
How Spreadsheets Get Us to Mars and Beyond

Jairus Hihn

California Institute of
Technology/

Jet Propulsion Laboratory
jairus.hihn@jpl.nasa.gov

Scott Lewicki

California Institute of
Technology/

Jet Propulsion Laboratory
scott.lewicki@jpl.nasa.gov

Belinda Wilkinson

California Institute of
Technology/

Jet Propulsion Laboratory
belinda.wilkinson@jpl.nasa.gov

Abstract

Spreadsheets, spreadsheets everywhere and nary a

page of documentation. JPL is NASA’s prime center
for deep space missions. In all of our missions,
spreadsheets have played a major role in managing
parts lists, managing requirements, monitoring
progress, planning budgets, developing the initial
concept designs, and providing the backbone of our
infrastructure. In this paper we will share our lessons
learned in building various spreadsheet intensive
systems and applications. Based on our experience in
developing and using these various systems we will
propose a number of exploratory ideas as to the
dimensions of spreadsheet system complexity. In
addition, we will share our approaches to
documentation, review, and verification of these types
of systems.

1. Introduction

Spreadsheets are indeed ubiquitous through out
most large organizations. At most companies, a
spreadsheet application is provided as part of the basic
business or IT software platform, which makes the use
of spreadsheets basically free to employees.
Spreadsheets are extensively used by individuals to do
simple accounting tasks, to track simple lists with one
or more characteristics, and to do simple analysis and
chart generation. As a result of these factors, everyone
in a management or technical position is very
comfortable with spreadsheets and the inherent mental
model they provide for working with data.
Furthermore, it is human nature to resist learning some
new fangled interface or tool when the IT department
or the process geeks attempt to foist a new and ‘better’
way to do business. Hence, it is not surprising as new
organizational information problems arise that the
boundaries of spreadsheets get pushed to the limits as
people build on what they know.

At the Jet Propulsion Laboratory1 (JPL),
spreadsheets are used to varying degrees in virtually
every aspect of our engineering, IT, business and
process oriented systems. JPL is a Federally Funded
Research and Development Center managed by the
California Institute of Technology for the National
Aeronautics and Space Administration (NASA). JPL
currently has 19 spacecraft and seven science
instruments conducting active missions. All of these
are part of NASA's Vision for Space Exploration,
designed to explore Earth and space and to send robots
and humans to explore the moon, Mars, and beyond.
In all of these missions spreadsheets have played a
major role in managing parts lists, managing
requirements, monitoring progress, planning budgets,
and developing the initial concept designs.
Spreadsheets also play a major role in all aspects of our
infrastructure. As spreadsheets become more and more
an integral part of larger systems, the questions that
arise are: “When should we start treating them like
software?” and “When should spreadsheets be required
to have formal requirements and rigorous review and
testing?”

In the abstract, the major factors that drive the need
for process rigor should be the same for spreadsheets
as they are for any software system. Therefore, the
first question that must be addressed is “What is the
required reliability of the system?” Or alternatively,
“What is the impact of system failure?” At this point it
does not seem that the determination of required
reliability for a spreadsheet intensive system is any
different for any software system.

In this paper we will share our lessons learned in
building various spreadsheet intensive systems and

1 The research described in this presentation was carried out
at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics
and Space Administration. Reference herein to any specific
commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not constitute or
imply its endorsement by the United States Government.

applications. We will describe approaches to
documentation, review, and verification of these
applications and systems. These approaches are based
on tailoring the standard JPL software development
practices. The following spreadsheet development
and/or operations case studies will be documented:

• Case Study 1: Managing Software Quality
Improvement

• Case Study 2: SMART, Software Measures
Archiving and Reporting Tool

• Case Study 3: Cost Estimation Models
In the last section of the paper we will propose a

number of exploratory ideas as to the dimensions of
spreadsheet system complexity based on our
experience in developing and using these various
applications. This is clearly an area that has research
potential.

2. Case Study 1: Managing Software
Quality Improvement

Though JPL is known best for the hardware
associated with robotic missions to Mars and other
planets, the software written to support the operations
of those missions is just as critical.

This software includes every domain: from the
software that supports science instrument functionality
to the flight software that controls the spacecraft to the
ground software that sends commands to the spacecraft
and instruments and also acquires and processes the
data sent back to Earth.

 With each new mission, the amount of associated
software and its underlying complexity has increased.
This has caused the risks associated with the success of
these missions to increase such that software is as
mission critical as the hardware it runs on.

In response, the Software Quality Improvement
(SQI) project was established at JPL in 2002 in
response to the recognition of the need to improve
software engineering practices across the laboratory.
An improvement strategy has been defined and
executed based on industry best practices championed
by the Software Engineering Institute (SEI) of
Carnegie Mellon University. The implementation of
this strategy also follows a proven Organization
Change Management (OCM) model. Spreadsheet
applications were frequently utilized in the activities
associated with this implementation.

2.1 Infusion of Software Best Practices

The use of spreadsheets to establish, monitor, and

control the infusion of these software best practices
across the organization has been extensive. SQI has

developed a system where each of these spreadsheets
can be coupled to provide quantitative views into the
quality of the software being developed at JPL in each
domain.

The rolling out and use of these spreadsheets
followed a simple progression:
1. Software Inventory. An established and

maintained list of software products and projects
at JPL which included data on software
classification/criticality, implementation status,
lines of code count, primary and secondary
languages used, effort in work years, and other
characteristics.

2. Work Product Checklist. The checklist, associated
with each of the software products and projects,
captured the types of documentation that were
generated and the tools that were utilized on the
project.

3. Tailoring Record. This compares the processes
used on an individual software project to the
institutional Software Development Standard
Processes (SDSPs) that have been established at
JPL. The SDSPs are traced back to JPL Software
Development Requirements, Design Principles,
and other laboratory policies and standards. The
SDSPs are also traced to NASA Processes and
Requirements (NPRs) for System Engineering,
Software, and Safety.

The last spreadsheet involves interviewing each

software task manager to obtain detailed information
on each activity performed on the project. During the
interview process, the SQI representative would also
provide to the task manager information and education
on how to use the institutionally provided tools and
work aids, which accompany the SDSPs.

Spreadsheets were clearly the best implementation
to capture all of the data associated with monitoring
and controlling the infusion of software best practices.
In addition, all of the spreadsheets described above are
interconnected and interface to databases and analysis
tools. This allowed the ability to easily generate reports
that could be supplied back to the task managers for
their own use.

The following charts give a few simple examples
of the presentation of data provided by rolling up the
software inventory spreadsheets:

Large (>5 WY)
10

Medium (2-5 WY)
45

Small (0-2 WY)
164

Number of Software Products by Team Size (FY08 Effort)

Section

W
o

rk
 Y

e
a
rs

387386376347343337335334333332317316315313

90

80

70

60

50

40

30

20

10

0

6

54

1

37

22

4

27

556

59

90

19

14

Estimated FY08 Effort by Section

C

52.6%

B

47.4%

Software Class Weighted by FY08 Effort

Perl/TCL/TK
21

Fortran
33

other
38

Java
57

C++
68

C
180

Estimated FY08 Work Years by Primary Language

A disadvantage in the use of spreadsheets came
about in performing the tracing from Tailoring Records
to SDSPs and from SDSPs to other standards and
requirements. The two dimensional nature of
spreadsheet do not inherently allow them to be easily
used to establish and maintain one to many or many to
one traces. The verification of these bi-directional
traces became very labor intensive and error prone.
Ultimately, the spreadsheets for the Tailoring Records
and requirements were imported into a requirements
tracking tool that supported bi-directional tracing.

2.2 Optimization of CMMI Appraisals

Concurrent with the pursuit of overall software
improvement, SQI has also engaged in an effort to use
the SEI Capability Maturity Model Integration
(CMMI) to assess the mission critical software at JPL.
The CMMI provides a formal methodology to appraise
an organization and establish an industry-recognized
Maturity Level, which is then published by the SEI [1].

Inherent to this appraisal methodology is the use
of spreadsheets referred to as Practice Implementation
Indicator Description (PIID) forms. A PIID captures
references to the project artifacts associated with a
particular practice in the CMMI model and records the
characterization which measures the degree to which
that practice has been implemented.

To accompany the PIID forms, JPL developed in-
house multiple databases and analysis tools to manage
the artifacts needed for an appraisal and to measure
progress and effort.

The project artifacts were stored in simple SQL
databases and scripts were developed to verify that
each artifact referenced in the PIID existed in the
database and vice versa. Additional spreadsheets were
used to track action items arising from missing or bad
references.

Similar to the system used for monitoring and
controlling infusion of software best practices, a
system of coupled spreadsheets provided simple
methods to track the progress toward an upcoming
formal CMMI appraisal. But similarly, there were also
limitations due to the inability to perform one to many
and many to one relationship.

Performing a formal CMMI appraisal involves
poring through often hundreds of artifacts for each
project. We attempted to establish hyperlinks from the
PIID to the document artifacts in our databases.
Unfortunately the spreadsheets could not support
multiple hyperlinks in an individual cell. Also the
hyperlinks became unstable as the environment
changed.

3. Case Study 2: SMART, Software
Measures Archiving and Reporting Tool

Over the last seven years JPL has increasingly
realized the need to be able to make quantitative based
decisions at both the strategic and tactical management
levels. The response was to implement a software
metrics system. The responsible group was the
Measurement, Estimation and Analysis Element
(MEsA) of the SQI organization. MEsA is responsible
for establishing and maintaining the JPL software
metrics program. As good software engineers, we
wrote an operations concept to describe such a system
and how it would be used. From the beginning, it was
clear that there would be numerous human and
technical interfaces because there were a number of
commercially supported and home-grown systems for
managing the programmatic and technical aspects of
our projects and there was little consistency in how
they were used. When we began, spreadsheets were
nowhere in the fuzzy picture that was beginning to take
form.

The concept of operations document was reviewed
by potential users of the proposed metrics system and
their feedback was incorporated in the final document.
There were two concerns mentioned by numerous
reviewers. The first was that they did not want to enter
numbers into a form, i.e., they wanted us to obtain the
data automatically from tools that they use. The
second comment was summarized by one reviewer as
“What’s in it for me?” We knew we had to address
both of these user concerns.

Automation was obviously important but as we
probed the input user interface, it became increasingly
clear that a spreadsheet interface to the metrics system
would meet many of their needs. Therefore, as the
metrics system began to take form, one of its major
interfaces was the lowly spreadsheet. In fact,
spreadsheets were used to address both of the concerns
expressed by our potential users.

SMART is the acronym for the Software Measures
Archiving and Reporting Tool, a metrics system that
helps a software manager plan a task, track and
communicate the status of the task, and make
decisions. It also supports the improvement of
processes and procedures used in the software
development lifecycle. SMART consists of a metrics
repository, a management dashboard containing charts
based on an analysis of the metrics, and planning and
cost models. Categories of metrics include effort, size,
defects, requirements, schedule, and process. Figure 1
shows an overview of the SMART system. Early on,
we decided to use institutional standard processes in
our development lifecycle. In addition to the concept
of operations document, we wrote a requirements

document, a software management plan, and various
design documents.

Figure 1: SMART System Overview

For our initial releases, the first user concern,
mentioned previously, was addressed by providing a
spreadsheet interface to the system along with a
pushbutton that would automatically upload the
metrics data to the SMART Repository. Since our
users are so comfortable and experienced using
spreadsheets, this proved to be a satisfactory answer.
Full automation of gathering metrics data from
institutional tools will be provided in an evolutionary
fashion. The second concern was addressed by
providing a management dashboard in a spreadsheet
that updates automatically when new metrics data is
entered in the spreadsheet. These features were used
as part of the CMMI Level 3 assessment obtained in
2007. The current SMART product is the result of an
evolutionary process as shown in the following table:

 FY02 FY03-06 FY07-09

Process: Manual
collection
procedure of
metrics data at
conclusion of
development
of a software
product

Formal
collection
procedure for
metrics data
collected at
major
milestones

Direct and
automated
collection (with
use of
spreadsheet) for
both metrics
data collected at
major
milestones and
data collected
monthly during
the development
lifecycle

Repository: Spreadsheet

Prototype
database for
MEsA use
only

SMART: an on-
line database
with a
Manager’s
Dashboard in
spreadsheet

Figure 2: Overview of Capabilities Development

The current list of features provided by SMART
includes:
• Built using a database and workflow tool

– Workflow, templates, and triggers
– Different lifecycles (development and

maintenance)
– Different types of metrics (milestone and

monthly)
– Relational database
– Import and export of metrics using

spreadsheet interface
– Data validation of spreadsheet entries

• Data organized hierarchically by program and
project

– Metrics for almost 300 pieces of software are
currently in the SMART Repository

• Prototype Management Dashboard2
– Creates 12 charts, based on Monthly Metrics,

in a spreadsheet that automatically updates
– Spreadsheet provides a pushbutton to save

data to SMART Repository
– Metrics charts are part of same workbook

from which data was imported and exported
– Metrics charts support all CMMI tasks

• Automated data collection supporting
– SLiC (code counter tool)
– PRS (defect system)

3.1 Process and Documentation

Since SMART was developed as part of the SQI

organization, we decided to follow the institutional
SDSPs and also provide compliant documentation even
though SMART is an infrastructure task and is very
small in size (1 to 1.5 developers). The SDSPs and
associated documentation are designed to be tailored,
as necessary. This enabled us to scale the development
processes and documentation to the size and required
reliability of our system. In addition, the development
of a more comprehensive set of documentation based
on the SDSPs was conducted as a proof of concept to
evaluate if it made sense for small IT tasks. Reviews
of the documents were conducted with the appropriate
stakeholders, using a combination of document
walkthroughs in meetings and written feedback based
on reading the document. The documents developed
and reviewed included:
• Concept of Operations
• Requirements Document
• Requirements Table (spreadsheet)
• Software Management Plan
• Architecture Diagram

2 There is an externally released version of the Managers Dashboard
that can be obtained from the Authors.

• Database Dictionary (spreadsheet)
• Design Document and Artifacts
• User Interface Design Document

This proved to be very effective in our
environment and demonstrated the usefulness of
following standard processes and producing the
required documentation in a very small task.

The documentation allowed our stakeholders to
have a much clearer understanding of what was to be
developed and buy-in to our objectives and approach
was greatly increased. It allowed the development
team to understand issues that arose and to resolve
them appropriately. In addition, we decided the overall
design would need to be consistent with the goals of
data integrity, security, extensibility, availability, and
maintainability with associated priority levels, where
data integrity had a priority level of one. This has
driven the choice of capabilities and the design
decisions throughout the development.

The required effort to do this was reasonable in
size (about five work months) and we feel that other
very small tasks and spreadsheet intensive
development tasks should take the time to do this.

3.2 Validation Methods

As with the documentation, SMART’s
development lifecycle was also based on standard JPL
software practices. SMART was implemented via
iterative development phases with regularly scheduled
demos. During the development of SMART, the demos
were integral to verifying the implementation of the
requirements for the system, an activity specified by
the SDSPs. In general, we have found that frequent
demos are effective in obtaining stakeholder buy-in
and in performing verification of user requirements for
all systems with extensive user interfaces.

In addition, as the use of spreadsheets obviously
involves manipulating data it was necessary to identify
formal data verification activities and capabilities.
These verification activities included:
• Standard procedures for the processing of data

submitted by a software task were written by
MEsA. The procedures require several steps
depending on the type of metrics involved. If
MEsA has to ‘clean the data’ and revise the
metrics then the revised metrics are reviewed
with the contributing software task. Also, at
least two members of the MEsA team must
perform a quality check of the data before the
submitted metrics can be considered to be in a
‘completed state’. Once the contributed metrics
reach the ‘completed state’, only a member of
MEsA can make any further changes to the data.

• All data fields in the database have access
control lists so an unauthorized person cannot
accidentally alter the data. The extension of this
feature to the data in the spreadsheet has not
been done. See further discussion in 3.7

• A complete history log is maintained in the
database which identifies when a data item has
changed and who made the change. The
extension of this feature to the data in the
spreadsheet has not been done. See further
discussion in 3.7

• An extensive quality check was also performed
on data from old spreadsheets and a previous
prototype database before importing the data
into the SMART Repository by collecting all of
the data in a large spreadsheet and rigorously
checking the data for correctness and
uniformity. This step took two people about a
month to complete. Roles alternated so that a
‘fresh-set-of-eyes’ performed the verification
step for correctness and completeness.

3.3 Spreadsheets as the Human Interface

Because our users are so comfortable with using
spreadsheets, the decision was made to provide a
special SMART-format spreadsheet for the entry of
Monthly Metrics. The metrics can then be uploaded to
the SMART Repository via a pushbutton interface. A
Management Dashboard is automatically updated
based upon any new metrics entered. There is a hidden
worksheet containing the computations to create the
charts on the Management Dashboard.

Since it is so easy to change data in a spreadsheet we
needed some level of configuration management. At
one point, we had a user who changed data that had
been entered several months previously. To prevent
this, the spreadsheet was locked and pushbuttons were
provided in the spreadsheet for the following functions:
• Add a new spreadsheet column to enter the

current month’s metrics. All columns for
previous month’s metrics are locked and cannot
be unlocked by the users although MEsA
members can unlock the columns, if necessary.

• Submit the current month’s metrics to the
SMART Repository. Once submitted the entry
column is locked.

• Unlock the current month’s entry column to
allow the user to update the metrics for the
current month.

3.4 Using Spreadsheets to Simplify Interface
Complexity with Institutional Tools

At JPL institutional tools are available for
activities such as requirements management, defect
tracking, and counting source lines of code. Creating
an interface between SMART and these tools was
problematic. The solution was to export data from the
tools into a holding area within SMART, process the
data, create a SMART-format spreadsheet from the
data, and then upload the spreadsheet to the SMART
repository.

3.5 Future Direction: Spreadsheets as a
Software Design and Implementation ‘Data
Structure’

The metrics program continues to evolve and we
recently realized that we could implement the
capability to use a spreadsheet containing the set of
collection metrics as a control document or ‘data
structure’ to automatically build a data-driven database
schema and the user interface forms3. The enhanced
metrics set has been defined in a configuration
managed spreadsheet which includes the following
data items for each metric: metric name, display label
name, measurement category, as well as attributes such
as applicable task size (small, medium, large) and task
type (development or maintenance), data type (text,
integer, enumeration list, etc.), collection frequency
(milestone or periodic), collection source, collection
responsibility, storage location, and reporting details.
Other than updating the set of collection metrics in the
spreadsheet, the only planned manual action will be to
use a forms manager to define the layout of the data in
the form. This will result in a more robust metrics
system that will be easier to maintain.

3.6 Major Strengths

To summarize, there were a number of major
contributions to the metrics system from the use of
spreadsheets. They included the following:
• Our users are experienced with using

spreadsheets and spreadsheets are readily
assessable. This user acceptance reduced the
need for training.

• The use of spreadsheets allowed the import and
export of data between humans and systems and
also between two systems. This solved the

3 The idea is by Carlos Balacuit, member of the SMART
development team.

problem of interfacing SMART with other
institutional tools.

• Spreadsheets were an effective tool in the
evolutionary design of the user interface. They
allowed us to interact with our users and make
changes in real time. This was especially useful
in the development of metrics charts.

• The spreadsheets submitted by the software
tasks were successfully used to meet the metrics
related goals that were part of the CMMI Level
3 assessment obtained in 2007.

3.7 Major Issues

There also were major problems that we found by
using spreadsheets. They were:
• The configuration management of the data was

problematic with the spreadsheet but the use of
the spreadsheet pushbuttons provided an
acceptable resolution.

• There was no guarantee that the user would
click the pushbutton to upload the metrics to the
SMART Repository. For the CMMI tasks,
MEsA performed a manual check to verify the
upload. However, this is not an acceptable long
term solution.

• Access control lists for the data and the history
log are very important features for a metrics
repository. Reasonably similar capabilities can
be implemented in a spreadsheet using scripts
and locking features but configuration
management and performance are concerns. For
example, a good solution as to where to keep the
access control lists and how to control the
updating of them is not readily apparent.

-
4. Case Study 3: Cost Estimation Models

Virtually all cost models at JPL are built in
spreadsheets [2, 3, 4]. Examples of the types of
software cost models developed and used at JPL are
described below. Those to be discussed include the
Software Cost Analysis Tool (SCAT), the Flight
Software Cost Model, and the JPL Space Mission
subsystem level grass roots models. A key
consideration in developing cost models is the
activities performed to verify and track accuracy.

SCAT (Software Cost Analysis Tool) is a Monte
Carlo version of COCOMO [5] implemented as a
multi-sheet model that can import from a separate
Monte Carlo sizing tool. Estimation accuracy is
validated and documented4. The results of the initial

4 There is an externally released version of SCAT that can be
obtained from the Authors.

validation are published in [6]. Validation is performed
by calculating the percentage of estimates within +/-
30% of actual historical data. The history of model
based proposal estimates is also tracked and compared
to the final development costs as they become
available5. Usability and user error are not formally
assessed. However, to reduce user error the model is
pre-populated with ranges from historical JPL
missions. This way a user only has to actually modify
a small number of the model parameters.

The Flight Software Cost Model is the primary
cost model for estimating mission-critical robotic space
mission’s software. It can run stand alone or integrated
into the Team X tool set. Team X is JPL’s concurrent
engineering design team responsible for early designs
and estimates. The Team X tool set is a networked
spreadsheet intensive system with real time parameter
updating. A detailed description of the Team X tool
environment is described in a paper also being
presented at HICSS 42 [7].

The Flight Software Cost Model is a complex
multi-sheet model that takes high level system
descriptors (pointing accuracy, number of instruments,
etc.) and then executes two sub-models which estimate
the system size and the effort multipliers. These
provide the inputs into a COCOMO based model
(point estimate). The COCOMO portion of the model
has the same parameter calibrations as SCAT. In the
Team X environment, as mentioned above, it is part of
over twenty integrated multiple workbooks that pass
parameters over the network. This model was
rigorously verified with formal documentation.
Documentation consisted of a user guide, a model
description document and validation results. The
validation consisted of model performance against
actual historical data similar to SCAT. The cost model
was validated against several in-house, mixed
development, and out-of-house missions of various
sizes. The missions chosen for validation were those
that have launched and had actual historical costs
easily available.

Because the Flight Software Cost Model is part of
the Team X spreadsheet based tool set, it was required
that an additional validation step to test potential user
error be performed. In a blind test, two different
estimators had to produce estimates within 10% of
each other using the same high level mission
specification.

5 For an earlier version of SCAT based on COCOMO 81, estimates
from1989 through 1995 for ground software were high by an average
of 3% compared to 40% under allocation of budgets from the
preliminary design review.

The last models we will discuss are the JPL Space
Mission subsystem level grass roots models. Each JPL
organizational section6 that builds a major component
of a space mission has its own spreadsheet based cost
model. These models tend to be very detailed with a
very large number of inputs. If they or a simpler
version of these models are used in the Team X
environment then they are verified in the same manner
as the Flight Software Cost Model. However, only the
most aggregated level of an estimate can be verified
because the detailed historical data does not exist to
verify at the module or element level. An important
advantage of having our cost models in spreadsheets is
that anyone can pick them up and understand how the
costs are derived. This makes them easy to review and
facilitates discussions between the cost engineers and
domain specialist engineers.

Finally, spreadsheets have enabled an important
dialogue between the cost engineers and the rest of the
engineering community. It is well documented that
cost models are driven by a small number of factors
and that most design changes have no or imperceptible
cost impacts [8]. The domain engineers prefer very
detailed models so they can make small changes in the
design parameters and see a change in their estimates.
We have found that, organizationally, the need to
reason about the cost of different design changes
overrides the repeated results from statistical analysis
that shows that models with more then a few input
parameters cannot be justified [9]. The point is that
cost models also have political and psychological
requirements that must be imposed on the formal
statistical models. A major advantage of spreadsheets
is that these models are accessible to both experts and
non-experts for review, comment and defense of their
proposals.

5. Spreadsheet Complexity

Based on over fifteen years of implementing
various tools in spreadsheets, we have observed
practices that increase complexity and reduce
spreadsheet quality. While there is an extensive body
of literature that explores software complexity [10, 11,
12], spreadsheets provide some unique considerations
at least with how they combine various system features
[13]. Our current perspective, while it overlaps some
with [13], is based on a developer’s perspective. We
propose that spreadsheet complexity be divided into
computational complexity and interface complexity.

6 JPL is a matrix organization. A section has from 100 to 200
people with similar domain expertise, who are assigned to our
various missions. For example, there is a ‘flight software and data
systems’ section as well as a ‘ground data systems’ section.

Other authors may disagree and we hope this will lead
to an interesting dialogue.

Computational Complexity
• Straightforward cell based computations vs.

extensive use of macros
• References across multiple spreadsheets (closely

related to model to model interfaces)
• Linear vs. non-linear equations
• Equation systems vs. single equation

Interface complexity needs to account for
• Human-spreadsheet interface
• Multiple workbooks
• Spreadsheet-database interface
• Spreadsheet-applications interface
• Spreadsheet-system interface

Procedural Complexity
• Named cells or vectors vs. location referencing.

This is a lot like direct memory referencing in a
software program which is definitely not a best
practice

In response we have evolved some common practices:
• Only use macros for generating reports. Macros

are difficult to debug and when combined with
multiple open workbooks create serious
performance issues. This is a major issue with
Monte Carlo tools.

• Do not use deeply nested simple formulas.
Complicated formulas in a single cell are easier
to understand and maintain.

• Name variables and worksheets and never
reference cells. Define a naming convention
that assists with comprehension. For example,
we name all sheets, tables and data items. A
variable name is then built by concatenating the
sheet, table, and item names.

6.0 Conclusion

In this paper we have described how spreadsheets
have been used as an effective interface tool. A major
advantage of spreadsheets as a human interface is that
everyone is very comfortable with them, which greatly
reduces resistance to the infusion of new tools and
methods. We have also documented how we applied
standard software development practices and
documentation in the development of various
spreadsheet applications. This has been very effective
in the JPL environment and our experience should
extend to other engineering organizations.

We especially recommend the maintaining of a
formal requirements list, documenting operations
scenarios, using a demo based lifecycle with 4 to 6
weeks between builds, and writing unit test scripts to
catch spreadsheet computational and procedural errors.
Finally, depending on the required reliability of ones
application, the use of double blind user execution tests
to identify potential user errors was very effective and
also was very powerful in obtaining stakeholder
acceptance.

References

[1] M.B. Chrissis, M. Konrad, and S. Shrum, CMMI Second
Edition, Addison-Wesley, 2007.

[2] L. Rosenberg, J. Hihn and K. Roust, “Parametric Cost
Modeling of Space Missions Using the Develop New
Products (DNP) Implementation Process”, Proceedings of
the Ninth International Symposium of the International
Council on Systems Engineering (INCOSE), 6-11 June
1999, Brighton, England.

[3] J. Hihn and K. Lum, “Improving Software Size Estimates
by Using Probabilistic Pairwise Comparison Matrices”,
IEEE Metrics 2004 14-16 September, 2004, Chicago, IL.

[4] H. Habib-agahi, NASA Instrument Cost Model (NICM).
JPL 982-0000, January, 2007.

[5] B. Boehm, E. Horowitz, R. Madachy, D. Reifer, B. K.
Clark, B. Steece, A. W. Brown, S. Chulani, and C. Abts,
Software Cost Estimation with Cocomo II, Prentice Hall,
2000.

[6] K. Lum, J. Powell, and J. Hihn, “Validation of Spacecraft
Software Cost Estimation Models for Flight and Ground
Systems”, Proceedings of the 24th Annual Conference of the
International Society of Parametric Analysts (ISPA), 21-24
May, 2002, San Diego, CA

[7] K. Warfield and J. Hihn, “Spreadsheets in Team X:
Preserving Order in an Inherently Chaotic Environment”,
42nd Hawaiian International Conference on System
Sciences (HICSS 42), Waikoloa, HI, January 6-8,
2009.

[8] T. Menzies, Z. Chen, J. Hihn, and K. Lum, “Selecting
Best Practices for Effort Estimation”, IEEE Transactions on
Software Engineering, November, 2006

[9] J. Hihn, L. Rosenberg, K. Roust, K. Warfield, “Cost
Model Validation: A Technical and Cultural Approach”,
Proceedings of the 23rd Annual Conference of the
International Society of Parametric Analysts (ISPA), 12-15
June, 2001, Reston, VA

[10] L C Briand, S Morasca, V R Basili, “Property-Based
Software Engineering Measurement”, IEEE Transactions on
Software Engineering, Jan. 1996.

[11] R. S. Pressman and R. Pressman, Software Engineering:
A Practitioner's Approach, Mcgraw Hill, 2005.

[12] H. Zuse, Software Complexity: Measures and Methods.
de Gruyter , 1991.

[13] A. Bregar, “Complexity Metrics for Spreadsheet
Models”, Proceedings of EuSpRIG 2004 Conference: Risk
Reduction in End User Computing, Klagenfurt University,
Klagenfurt, Austria, July 15-16, 2004.

