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Abstract— Humanoids are steadily improving in appearance and 
functionality demonstrated in controlled environments. To 
address the challenges of operation in the real-world, researchers 
have proposed the use of brain-inspired architectures for robot 
control, and the use of robot learning techniques that enable the 
robot to acquire and tune skills and behaviours. In the first part 
of the paper we introduce new concepts and results in these two 
areas. First, we present a cerebellum-inspired model that 
demonstrated efficiency in the sensory-motor control of 
anthropomorphic arms, and in gait control of dynamic walkers. 
Then, we present a set of new ideas related to robot learning, 
emphasizing the importance of developing teaching techniques 
that support learning. In the second part of the paper we propose 
the use in robotics of the iterative and incremental development 
methodologies, in the context of practical task-oriented 
applications. These methodologies promise to rapidly reach 
system-level integration, and to early identify system-level 
weaknesses to focus on. We apply this methodology in a task 
targeting the automated assembly of a modular structure using 
HOAP-2. We confirm this approach led to rapid development of 
a end-to-end capability, and offered guidance on which 
technologies to focus on for gradual improvement of a complete 
functional system. It is believed that providing Grand Challenge 
type milestones in practical task-oriented applications accelerates 
development. As a meaningful target in short-mid term we 
propose the ‘IKEA Challenge’, aimed at the demonstration of 
autonomous assembly of various pieces of furniture, from the 
box, following included written/drawn instructions. 
 

I. INTRODUCTION 
In the last few years a strong interest in humanoids 

research has led to important advances in appearance and 
functionality. Yet, with a few notable exceptions such as 
HRP-3 [1], the current humanoids are designed for laboratory 
environments rather than for industrial or other real-world 
settings. Their reliable and safe operation in real-world 
environments is deterred by a number of challenges that are 
still to be overcome. Some of them are illustrated in the 
following with two real world scenarios.  

The first scenario relates to the use of future humanoids in 
the construction and assembly jobs. A simple example is the 
assembly of a piece of furniture from IKEA. Unpacking may 
require the careful use of a cutter, and extraction of possibly 
fragile objects (e.g. glass) from the box. Interpretation of 
visual and tactile information would inform about the 
progress of the action. Assuming all pieces can be arranged 
and unpacking complete, the most significant challenge 
remains the interpretation of the assembly instructions. This 

involves recognition of components in the diagrams, most 
likely after some manipulation that offers a view more 
consistent with the pictorial representation in the instructions. 
One can continue to elaborate on challenges in this scenario, 
which nevertheless deals with a simple, static, predictable 
world. Sensory-motor coordination and cognitive abilities 
beyond what is currently available are needed. 

In a second, more complex scenario, consider humanoids 
involved in rescuing people trapped in buildings damaged by 
fire or earthquake. Accessing a building and carrying humans 
out of danger zones poses critical challenges to sensory-motor 
coordination and reasoning, requiring: agile and intelligent 
locomotion (for climbing ladders, walk on slippery angled 
roofs/ surfaces); dexterous manipulation (for use of tools 
possibly forcing an opening, pull-out and carry victim); and 
cognitive perception (e.g. recognize deformed objects). The 
cognitive challenges implicit in these tasks require handling 
unknown situations, managing dynamic environments, 
coordination with humans, etc. Reasoning must result in 
predicting consequences of actions (of own/others) or 
(in)action on environment. Planning and navigation in real-
time in dynamic/complex environments is needed. An 
example of reasoning is ‘That block is falling exactly on me, 
I’d better move to the area near the door, which appears safe’. 

To address such challenges researchers have looked at the 
animal world for inspiration. In particular sensory-motor 
coordination and cognition have benefited from inspiration 
from the mammalian brain, while learning in biology has 
fueled the design of robot learning techniques. In the first part 
of the paper we propose contributions to these areas.  

The development of real-world systems has benefited 
from recent iterative and incremental development 
methodologies [2] that proved fast and reliable progress 
toward the target capability. In the second part of the paper 
we propose the adoption of these methodologies to robotics, 
and we illustrate it through the benefits we experienced in the 
context of a practical task-oriented application. 

Section II presents a cerebellum-inspired model that 
demonstrated efficiency in the sensory-motor control of 
anthropomorphic arms, and in gait control of dynamic 
walkers. Section III presents a set of new ideas related to 
robot learning, emphasizing the importance of developing 
teaching techniques that support learning. Section IV 
demonstrates the benefits of iterative and incremental 
development in the context of an assembly demo with HOAP.  



II. BUILDING BIO-INSPIRED ROBOT BRAINS 
The first challenge is to provide efficient sensory-motor 

control for biped mobility, energy efficient trajectory and 
motion generation. Animals are very good at maneuvering 
and manipulating objects in unstructured complex 
environments, and typically possess dynamic, nonlinear and 
high degree-of-freedom (DOF) bodies that are intractable to 
conventional control methods. The Biomorphic Robotics 
design approach to more dexterous, agile robotics is to 
emulate the biomechanics and highly effective control 
algorithms found in the vertebrate nervous system. Important 
differences from conventional robotics include (1) exploiting 
the body’s natural dynamics, (2) “springy” compliant 
actuation for efficient force control and energy recovery, (3) 
no precision sensors; instead, large arrays of fast and cheap 
“sloppy” sensors, for over-sensing for kinesthetics and 
proprioception, (4) no precision machining; instead, reliance 
on adaptive control to learn dynamics and adapt to changes 
over time, and (5) intelligent coordination of feedforward and 
feedback control strategies. 

A. Cerebellum model  
Agile control of high DOF, non-linear dynamic systems  

requires accurate dynamic state estimation (DSE), a 
fundamental component of a wide variety of sensor fusion, 
signal processing and control tasks in engineering. We take 
inspiration from the cerebellum, the “engine of agility” [3] in 
the vertebrate brain. The unique neural architecture of the 
cerebellum appears optimized for learning sensory-motor 
dynamics and predictive control of high DOF nonlinear 
systems. Although details of its function are not fully 
understood, the cerebellum is thought to perform DSE to 
achieve dexterous, coordinated and dynamically efficient 
motor output [4]. Our work at JPL has been to develop 
algorithms to capture the functionality of the cerebellum. We 
have begun to simulate, implement and deploy these 
algorithms for dynamic control of biomorphic robots [5,6].  

We first developed a cerebellum-inspired neural network 
to perform DSE and predictive control. Controlling a dynamic 
system requires knowledge of the system’s state and its 
response to new motor commands, a task that naturally lends 
itself to state space methods of solution. The cerebellum 
model can orchestrate dexterous, agile movements by 
learning: (1) to estimate and predict trajectories through state 
space, i.e., modeling the system dynamics, (2) decision 
boundaries around regions of state space in which to initiate 
actions to achieve desired goals, and (3) to modulate motor 
commands to redirect the trajectory as needed. The model 
estimates the current state by combining incoming sensor 
measurements and the implicit learned model of system 
dynamics, predicts the trajectory, and then can initiate actions 
in appropriate regions of the space. 

B. Control of anthropomorphic arm 
The cerebellum network was first demonstrated on a 2-

link robot arm built with antagonistic pairs of McKibben air 
muscles (Fig. 1) [6]. McKibbens are fast and strong with 

muscle-like dynamics but are very difficult to control by 
conventional means. They can be used as variable spring 
constants to control compliance and mechanical response 
properties. The arm has a gripper end effector to hold and 
throw a tennis ball. Trajectory data was collected during 
multiple throwing trials and used to train the model offline. 
The data were projected onto 2-dimensional state space maps, 
from which the network learned to estimate state variables 
and decision boundaries. It successfully learned to trigger the 
grip release at the proper state for the ball to hit a target. 

   

Fig. 1 Left: Biomorphic 2-link arm with state variables highlighted. Right: 
Three frames at 50 ms intervals near the time of release. 

C. Toward the control of dynamic walkers 
The cerebellar algorithm should be general enough to 

facilitate a wide range of dynamic robotic systems – because 
the model learns an implicit representation of the system 
dynamics, in principle it could be applied to any number of 
mechanical systems requiring DSE. In particular, this method 
should prove efficient for learning dynamic trajectories in 
legged walkers, including humanoid bipeds.  

Progress in practical biped walking has been held back by 
hurdles in stability and power efficiency. Recently, a 
breakthrough was reported in human-like power efficiency 
based on “passive-dynamic” walking bipeds [7]. These are 
designed with efficient biomechanics to walk down a slight 
slope with no actuation or sensing, and then minimal actuation 
is added to walk over flat ground. The resulting dynamic 
walkers are at least an order of magnitude more power 
efficient than more conventional biped designs that are 
kinematically controlled for quasi-static stability (always 
maintain center of mass over a supporting foot). However, 
stability remains a serious challenge – the bipeds fall after 
several meters because there is no active feedback or control.  

Our goal is to develop and demonstrate an “artificial 
vestibular system” for dynamic balance and stability in a 
walking biped platform, based on our model of cerebellum. 
The cerebellum network should learn to estimate relevant state 
variables from onboard sensors, predict trajectories, and then 
modulate actuation to improve stability. Preliminary results 
from a simplified 2-D biped simulation indicate that the 
cerebellum model can learn to predict instabilities during 
walking that can lead to falls (Fig. 2). The next step will be to 
learn actuator responses to correct the instabilities to avoid the 
fall. Questions of interest include: What is minimal DOF, i.e., 
determine a sufficient set of actuation/sensing to achieve 
dynamic balance? How to scale the control system to higher 
dimensions? How to add actuation/control for additional 



functionality; e.g., turning, start/stop, walking over rough 
terrain, in urban environment, carrying payload, etc.? 
Answering these questions will help enable the first 
dynamically stable fully autonomous walking biped. 

 

  

Fig. 2 Learned weights (left) and a 5-step walking trial (right), shown in the 
state space of pitch velocity vs. pitch angle.  

III. DEVELOPING CAPABILITIES BY LEARNING  
The importance of learning has long been recognized as 

paramount in addressing the challenges of the real world, 
which differs from the models with which the robot starts its 
operation. While unsupervised learning has merits, the 
experience in the human world indicates that learning under 
the control and supervision of a teacher is critical for 
cognitive development. The focus in robot learning has been 
on learning techniques; yet, as argued for example in [8], it is 
important to dedicate more effort on the development of 
methods and techniques that are used to teach the robots.  
This is especially relevant to humanoids. If indeed being 
taught by humans is the most important factor in robot skill 
acquisition, then this favors humanoids over other robotic 
forms, as optimal for being taught by humans, since humans 
best relate to them due to the resemblance in form.  

A. Robot Fostering 
We enumerate a set of principles for which more detail in 

given in [9], and which are considered to be important for 
development of cognitive capabilities; 2 and 4 are departures 
from the conventional view. These are: 

1)  The essence of endowing robots with intelligence is robot 
development (grounded, embodied, situated, gradual) - not 
robot programming. Development allows building of 
perceptions, schema, representations, and behaviors directly 
through interaction with the real world environment (a set of 
innate/pre-programmed capabilities is assumed).  

2)  The key to cognitive development is a focus on teaching 
techniques, at least equal to the effort as on robot learning 
techniques. This may include providing examples of gradual 
increase in difficulty (robot shaping), building of training sets, 
or helping the robot (“holding it by the hand”) while learning. 

3)  Important techniques for fostering/teaching by a human or 
robot include imitation, demonstration, guidance (analogic 
teaching), and explanation. Imitation has received important 
attention for more than a decade [10], both for robots 
imitating humans and imitating other robots (acting as 
teachers) [10,11]. Still, one needs to dedicate more effort on 

the understanding of the task that is to be accomplished by the 
movement learned by imitation (‘task-oriented application’). 
Demonstration provides a solution on how to solve a problem. 
Direct help from the human, guiding the movement, or 
supporting the robot, positioning it by hand, etc., greatly help 
the robot.  

4)  Robot’s ability to teach is a proof of cognitive learning. 
The ability to teach is a validation that the essence of the task 
is grasped, that it is generalized and can be applied in a 
different context, that it is “conscious”, meaning it has a 
flexible representation in context of self and outside world, 
and a rationale for why it is that way.  

B. Developing teaching methodologies, enhancing learning  
The following are new proposals for advances in automated 

teaching systems and automated learning systems: 

1)  Systems for automated teaching 
• Development of a tutoring/training system that (semi/) 

automatically guides the humanoid cognitive 
development, monitors its progress, and 
chooses/implements the best training strategy  

• Development of humanoid teaching methodologies, a 
teaching/training curriculum 

• Techniques that allow humanoids to learn from 
instructional videos, movies and games 

• Techniques for learning on-line (chat, internet games, etc, 
as teaching agents) 

• A system that facilitates teaching by the robot, as a 
verification of cognitive learning (to enforce knowledge 
reformulation and abstraction) 

2)  Systems for automated learning 
• Dubitative systems. Current systems ‘believe’ everything 

fed to them. ‘Dubito ergo cogito, cogito ergo sum’, 
expresses a specific analytic aspect of human cognition. 
It may worth adding such an aspect in cognitive robots.    

• Inquisitive systems. Possibly in connection to a 
dubitative approach, it may be useful to design systems 
that persistently enquire for clarifications.  This is related 
to means of determining an optimal learning strategy. 
Objectives may be to optimize cognitive improvement 
(knowledge, reasoning, etc), continuous model 
refinement, decisions on what to clarify/ask next.  

 

IV. INCREMENTAL AND ITERATIVE ROBOT DEVELOPMENT 
Iterative and incremental development methodologies [2] 

have proven efficient in a number of areas, including software 
development. We propose their application to robotic 
development, in the context of practical task-oriented 
applications, using as target milestones the demonstrations of 
complete end-to-end integrated systems. We applied this 
methodology in the assembly application with HOAP-2, for 
which the first iteration is presented in the following. Future 
iterations will include JPL core technologies and brain-
inspired architectures and learning discussed in prior sections. 



A. Humanoid for assembly of a cubical structure 
The objective of this effort was to develop robot 

capabilities for a practical task of autonomous assembly. We 
adopted an iterative and incremental development, focusing 
on a system-level, integrated system platform. The 
demonstration of a humanoid robot autonomously assembling 
a cubical frame also illustrates the potential of using 
humanoids for construction in a context where no other robot 
had yet succeeded: an end-to-end set of steps, in which the 
robot identifies a bar, walks toward it, picks it up, carries it to 
an assembly destination, and assembles the bars. A proof of 
feasibility demonstrated key component behaviors needed for 
this objective. A next level of iteration could include powerful 
core JPL robotic capabilities in vision, planning and 
navigation. Capabilities that the robot needed in order to 
perform the task autonomously include simple vision, walking, 
crouching (maintaining balance while walking/crouching with 
the rather long bar), grasping, eye-hand coordination, etc, and 
overall integration of these behaviours.   
1)  HOAP-2: We used the Humanoid Open Architecture 
Platform Second generation (HOAP-2) Fujitsu robot. The 
vision system consists of two CCD cameras, capable of 
capturing frames of 640 by 480 pixels. The body motions are 
provided through 25 servo actuators: 6 for each leg, 4 for each 
arm, 1 for each hand, 2 for the head, and 1 for its waist.  There 
are 4 pressure sensors on the bottom of each foot, and an 
accelerometer and gyroscope inside the torso. Additional 
pressure sensors were mounted on the feet for balance.  

2)    Command and Control:  We utilized a modular 
architecture to streamline code, maximizing computational 
efficiency and upgradability for future revisions. The 
Command & Control Director selects the action or sequence 
of actions to do next. It decomposes actions hierarchically into 
nested sub-actions. It uses a rule-based expert system to 
maintain a set of parallel state machines, and then manages 
real-time transitions based on events posted by the rest of the 
software system.  In this way, it coordinates the decisions for 
the robot.  A glue layer is used to instantiate and executes 
particular actions, resulting in a cohesive, integrated system.  

3)  Speech The humanoid uses speech recognition and 
synthesis to communicate with humans. HOAP is able to 
request assistance from the human to determine the best 
course of action to complete the task at hand.  The human can 
also intervene on HOAP’s progress and direct HOAP to do 
otherwise.  Figure 3 illustrates example dialogue: 

 

 
Fig. 3 Example dialogue with HOAP 

 
Speech generation was performed by integrating a third-

generation Java-based synthesizer. This yielded relatively 
clean and understandable English, with a 95% comprehension 
rate. For speech recognition, the Microsoft English recognizer 
version 6.1 was used.  To increase accuracy, a set of 
predef ned commands mapped generally used English phrases 
with task-specif c commands. In this way synonymous phrases 
such as “put the bar down,” or “put it down” can be executed 
as the same command.  Parameters can also be given and 
understood allowing input like “step forward three inches,” or 
“move the bar two centimeters left.”  Using this system a 
recognition success rate of 99% was achieved. 

4)  Visual perception: The robot uses a world model, 
composed of models of the important objects in the 
surrounding environment, including rods, fastener joints, 
visual beacons, the robot’s hands, and f xtures, along with 
their unique color patches.  A model of the robot’s current 
location is also kept. The robot uses the top-down vision to 
help disambiguate sensing from the bottom-up vision stack. 
Images are processed into color blobs for the left and right 
eyes.  These are then converted into (x,y,z) 3D stereo readings, 
which are accurate to approximately 0.5 cm, and used to 
update object locations.  The f nal result is a 3D model map of 
all the objects in the world around the robot, used for 
locomotion and manipulation during complex interactions 
between the robot and the world.  

Firewire cameras with f sheye lenses were installed, 
integrated, and calibrated. These lenses are necessary because 
the physical constraints of the robot often prevent it from 
looking directly at its work area; the robot does not need to 
turn its head as much with f sheye lenses, reducing 
unnecessary movement. To accelerate computer vision 
techniques for properly identifying objects of interest, we 
added colored markers at key points of objects for proper 
identif cation, as seen in Figure 5. Blob f nding was 
implemented using the LTI vision routines library [13]. 

5)  Walking 
Two types of walking were designed: a predef ned 

sequence that gave ref exive walking, and precise computing 
for the position of each step. Reflexive walk was implemented 
using Zero Moment Point (ZMP) walking, with the center of 
gravity maintained over the robot’s support structure at all 
times. We used a parametric walking scheme to define the 
size of each step, the height of each step, the angle the robot 
turns per step, and the position of the feet when the robot is 
standing. The parameters are adjustable, and were used to 
adapt to changes caused when the robot grabbed and carried a 
load; these can be further used for adaptation to optimal 
values for various environment/ context conditions.  

The robot needs to move in various ways around the 
targeted object(s) in order to position itself in a suitable way 
for object handling and manipulation, including sidestepping, 
turning, and bending over without falling. The joint angle data 
for the robot as it performs a predefined walk was recorded 
and analyzed, then filtered in spectral domain. This was used 

Human: “Pick up the bar.” 
Robot: “Picking up the bar.” 
Robot:  “I am unable to f nd the bar.” 
Human: “Walk forward two inches.” 
Human: “Pick up the bar.” 
Robot: “Picking up the bar.” 
Robot: “Bar is seventeen centimetres away.” 
Robot: “I now have the bar.” 



to find rhythmic components of the walk cycle to generate a 
generic and stable walk pattern. From the recording of an 
unstable walk, data was filtered, attenuated and phase shifted 
in order to come up with a more stable walk. Once a basic 
walking pattern was achieved, it was used as a Central Pattern 
Generator, which controlled the default walk of the robot. 
When the robot is perturbed the walk can be modified (in 
terms of amplitude and phase of individual frequency 
components) to compensate for the disturbance. Foot feedback 
is used to make the foot more compliant. 

A full closed-form leg solution supports precise motion of 
the body with respect to the feet and the objects around it.  
The robot can walk forward and backward and step sideways; 
it responds to commands to place itself within a millimeter or 
less. The precise walk imposed a tradeoff between speed of 
walking and accuracy of positioning – for 1 mm accuracy the 
operation was more than f ve times slower than normal. One 
can choose speed or accuracy depending on the particular type 
of movement required. 

All link trajectories calculated by the walk module were 
combined into a single motion command to be executed by the 
pose interpolator. If instructed to move only a few centimeters 
the robot would lean that far, but if the robot was at the limit 
of its leaning it would take a step. If the robot is instructed to 
move farther it will take the appropriate number of steps, but 
scale the steps such that it can move an arbitrary distance and 
is not limited by a multiple of its number of strides.  

6)  Movement Actuation 
One of HOAP-2’s limiting factors is the relatively reduced 

number of degrees of freedom (DOF) – 25 total (about the 
same as a single human hand).  Another, critical, limitation is 
the update speed of the motors that resulted in a 50Hz “jitter” 
stemmed from the inherent timing model of the Linux kernel.  
The interpolator from the Xenomai real time thread library 
and kernel patch was used to achieve acceptable timing 
resolutions that allow smooth operation of joints. The 
interpolator operated on the host PC, reducing the workload of 
the onboard microcontroller.  

Closed-form inverse kinematic arm solutions were 
implemented for both left and right arms.  This solution 
allows positioning the actuator anywhere in its workspace, as 
well as partial specif cation of the desired orientation.  A 
grasp-planning module specif es the approach point and the 
location for picking up a desired object.  

In order to simplify calculations, two out of the six DOF in 
the arms were sacrif ced, limiting mobility.  Since the arm was 
going to be used for pickups and insertions, the positive Z axis 
(orientation out of the tip of the f ngertips) was the most vital 
for positioning.  The arm uses the Z axis, plus the requested 
position, to constrain the elbow in space, by backing the 
hand’s location out back to the elbow. Then, as long as a valid 
location is requested, this elbow position—along with the Z 
orientation of the forearm – determines the remaining three 
joints in the shoulder. The hand can spin about the Z axis, but 
at least it is known which way the f ngertips are pointing.   

All this assumes that the determined elbow point is on the 
sphere of all possible elbow points that circles the shoulder 

point.  This requires careful design.  Since the upper arm has 
to point in some direction, the system takes the projection of 
the elbow point onto this sphere and uses that to determine 
shoulder azimuth and elevation, as well as bicep twist to get 
the forearm oriented properly.  

In order to pick up a bar, or mate two parts together, 
maintaining correct orientation is an absolute requirement.  
However, specifying location and orientation reduces the 
workspace, since position and orientation are coupled in this 
system.   This arm solution was found inadequate for the pool-
cue motion required for inserting the bar onto the joint in a 
straight line. Another, specialized solution that was 
implemented only works with two of the joints to drive Y/Z 
position, and leaves end-effector orientation unspecified. 

Grasp planning was initially calculated by assuming a 
horizontal bar relative to the robot. While the robot’s arms are 
only 10 cm long per limb segment, the robot’s chest is merely 
6 cm deep.  This results in a very small working envelope. It 
gets worse when one realizes that the hand’s orientation is 
determined by the position of the elbow. Therefore, in order to 
grasp a horizontal bar, the hand and hence the elbow is forced 
to be in a horizontal plane relative to the bar, one of a set of 
planes that spins around the axis of the bar.  Executing an 
effective grasp requires that the robot f rst moves its hand to a 
reachable withdrawal point, which is above the grasp point; 
and then moves from the withdrawal point down to the grasp 
point.  The withdrawal point has to have the hand in the same 
orientation as the grasp, so that the hand does not twist much 
and knock the bar out of reach as the hand is going down. 

B. Demonstration 
Results from a demonstration of humanoid structure 

assembly in the laboratory environment with practical real 
world solution are detailed below and portrayed in Figure 4.  

1)  Positioning platform to insert bar. 
When the robot has reached the proximity of the bar, it has 

to bend over and turn its head, in order to be able to see the 
assembly. Because the bar moves under the robot’s hand, the 
robot has to use its vision to ensure that the bar is horizontal.  
Since the robot is leaning over, it has to subtract a factor for 
the tilted view of the world. The robot looks at the bar and 
moves its shoulder until the bar is horizontal.   

2)  Alignment of bar for insertion 
The robot has to line the tip of the bar with the tip of the 

joint, in X and Z axes. There are not enough degrees of 
freedom in the hand to be able to do this, so the robot rotates 
its legs to align its orientation in the X and Z axes with the tip 
of the joint, controlled by visual servoing and verbal servoing.   

3)  Insertion 
At this point, the robot has to make the insertion from its 

ready point. Doing so requires a precise and linear end 
effector Cartesian trajectory, which is difficult to implement 
with a low DOF system. A simple rotational movement does 
not suffice, especially for an 8 cm throw on the joint post. 
This is accomplished by a special arm solution that does a 



“pool cue” motion to keep the bar going in a straight line 
forward. To do this, one must sacrif ce hand orientation, 
which twists about the pinch axis of the rod.  Also, the rod has 
to be aligned precisely, in only one position similar to bowling 
or shooting pool, so that the arm can move back and forth in Y 
while maintaining the same height in Z and the same position 
in X. When properly aligned, the robot was able to perform 
this insertion, in a smooth and controlled manner. 

C. Advantages of the iterative development 
 The iterative approach led to a rapid development of an 

end-to-end capability, in this case the assembly task. It 
allowed understanding where the difficulties lied from the 
perspective of the entire development. It also acts as a 
visualization of a future capability. It provided a good 
illustration of the advantages of the iterative approach.  

 

 
 

 
 

 
Fig. 4 Walkthrough of HOAP’s assigned task 

D. Introducing the IKEA Challenges 
We believe that providing Grand Challenge type 

milestones in practical task-oriented applications accelerates 
development. Particularly relevant appear to be those that 
develop a technology that has most appeal for industry to 
transition. Competitions, such as the DARPA Grand 
Challenge, have a tremendous effect in motivating people and 
mobilizing resources. It is important to choose challenges that 
could allow the developed technologies to continuously 

transfer to industry. This maintains a reality check, and 
provides early/continuous return for technology investments.  

As a challenge appropriate for the humanoids we propose 
the “IKEA Challenges”. The IKEA Challenges would aim the 
demonstration of a robot that can autonomously unpack an 
IKEA furniture package/box, identify the content of the box, 
and assemble the furniture from the pieces in the box, 
following the instructions found in the package. 

V. CONCLUSIONS 
 The paper presented contributions to brain-inspired 
architectures for sensory-motor coordination and learning. A 
cerebellum model was used to demonstrate control of 
anthropomorphic arms and gait with dynamic walkers. New 
concepts in teaching methodologies and learning systems 
were introduced. We proposed the application to robotics of 
incremental and iterative development and we illustrated it in 
the context of a modular assembly. 
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