s
traditional standards for test procedure formatting; in fact,
existing test procedures, originally written to be run
manually, can be retrofitted with keywords and run by
TECT.

While not exactly a script attribute per se, test scripts
enhance an MSAP catalog of offerings. Not only would a
customer have avionics, FSW, and ground support, but the
test scripts provide a immediate way to perform extensive
exercises. And, review of these scripts would help give a
sense of routine test operations.

3. SELECTED TECT KEYWORDS
In order to better explain the script examples in the next
section, consider some common TECT keywords. The “>”
(“greater than”) character is part of the keyword and serves
to distinguish a keyword from a common English word
appearing in the non-script part of a test procedure.
Keywords can be followed by arguments.

Uplink>

This keyword sends a command to the spacecraft via the
ground support equipment.

Check>

This keyword is used to compare a predicted value against
the current value of a selected telemetry channel, relying on
real-time access to channelized telemetry within the GDS as
it arrives from the spacecraft. The Check> keyword expects
to have a single named channel and a predicted value
supplied in the script line, e.g.,

Check>
 command_number (0x0010)

The value inside parenthesis is called the predict. TECT
records the result of the comparison in the test log.

Here, the script expects the channel to have the hexidecimal
value “10” (decimal 16). If the last telemetry value for this
channel was ‘0x10’ then the script will continue
immediately; if not, the script will linger until the first
channel update matches the predict or the timeout interval
expires.

A basic paradigm for our scripts is the command/check pair
where the check can wait a short while for the expected
results of the command to become apparent in the telemetry.

LatencyTimeout>

The flight system (FSW and avionics) introduces a latency
in the downlink and if a script compared a telemetry channel
against its predict immediately after issuing a command, the
script would likely report a misleading mis-compare. This
latency is accommodated with LatencyTimeout> keyword
which takes one argument, the maximum number of seconds
to wait while checking for a match between a telemetry
channel and its predict.

InitCheck>

This keyword takes no argument and effectively
synchronizes every channel appearing in the script with the
last telemetry value the GDS received. This operation has
most benefit for those channels that deliver an incremented
value.

AskOnCheckFail>

After sending a command, scripts normally check if the
actual telemetry matches a predicted value. If there is a
match, the script simply proceeds to the next test step. If the
predict and actual do not match before the timeout expires,
then the script can do one of two things, it can either pop up
a message requiring operator input before proceeding or it
can silently proceed to the next step. The script determines
this behavior with a TRUE or FALSE argument to the
AskOnCheckFail> keyword. FALSE allows the script to run
without operator intervention. Either way, TECT will note
the mismatch in the log.

Wait>

This keyword takes one argument, the number of
milliseconds to pause the script.

Comment>

This keyword puts a text string into the log for purposes of
documentation.

Call>

This keyword calls another TECT script.

 3

System>

This keyword calls a (unix file system) executable file, such
as a shell script.

4. SCRIPT EXAMPLES
Given the brief introduction to some of the more common
TECT keywords, the two simple scripts below should be
quite understandable. The two scripts form a pair: a
supervisor script which calls a subordinate script.

These examples consist of keywords only, unlike a real
script, which is made up mostly of “boiler plate” and richly
formatted test procedure, suitable for manual execution.
Again it bears repeating that scripts are nothing more than
conventional test procedures with embedded keywords.

The FSW I&T scripts generally assume a
supervisor/subordinate relationship where the supervisor
script sets up a test, calls one or more subordinate scripts to
perform the nominal tests, and finally tears down a test.
Each subordinate script operates in a modular way, leaving
behind as few side effects as possible and removing any files
or other artifacts it creates. In contrast, the Systems V&V
scripts tend to be stand-alone documents in which the script
executes its own activities mixed with prompts directing the
operator to perform well defined tasks. No example of such
a script is provided in this paper.

The supervisor script in Example 1 first identifies itself in
the test log then calls a subordinate script to capture
configuration information under which the test is run, such
as command dictionary version, GDS software version, etc.

Then it calls another script to load and initialize FSW, which
among other things will leave the spacecraft clock at a near
zero value and the downlink telemetry rate at 10 bps. The
AskOnCheckFail> keyword conditions TECT to continue
executing without operator intervention in the case of a
mismatch between a predicted telemetry channel value and
its actual value within a specified time limit;
LatencyTimeout specifies that time limit (in seconds). Next,
the supervisor calls a series of subordinate scripts to carry
out the nominal tests. Finally, the supervisor calls a Perl
script to create a terse summary of the test log and declares
its end in a log comment.

The subordinate script in Example 2 first places a self-
identifying comment in the test log. The next keyword
(uplink) will issue a command to FSW to set telemetry’s
downlink rate to 5000 bps, then the script waits 40 seconds
to allow for the expected latency as telemetry clears out any
backlogged data. Once the telemetry reaching the GDS is
current, InitCheck> gets a snapshot of the most currently
instances of each telemetry channel that appears anywhere in
the local script. At this point, the entire system is ready to
begin testing. The next comment simply makes clear that the
nominal test is about to begin. The next keyword sends a
FSW command to set the spacecraft clock to an absolute
value. Then the Check> keyword verifies a series of
telemetry channels. First it will synchronize on the counter
which keeps track of the number of dispatched commands
and then confirm the clock took on the new value. The next
command/check pair of keywords does a similar
confirmation for a “no operation” command (which
performs no actual function other than exercising the
command subsystem). And finally, the last keyword makes a
test log entry announcing the end of the subordinate script.

 4

Comment> Test_Supervisor: Example 1
Comment> Collect testbed config info
Call> GSE_GDS_Revs.scp

Comment> Load and init FSW
Call> load_init_FSW.scp
Wait> 7000

Comment> Configure TECT
AskOnCheckFail> False
LatencyTimeout> 30

Comment> Commence testing
Call> SubordinateTest_001.scp
Call> SubordinateTest_002.scp

Comment> Extract abstracted test log (*_etl).
System> cd `todays_TECT_log_dir`; etl &

Comment> End of Test_Supervisor: Example 1

Example 1 – A supervisor script, Test_Supervisor.doc

Comment> SubordinateTest_001: Example 2
Comment> Configure FSW
Uplink> SET_DWN_RATE,5000
Wait> 40000
InitCheck>
Comment> Begin SubordinateTest_001

Uplink> SET_CLOCK,5000
Check>
command_number (+1)
sc_clock (> 4999)

Uplink> NO_OP
Check>
command_number (+1)

Comment> End of SubordianteTest_001: Example 2

Example 2 – A subordinate script, SubordinateTest_001.scp

5. TYPES OF TESTING AMENABLE TO TECT
MSAP FSW is developed, integrated, and tested in a
conventional way. After FSW unit testing is complete, it is
integrated with the rest of FSW and this integrated build is
tested ensuring the new code behaves as expected without
undesirable side effects. FSW Integration and Test (I&T)
works as a gate keeper, ensuring the integrated FSW is
“good enough” before releasing it to Systems Validation and
Verification (V&V) for their testing. From a requirements
perspective, the requirements verified by the Systems group
decompose into the requirements tested by the FSW group,
hence FSW I&T tests lower level requirements before

letting the Systems testers have at it. Both organizations use
their own TECT scripts.

To date, we have used “production line” TECT procedures
in three ways:

(1) Low level requirements (FSW I&T)

(2) Mid level requirements (Systems V&V)

(3) Command regression testing (FSW I&T and Systems
V&V)

 5

The first type of procedure, the low level requirements test
procedure, is characterized by intricate detail required to set
up test conditions and then to exercise FSW through some
precise required behavior. FSW I&T tests emphasize a
“lights out” style of fully automated testing without operator
intervention where failure in one part of a test does not
necessarily preclude successful testing elsewhere.
Automatically generated test reports end with a summary of
each test section for quick review.

The second type of procedure, the mid level requirements
test procedure, has a similar level of detail (sometimes
including instrumentation not accessible by TECT scripts).
System V&V procedures differ from the low level “batch”
style of execution, however, with intimate operator
involvement. Scripted prompts allows the System V&V
scripts to weave together operator activity with scripted
commands.

Both types of tests rely on the procedure to capture the
testing details, including rationals. Systems V&V test
procedures place responsibilities on the operator to judge
the correctness of at least the higher level behavior in a step-
wise fashion while the low level procedures defer operator
judgment until after the test is complete.

The third type of test, regression testing of FSW commands,
provides a quick way to determine if a change to FSW has
introduced any defects. These tests tend to use minimal
correctness checking, similar to the subordinate example
script above.

6. RESULTS AND CHALLENGING ISSUES
We have found that it takes about as long to write a TECT
procedure (with embedded scripting) as it does to write an
equivalent manual test procedure. Most of the TECT
keywords have an identical manual step in a test procedure;
in fact, it is this equivalence that keeps TECT procedures
easy to read. The keywords peculiar to TECT, i.e. those
keywords that would not appear in a manual-only procedure,
do not appear frequently and so are easy to deal with:
InitCheck> and LatencyTimeout> are placed near the
beginning of a procedure; Call> appears only in the top level
(supervisor) scripts. (There is a mechanism that allows us to
escape into pure Tcl code, but that technique has been used
very sparingly and is not discussed here.) All in all, it takes
little extra time to include the script specific lines to a
traditional test procedure.

Finding and removing flaws from manual procedures and
TECT scripted procedures require about the same effort.
TECT procedures require a few trial runs - tantamount to
debugging a simple program. Manually executed test
procedures require an alert operator to redline errors in the
procedure. So the costs to develop a mature procedure are
roughly equivalent.

The Call> keyword might be an underrated capability. Given
that someone has produced a library of mature TECT
procedures, the CALL> keyword puts that library at your
disposal. While manual procedures can direct the operator to
perform activities from another procedure, this is not the
norm; it is more typical to cut and paste entire sections of
test procedures so there is a single “as run” paper document
to serve as a controlled record. So far, our library of TECT
procedures has been a significant enhancement mostly for
quality control, i.e., collecting test configuration for every
test and storing it in the test log.

Script execution takes about 25% to 50% of the time
required to execute and evaluate an equivalent manual test
procedure. (Scripts would run faster if not for the latency of
telemetry to arrive at the GDS.) Scripts never overlook a test
step, but then again, scripts never get curious and probe
spacecraft behavior in an ad hoc way.

Engineers learn more about the spacecraft and test bed from
manual test procedures since they are forced to pay attention
to every step, but scripts produce useful results immediately.
Of course, TECT procedures can be understood without
needing special programming skills so the scripts form a
basis from which empirical tests can be launched.

Given MSAP’s small budget and short life span, most of the
script writers have been engineers with substantial
programming skills. However, a few systems engineers have
written significant test scripts to good effect. The early
indications are promising.

We have run into a few challenging issues, however.

We have yet to resolve the conflict between simple
keywords (understandable by non-programmers) and
conditional control flow as commonly available with general
purpose programming languages. TECT is based on Tcl and
we have the ability to “escape” into purely Tcl code, but this
defeats the goal of requiring a relaxed skill base. We are
tending toward use of libraries to do the heavy lifting. A
library function can be as complex as necessary – opaque,
even, to non-programmers – as long as it can be described in
“black box” terms understood to a non-programmer. So far,
the higher level scripts use only linear control flow (no loops
and no branching).

The comprehensive logs generated by TECT are too detailed
and verbose for quick analysis. We wrote a filter to reduce
the verbose log to a terse summary which is easy to
understand if the script is available side-by-side. That filter
can be included near the end of the TECT script. (Look for
the “etl” system call at the end of the supervisor example
script.)

Evaluation of test results can demand sophisticated analysis
not easily expressed in algorithmic form. Simply put, some
analysis done easily by eye can be difficult to program. This

 6

is a tradeoff between fully automated testing and more
operator intensive testing. It reduces to a question of budget,
frequency of testing, and difficulty of analysis. At this time,
our more sophisticated test procedures are relatively easy to
write, infrequently run, and require human analysis after the
test has collected all the data.

7. LOOKING FORWARD
Conditional Branching Tests

The one requirement we have not yet achieved is the ability
to do conditional branching and looping with TECT
keywords alone. Part of conditional branching is the notion
of a return status from subordinate scripts. Combined, they
inspire the C programming style of conditional branching
based on the result of a user defined function.

We have not yet advanced on these issues due mainly to
budgetary considerations. The existing TECT capabilities
have allowed us to write many useful procedures. The lack
of even crude conditional branching does not preclude us
from writing many more. Hopefully, this requirement will
not remain dormant indefinitely.

Avionics Simulator

As stated earlier, TECT procedures (or manual procedures
for that matter) must be run on the avionics to detect flaws in
the procedures themselves before they can perform their
nominal function in a reliable way. The avionics are
expensive and therefore a relatively scarce resource.

MSAP is developing an avionics simulator that will run on a
generic workstation, such as a single board computer, and
will accept FSW. Further, the simulator will interact fully
with the ground system, which means it can be exercised by
a test operator running a manual procedure or a TECT
procedure. A correctness test of the simulator is that it
behave exactly like FSW running on the avionics itself. This
implies that any test procedures succeed and fail exactly the
same way.

This simulator represents a major productivity boost for
procedure development. This simulator will permit TECT
procedure development to scale well with respect to the
number of engineers since they can polish the procedures on
relatively inexpensive workstations before reserving
valuable time on the real test beds. This is an especially
significant issue during several “crunch” stages of a
project’s life when test bed utilization approaches 100% on
a 24x7 basis.

Institutional Directions

The Mars Science Lander (MSL) is currently the dominant
project under development at JPL. MSL’s test bed group has
taken a different scripting direction from MSAP’s and

created a scripting tool with the acronym MTAK, which is
based on the Python language. MTAK scripts are written
exclusively in Python and make use of a library of Python
functions to do many of the same things that the TECT
keywords do. MTAK puts more expressive power at the
disposal of a script writer owing to its direct use of a general
programming language (Python), but restricts its script
authors and reviewers to those with some programming
skills.

MSL has introduced several innovative features to MTAK,
one of which is a sequencing engine with fine time
resolution running within the GSE. MTAK scripts
effectively program the sequence engine to manipulate
instrument simulators (different from the avionics simulator)
running within the GSE. Since these simulators provide
input to avionic sensors, this opens up the arena of scripted
fault injection.

Given MTAK’s strengths, it may be that MTAK will eclipse
TECT, but that does not necessarily imply the end of TECT
procedures. Although there is currently no way to run TECT
scripts in the MTAK environment, it should not be a major
challenge to modify the doc2scp program to translate TECT
procedures into Python scripts.

8. ACKNOWLEDGMENTS

The authors would like to thank Tom Fouser and Leticia
Montanez for project support in developing TECT scripting
capability for MSAP; thanks also to Carol Glazer for similar
support from Ground Data Systems. Danny Lam, the
previous FSW I&T Lead, encouraged TECT deployment.
Joe Diep and Mike Gan adapted and extended TECT for our
use. Carolina Barltrop helped define our requirements. Liz
Johnson was an early non-programmer user. Cindy Huynh (a
spacecraft test veteran) has been a prodigious script author.
Melody Safavizadeh is a new team member who has
provided value questioning the ways that old-timers do
things. And special thanks to Roger Klemm for some
valuable review and comments.

This research was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space
Administration.

Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer,
or otherwise, does not constitute or imply its endorsement

 7

by the United States Government or the Jet Propulsion
Laboratory, California Institute of Technology.

REFERENCES
[1] M. Levesque, J. Louie, A. Guerrero, “Test Execution

Control Tool: Automating Testing in Spacecraft
Integration and Test Environments,” 2000 IEEE
Aerospace Conference Proceedings, Volume: 2, 389–395,
March 18–25, 2000.

BIOGRAPHY
Brian Bone began working at JPL in 2001 after obtaining a
BS in Mechanical Engineering. Before joining the Multi-
Mission System Architecture Platform (MSAP) he supported
the Mars Exploration Rover (MER) and Cassini projects. In

2005 he received his MS from the University of Southern
California. Concurrently in 2005, he started supporting
MSAP in an integration and test role. He has since moved
on to support the DAWN and most recently Juno missions.

Don Gibbs is the Flight Software Integration and Test Lead
for the Multi-Mission System Architecture Platform
(MSAP). He has been at JPL since 1983, first as a software
engineer in the Deep Space Network and then as a test team
member of numerous flight projects. He earned his BS in
Information and Computer Science from the University of
California at Irvine (1978) and his MS in Computer
Engineering from the University of Southern California
(1996).

 8

 9

