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Abstract 
Narrow-angle dual-star interferometric astrometry can provide very high accuracy in the 
presence of the Earth’s turbulent atmosphere.   However, to exploit the high 
atmospherically-limited accuracy requires control of systematic errors in measurement of 
the interferometer baseline, internal OPDs, and fringe phase.  In addition, as high 
photometric SNR is required, care must be taken to maximize throughput and coherence 
to obtain high accuracy on faint stars.   This article reviews: the keys aspects of the dual-
star approach and implementation; the main contributors to the systematic error budget; 
and the coherence terms in the photometric error budget. 

1. Introduction 

1.1 Astrometry with interferometers 
Figure 1 illustrates the fundamental astrometric geometry of a Michelson interferometer.  
Fringes are detected when the external path delay is equal to the internal path delay.  
While the former cannot be measured directly, the latter can be directly measured with a 
laser distance gauge.  The accuracy of this measurement is one contributor to the 
achieved astrometric accuracy.   For ground-based astrometry, the accuracy requirement 
is usually on differential accuracy as ones switches between target and calibrator stars, 
and applies for the duration of the specific measurement sequence. 
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Figure 1.  Detecting fringes with an interferometer. 



If the baseline B is taken to be the vector connecting the pivots of the two collectors, then 
the delay x is given as 

csBx +⋅= ˆ


,         (1)  
where s is the star unit vector, and c is the “constant” term, sometimes incorporated into 
the delay.  Strictly, this geometric equation describes the immeasurable “external delay;” 
astrometric errors arise when we try to measure the external delay via the internal delay 
and the fringe residual.  These errors can include laser metrology accuracy and its 
correlation with the starlight path; fringe measurement accuracy, including SNR; and 
internal atmospheric and dispersive effects.  The other terms in Eq. 1 also impact 
accuracy, including atmospheric noise and classical refraction that can affect s, and 
knowledge and stability of B. 

1.2 Atmospheric limit to narrow-angle astrometry 
Consider a differential astrometric measurement as illustrated in Figure 2.  Astrometric 
noise arises as rays from different stars separated by angle θ traverse different paths 
through the atmosphere.  Intuitively, one would expect the error to depend on the 
separation of the beams in the atmosphere, θh, where h is the atmospheric height, as well 
as on the amount of overlap of the beams with respect to instrument extent, B, which 
would be the telescope diameter, for a single-telescope measurement, or the 
interferometer baseline, which of interest here.  The intuition is indeed correct, and the 
error behavior becomes very favorable when θh < B.1 

 
The detailed behavior is shown in Figure 3.  In the very narrow-angle case, where θh < B, 
the error has the form 

( ) 2/12/1223/2 )(d)( −− ∫∝ ThhhCBT nθε ,      (2) 

or evaluated for a Mauna Kea turbulence profile, 
arcsec300)( 2/13/2 −−≈ TBT θe .       (3) 
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Figure 2.  Schematic differential measurement 



 
Of note is that the error is white, i.e., the standard deviation improves with the square root 
of the integration time; the error standard deviation is linear with star separation; and 
error has a nearly linear inverse baseline dependence.  In addition, compared to the usual 
seeing metric r0 which involves a straight integral over the turbulence profile, the narrow-
angle expression weights high altitude turbulence as h2.  The expression above uses an 
infinite-outer-scale Kolmogorov atmospheric model.  With a finite outer scale, the error 
dependence changes from θB-2/3 to θL0

1/3B-1.  As an example, for a Mauna Kea 
turbulence profile, θ=15”, and L0 = 40 m, the error in a T=1000 sec integration time is 
~24 uas for a 100 m baseline; and 12 uas for a 200 m baseline.  These are very interesting 
performance levels. 

1.3 Implementing a dual-star interferometer 
Thus with the long baseline of an interferometer, ten’s of microarcsecond accuracy is 
possible for measurements made over small fields.  In addition, over small fields, the 
requirements on baseline knowledge are greatly decreased.  However, the measurements 
of the two stars must be essentially simultaneous in order to exploit the common-mode 
nature of the atmosphere over small fields.  A practical consideration is that small fields 
mean that the second star will be faint.  Another practical consideration is that 
interferometers usually pass only small fields of view.  Thus, a simultaneous differential 
measurement will require the instrument to observe simultaneously two separate fields of 
view.  This will require an instrument with two separate beam trains, as well as laser 
metrology to “tie” the two beam trains together. 
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Figure 3.   Limits to a narrow-angle astrometric measurement. 



 
These considerations lead to the dual-star approach1, illustrated schematically in Figure 
4.  The keys aspects of the dual-star approach are: 

• Two interferometers, sharing a common baseline and apertures 
• Two stars: one bright (target, nearby); one faint (astrometric reference, distant) 
• Observe target star on 1st interferometer 

– Use as phase reference for stars within its isoplanatic patch; feedforward 
to second interferometer 

• Observe astrometric reference star on 2nd interferometer 
• Work in the infrared (2.2 um) for its larger isoplanatic angle 

– Increases solid angle over which to find astrometric reference stars 
(~20 arcsec radius) 

• Use 2-m class, or larger, apertures to provide sensitivity for adequate sky 
coverage 

– AO (D > 2 m ) or fast tip tilt (D < 2 m) needed to correct aperture 
Operational, beam combiner 1 continually tracks the bright star, providing the necessary 
phase referencing.  Beam combiner 2 makes the differential measurement, switching 
between the bright and faint stars.  Implications in this operational scenario on the 
implementation are that beam combiners 1 and 2 can be different; metrology continuity 
(or absolute metrology) is required; and that the star separate has to pass both stars.   
Other dual-star approaches are possible; this concept follows from the implementation at 
PTI2 and what had been planned for the proposed Keck Interferometer outrigger project.5 
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Figure 4.  Dual star optical concept. 



2 Systematic errors 

2.1 Error analysis 
Perhaps surprisingly, the random atmospheric noise will likely be least bothersome term 
in the end-to-end dual-star error budget.  In addition, the finite SNR of the measurement 
will be quite important, as the small fields allowed by phase referencing require faint 
reference stars.  However, astrometry is very much about the control of systematic errors, 
and we discuss that below. 
 
A simple two-dimensional sensitivity analysis is useful in understanding the 
requirements.  We can write the astrometric equation for a differential measurement, 
following Eq. 1, as 

sBx ˆ∆⋅=∆


.         (4) 
We can rewrite in this in two dimensions for estimating the differential angle θ in terms 
of length l, phase φ, baseline B 

θφ Bkl =+ −1  ,        (5) 
for which a simple sensitivity analysis illustrates the required accuracies: 
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.       (6) 

These three terms are OPD measurement noise δl, fringe measurement noise δφ, and 
baseline noise δB.  Each of these three terms depends inversely on baseline; in addition, 
the baseline term is proportional to FOV. 
 
For the purpose of the following discussion, assume λ = 2.2 um,  θ = 15–20”, and B = 
100 m.  Longer baselines are better both for the atmospheric term, as well as for the 
systematic terms in Eq. 6;  in practice, the baseline should be made a long as possible, 
limited by the finite size of the phase-reference star.  Assume our desired accuracy is δθ 
= 20 uas, and that we allocate 10 uas to each of the three terms in Eq. 6.  Then, δB = 
50 um rms, and δl = δφ = 5 nm rms. 
 
Below, we do some example suballocations to give a feel for what terms are important. 
We also identify mechanisms by which systematic errors get introduced, the magnitudes 
of the underlying effects, as well as approaches for mitigating their effects.  We describe 
these three terms below, starting with the baseline term. 

2.2 Baseline noise 
For the assumptions above, the required baseline knowledge is δB = B(dθ/θ) = 50 um.  
We suballocate this amount among the following four terms at 25 um each. 

2.2.1 Wide-angle baseline solution 
Solving for the wide-angle baseline is a standard task in order to find fringes with an 
interferometer.  The 25 um requirement corresponds to 50 mas for our assumed 100 m 
baseline.   The contributors are 



a) Input star position accuracy:  ~20 mas.  The Hipparcos3 catalog is usual source of 
positions for the bright stars (it’s complete to V=7.3) used in a baseline solution.  The 
accuracy of the catalog today is determined by propagation of errors in the proper motion 
estimates.  Given positional accuracies of 1–3 mas for epoch 1991.25 and proper motion 
accuracy of 1–2 mas/yr, we can assume typical accuracies of 20 mas for epoch 2010.4    
b) Wide-angle atmospheric accuracy:  < 50 mas.  For L0 << B, the fringe position 
fluctuations are given by 
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For an L0 = 40 m outer scale and r0 = 20 ms (½” seeing), σx = 20 um rms, or 40 mas rms 
with a 100 m baseline.  Assuming a correlation time of L0/W for wind speed W, this 
should average down for a typical integration time.   
c) DCR:  < 1 um.  For a telescope, DCR (differential chromatic refraction) refers to 
image elongation along the zenith direction attributable to the wavelength-dependence of 
the atmospheric refractivity.  For an interferometer, in the limit of a plane-parallel 
atmospheric, there is in principle no DCR if internal OPDs are measured at the same 
wavelength as the science measurement (or if the delay lines are in vacuum, as this is 
usually expressed).  The extent to which the science and metrology wavelengths differ, 
and the dispersion characteristics of the atmosphere, set the size of this term.  While it’s 
not significant for wide-angle astrometry, we’ll return to it below in the context of OPD 
measurement errors. 

2.2.2 Unmodeled baseline noise 
This term in the baseline-noise budget addresses the “mechanical” quality of the wide-
angle baseline.  It’s the noise in the telescope pivots that is unaccounted for in the wide-
angle baseline solution.  We allocate 25 um total to this term; 17 um per telescope.  This 
term of the error budget is a knowledge requirement – the values refer only to the 
unmodelable component – and thus it includes terms such as non-repeatable bearing 
noise, unmodeled flexure, and thermal deformation.  In practice this term should be 
manageable with good telescope design and an appropriate modeling strategy.  An 
existence proof would be measurements made of pivot quality of one of the Keck 
Interferometer outrigger telescopes.5  After fitting the measured azimuth and elevation 
runouts to 4th order harmonic models, the residual per telescope was ~10 um rms. 

2.2.3 Wide-angle baseline identification 
Understanding the 25 um allocation to this term requires an understanding of what 
defines the narrow-angle baseline.  Recall the dual star optical concept from Figure 4.  
While for wide-angle astrometry we articulate between stars by repointing the telescopes, 
for narrow-angle astrometry we articulate between stars by tilting a mirror in the star 
separator.  There’s no a priori reason why these baselines should be the same, i.e., the 
wide-angle baseline we carefully solved for above may be unrelated the narrow-angle 
baseline that we really care about. 
 
Normally the wide-angle baseline is defined as connecting the telescope pivot points as 
illustrated in Figure 5(a).  However, providing OPD measurements with adequate 



accuracy for narrow-angle astrometry will require end-to-end, or nearly end-to-end, laser 
metrology:  how does this affect the baseline definition?  
 

 
Consider Figure 5(b), which shows the metrology corner cubes (assumed subaperture) 
located at the telescope pivots, and accessible by both dual-star beam combiners.  In this 
case, the wide-angle and narrow-angle baselines are the same, leaving only one error 
term:  the accuracy in locating the fiducial on the pivot.  However, it’s not necessarily the 
case that the actual pivot is accessible this way. 
 
However, with reference to Figure 5(c), it turns out that we can put the corner cube 
anywhere in input space (i.e., prior to the first optic), as long as we define the baseline as 
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Figure 5.  Definition of the wide-angle baseline. 



the vector connecting the vertices of the corner cubes.  However, two questions – and two 
contributors the error budget – remain: a) How do you ensure that this new baseline is 
also the one solved for earlier, and b) How do you ensure that this is also the narrow-
angle baseline? 

2.2.4 Narrow-angle to wide-angle baseline transfer  
Ideally, one would solve for the narrow-angle baseline directly, analogous to solving for 
the wide-angle baseline.  Unfortunately, this is not generally possible, as ten’s of 
microarcsec a priori accuracy would be required for these baseline stars (although in 
principle some sort of ratiometric approach using reference narrow-angle pairs is not 
excluded).  In the remainder of the section we describe the approach for determining the 
narrow-angle baseline that was planned for the proposed Keck Interferometer outrigger 
project.5 
 
The approach used a pivot beacon near the real pivot (conceptually, located at the tertiary 
surface but in input space).  Using an auxiliary measurement system, this pivot beacon 
would be surveyed as the telescope was articulated, in order to transfer the beacon to the 
wide-angle baseline.  Inside the star selector, a metrology corner cube would be aligned 
to an image of the beam in order to define the narrow-angle baseline. 
 
Figure 6 shows a schematic star separator for a large telescope.  From left to right is the 
physical telescope pivot in the entrance pupil p1, which precedes the first optic in the 
system (nominally in the plane of the tertiary).  The box “Telescope Optics” includes all 
of the optics from the entrance pupil to the star selector.  The pupil reimager – part of the 
star separator – images the entrance pupil to the plane p2, which includes the metrology 
corner cube that ties together the two beam combiners.  Also in this plane (or very close 
to it) is an articulating star selector, in this implementation realized as an articulating 
beamsplitter, which reflects one star and transmits the other.   
 

 

Input plane p1
and pivot

Telescope optics Pupil reimager
Articulating 
Star selector

Reimaged pupil p2
+ metrology CC

Starlight

Starlight 1
+metrology

Starlight 2
+metrology

Image of met CC

Input plane p1
and pivot

Telescope optics Pupil reimager
Articulating 
Star selector

Reimaged pupil p2
+ metrology CC

Starlight

Starlight 1
+metrology

Starlight 2
+metrology

Image of met CC

 
Figure 6.   Schematic star separator. 



If the pupil reimaging is exact, the metrology corner cube is projected onto the pivot (or 
more precisely, onto a pivot beacon which has been tied to the pivot), and this transfer 
ties the narrow-angle baseline to the wide-angle baseline subject to some caveats.   In 
principle, this transfer can be aided by a camera on the beam-combiner side of star 
selector which images the conjugate planes p1 and p2, along with illumination of the 
metrology corner cubes and pivot beacon.  The caveats include acceptable control of 
beamwalk and aberration in the pupil reimager and in the telescope optics, as well as 
control of tolerances in the reimaging.  The tolerancing on the transfer are the wide-angle 
tolerances, i.e., the lateral mapping must be done with 25 um accuracy.  There is also a 
relatively loose longitudinal tolerance δz: we require ½θ2δz << 5 nm, which requires δz 
<< 1 m. 

2.3 OPD measurement noise 
OPD measurement noise δl refers to errors in measuring the “internal pathlength” of 
Figure 1, to which we had allocated 5 nm in Sec.  2.1.  The sources of error in this 
measurement include laser metrology accuracy, beam walk errors, thermal stability, DCR 
(mostly from air, but also other dispersive material), and environmental stability. 

2.3.1 Laser metrology accuracy 
To first order, if one wanted to keep this portion of the measurement noise term to 1 nm 
over the 100 m pathlengths within the interferometer, laser metrology accuracy of ~10-11 
would be required.  While certainly possible, commonly-used stabilized lasers have 
accuracy of order 10-8.  However, it is possible to design the instrument such that the 
metrology need only be accurate over the ten’s of mm of OPD articulation range as one 
switches between stars, in which case the required accuracy is now 10-7.  One way to 
achieve this is to use the same laser source for all of the metrology beams, in which case 
errors in the large common-mode paths of primary and secondary drop out. 

2.3.2 Beam walk 
As we’re worried about system accuracies of nanometers, we need to account for the fact 
that optical surface are not smooth at the nm level.  A λ/20 surface in reflection 
introduces a wavefront error across the optic of ~13 nm rms; 16 such surfaces in series, 
assuming RSS combination, leads to 50 nm rms errors.  If these effects are static, they 
just impact Strehl.  However for astrometry, this wavefront error can introduce errors 
when beams walk across the optics.  While thermal drift and seeing compensation can 
introduce beam walk, it also gets introduced by switching between stars in the star 
selector.  With reference to Figure 6 , for which the star selector mirror is conjugate to the 
input pupil, as the star selector mirror is articulated, there will be beam walk on the 
telescope optics. 
 
The error from beam walk can show up in two ways.  One is from changes in an 
unmonitored path as a beam walks; the second is from differences between the path seen 
by starlight, which typically represents an average of the wavefront over a large diameter, 
vs. the path seen by laser metrology, which will typically be subaperture and sample a 
much smaller fraction of the wavefront. 
 



One can do a stochastic analysis of the problem.6  Subject to a number of assumptions, 
the rms beam walk error ε can be approximated as 
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where w is the total rms wavefront over an (effective) optic of diameter D’, ∆ is the 
transverse beam walk, and q is diameter of the footprint of the illumination on the optic.  
If q = D, where D is the diameter of the starlight footprint, Eq. 8 gives the change in OPD 
as the beam translates by a distance ∆.  Alternatively, if q = d, where d is the diameter of 
a subaperture metrology beam in the middle of the starlight beam, d << D, then Eq. 8 
gives the errors caused by different sampling of the wavefront by the metrology vs. the 
starlight as the beams translate, together, by distance ∆. 
 
As an example, consider a D’= 20 cm optic with w = 50 nm rms (representing 16 optics 
in series, as described above), a metrology diameter d = 2 cm (small compared to an 
assumed starlight diameter D = 10 cm), and a shear ∆ = 1 cm: Eq. 8 predicts an error 
~25 nm rms, which is ~5 time larger than the estimated change in OPD seen by the 
starlight footprint.  This analysis is very approximate, and likely pessimistic, but 
illustrates the nature of the issue, and the perhaps surprising result that metrology of a 
common mode path subject to beamwalk can introduce errors.  Note that large aspheres 
can have significant zonal errors, which could be a larger effect than that given above; on 
the other hand, in smaller diameters, superpolished (λ/100) optics are available which 
could be useful for critical locations. 

2.3.3 Thermal stability 
Even if you meter everything, you still need to introduce the metrology into the starlight 
path in a way that doesn’t introduce its own complications.  As an example, suppose you 
introduce the metrology from behind the starlight beamsplitter into the center of pupil, 
but add two small polarizers in the center of the beam which are seen by just the 
metrology. How stable do these non-common optics need to be? 
 
The thermo-optical constant G measures the change in OPD with temperature as an optic 
changes in size and refractivity, viz. G ≈ N×CTE + dN/dT , where CTE is the ordinary 
coefficient of thermal expansion and N is refractivity, N = n-1.  As an example, BK7, a 
common optical glass, has G = 7x10-6, such that a 10 mm thickness introduces an OPD 
error of 70 nm K-1.  While better glasses exist, it is better to design out the problem.  One 
way is an approach with no non-common optics; another is to design the observation 
scenario such that stability is only required over a short switching timescale.  The latter 
approach, using the design of the observational scenario, is helpful for dealing with many 
sorts of systematic errors, including those we’ll be discussing below. 

2.3.4 Differential chromatic refraction (DCR) 
While vacuum delay lines (and vacuum beam pipes), in principle, make most of this 
problem go away (leaving only a small second order term due to curvature of the Earth), 
many interferometers use air delay lines, and are thus sensitive to dispersion of air in the 
internal interferometer paths. Consider the effect of star color.  The change in 



refractivity7 of dry air at 1 atmosphere is ∆N ≈ 3.0x10-9 between λ = 2.20 um and 
2.21 um, i.e., for a δλ = 10 nm wavelength uncertainty.  For 100 m of total pathlength, 
this corresponds to an error of 300 nm, which is much larger than our allocation of 5 nm 
for all measurement errors.  To first order, the implication appears to be that the starlight 
wavelength must be known δλ ~ 0.1 nm.  It’s worth noting, for context, that DCR is a 
major problem for all ground based astrometry. 
 
Fortunately, the beam combiner will (or should!) include a least a low resolution 
spectrometer.  In principle, with 10 nm spectral channels, the change in effective 
wavelength for a change in stellar temperature from 5000 to 6000 K is ~0.001 nm, much 
better than required.  In addition, absolute calibration is not required.  Thus the practical 
requirement is on spectrometer stability: the spectrometer must be stable to ~0.1 nm, i.e., 
to ~1% of channel width, over a switching cycle.  This is also challenging, but more 
achievable than absolute wavelength knowledge.  To achieve the requirement requires a 
stable camera design and environment, and most likely a single-mode fiber feed to ensure 
a stable MTF.  However, likely equally essential, is a fast-switching observational 
scenario to reduce the time scale for spectrometer stability and to allow averaging of 
errors over multiple cycles 

2.3.5 Environmental stability 
As the metrology and starlight will typically be at different wavelengths, stability of the 
dispersive interferometer environment is also important.  For metrology at 1.3 um and 
starlight at 2.2 um, the difference in dry air refractivity at 1 atmosphere is 0.6×10-6.  Dry 
air refractivity is dependent on inverse (absolute) temperature, so the temperature 
dependence is 2×10-9

 K-1, or 200 nm K-1 for a 100 m pathlength.  You can also do a 
similar calculation for changes in relative humidity, yielding 80 nm per percent change in 
relative humidity.8  Note that these effects are considerably larger with common HeNe 
(633 nm) metrology, with values of 1200 nm K-1 for temperature and 150 nm %-1 for the 
two terms. 
 
These numbers are again tight compared with the 5 nm allocation for all measurement 
errors.  However, this is a conservative analysis, not only because the path may actually 
be less than 100 m if one observes close to zenith and accounts for the reduced 
atmospheric pressure at an observatory, but primarily because the light from the two stars 
is likely traversing the same air in the lab, i.e., the beams are likely side-by-side, ten’s of 
cm apart.  In this case, most of the error, except over the ~10 mm OPD difference 
between stars, drops out, leaving only variations over 10 cm scales which should rapidly 
average out.  In addition, a fast-switching scenario also greatly reduces stability 
requirements for this term, too.  

2.4 Fringe measurement noise 
Fringe measurement noise δφ refers to errors in measuring the residual fringe phase, 
which is used to correct the OPD measurement described above. We had allocated 5 nm 
to this term in Sec.  2.1. 
 



Absent camera stability, which we discussed above, if you work at null (i.e., φ = 0) there 
are no errors in this category; of course you won’t be working exactly at null.  One 
significant effect is that even if your phase referencing is perfect, there would still be 
group delay fluctuations due to water vapor turbulence as well as to the increase in dry-
air path with earth rotation, as illustrated9,8 in Figure 7.  In principle, group-delay 
feedforward to an ADC from the phase reference combiner could be used to reduce the 
size of the fluctuations, somewhat analogous to the dispersion control used for the KI 
nuller.10 

 
Absent dispersion control, to first order you need accuracy from the fringe engine of 
5 nm over a range of 2.2 um from all effects.  This accuracy must also apply in the 
presence of small rates due to tracking errors.  The sources of errors include wavelength 
calibration, finite coherence (largely addressed with a spectrometer), and phase 
measurement linearity, including linearity of OPD modulation.  The needed total 
accuracy is 0.2%, which should be achievable with care.  Note that this is a place where a 
slow dither could be useful to provide some degree of cyclic averaging  

2.5 Summary: systematic errors 
Controlling the systematic errors associated with interferometer baseline, OPD 
measurement, and fringe measurements is challenging and must be addressed 
deliberately.  In particular, identification of the narrow-angle baseline is a unique 
problem for astrometry with a star separator.  The fact that we are making a differential 
measurement is very useful for reducing the effect of certain error sources, as is the 
ability to devise an observational scenario which uses a fast-switching approach. 
 
Figure 8 shows raw data from the PTI dual-star astrometry experiment.11  For this 
experiment, the first beam combiner always tracked one of the two stars.  The second 
beam combiner rapidly switched between the two stars, and that OPD is shown in the 

 
Figure 7.  Group delay minus phase delay vs. total delay at PTI 
(adapted from Akeson et al. 2000). 



figure.  The metric for L2 processing was the difference between the secondary star 
measurements and an interpolated reference from the primary star.  Several metrology 
discontinuities are evident in the data; however, with the fast switching approach, they 
affect at most one 6 minute data segment.  More generally, only deviations from a linear 
trend over the over the switching cycle introduce astrometric errors.    

 

3 Sensitivity 
The squared phase SNR is given by the usual formula 
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which assumes a 4-bin algorithm, and where N is total detected photons (both apertures), 
V is fringe visibility, B is background photons, and R is detector read noise variance.  
The astrometric error e for SNR S is given by 
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For λ = 2.2 um and B = 100 m, 20 uas astrometry requires an SNR of 36 (this is for the 
faint star: the astrometric error on the bright star should be negligible).  Because of the 
narrow fields of view in a dual-star measurement, attention must be paid to maintaining a 
high SNR.  This includes not only maximizing throughput, N, but also minimizing 
coherence losses, V2.    

3.1 Detected flux 
Assuming a single-mode combiner, the number of detected photons is just N = αSF, 
where α is the effective instrument throughput, including warm and cold loss, mode 
matching, detector encircled energy, read-out duty cycle, etc. The Strehl S is the product 
of the three terms below. 

Beam train Strehl, Sb 
For 100 nm rms per arm, and a science wavelength of 2.2 um, this term is Sb ~ 90%, and 
should not dominate the throughput. 
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Figure 8.  Raw OPD from PTI dual-star experiment. 

 



Residual wavefront error after correction, Sw 
For a small telescope, tip/tilt correction may be adequate for infrared wavelengths under 
good seeing conditions; here is a rough numerical example.  For Kolmogorov turbulence, 
if you fully correct the tilt error, the wavefront variance decreases from 1.03 (D/r0)5/3 to 
0.134(D/r0)5/3 rad2.  In reality, some tilt residual will remain, attributable to coma 
anisoplanatism (sensing tilt using a centroid rather than a wavefront sensor), finite 
temporal sampling and servo bandwidth, and sensor noise.  If you assume the residual of 
these three effect is 5% of the variance of the tilt component, then for D = 1.8 m and r0 = 
15 cm, the rms residual is 300 nm, and Strehl Sw ~50% at 2.2 um; the value degrades 
rapidly with poorer seeing.  With higher order correction, say from a low-order curvature 
system, considerably better performance is possible.  This is a somewhat simplistic 
analysis: the main point is that finite Strehl decreases effective throughput. 

Anisoplanatism error from off-axis wavefront correction, Sa 
As the faint star will be off-axis from the bright star used for tilt correction, there will be 
a tilt isoplanatism error.  We can estimate the Strehl from tilt errors as12 S=1/(1+σ2

TILT), 
where σ2

TILT = 2σ2
1/ (0.637λ/D)2, and σ1 is the one-axis tilt error.  The tilt anisoplanatism 

error is very site- and seeing-dependent, and is also a function of the telescope 
diameter.13  Assuminga a very approximate value σ1 = 0.35 urad at 15” off-axis, Sa = 
70%.  Again, this is a somewhat simplistic analysis, and is again to emphasize the point 
of the effect of finite Strehl. 

3.2 Coherence loss 
The coherence term V2 in Eq. 9 includes contributions from atmospheric anisoplanatism, 
imperfect cophasing, and residual instrumental effects. 

Isopistonic angle 
Anisoplanatism between the phase reference star and the target star reduces fringe 
visibility, reducing sensitivity. We compute the coherence loss using the usual Marechal 
approximation as V2 = exp(σ2).  In the limit of point apertures, infinite baseline, and 
infinite outer scale, the residual variance is given by14 σ2 = 2(θ/θ0)5/3  rad2, where θ0 is 
the isoplanatic angle θ0 = 0.31 r0/h5/3.  However, this formula overestimates the coherence 
loss for finite apertures and realistic baseline and outer scale assumptions.  In this 
context, the coherence term is usually described in terms of the isopistonic angle,15 which 
is sometimes normalized to λ/10 m rms, vs. 1 radian rms for isoplanatic angle.  Ref. 15 
estimates the λ/10 isopistonic angle for a VLT unit telescope of θp = 16.1” at 2.2 um, 
with a variance dependence for the error of σ2 ∝ (θ/θp)2.  No value is given for an AT, 
but we estimate here ~10” given its smaller diameter; clearly all values are strongly site- 
and seeing-dependent.  For this value, the coherence at a typical 15” star separation is V2 
≈ 40%.  This term is thus one of the larger contributors to the total SNR, and actual dual-
star measurements at the site are clearly needed. 

a We estimate using Fig. 7.38 in Hardy (1998), multiplying by two to convert the result from a 4” visible 
isoplanatic patch to more typical 2”. 

                                                 



Cophasing time delay 
In principle, this term is given by σ2 = (Td/τ02)5/3 rad2, where Td is the end-to-end 
cophasing time delay and τ02 is the two-aperture first-difference coherence time.  The 
time delay depends upon the integration time on the bright star as well as the overall 
control architecture.  However, residual instrument vibrations also contribute.  Adopting 
200 nm rms, based on achieved performance with the KI nuller cophasing system,10 
yields a coherence term of V2 = 70%.  Clearly, optimization of this system is important. 

Instrument coherence loss 
This catch-all term encompasses those terms that contribute to a non-unit visibility on an 
unresolved bright star observed at the maximum frame rate:  we would expect V2 = 80–
90%. 

3.3 Summary: sensitivity 
Note that for the faint star at K band, that the background term, which is traditionally 
ignored for bright-star interferometry, can dominate the denominator of Eq. 9.  In 
addition, do not underestimate the read noise term, as the detector must be read out fast 
enough to perform at least some low-bandwidth angle tracking. 
 
A detailed throughput calculation is beyond the current scope. However, there are points 
to emphasize.  The first is that, without care, SNR can dominate over the other terms.  
Thus, it’s important to optimize those instrument factors that affect throughput, Strehl, 
and coherence; clearly, there’s less that one can do about the fundamental atmospheric 
coherence terms.  To further improve SNR, one could consider simultaneous K+H 
observations; this would require incorporation of an ADC into the system, but that might 
be driven by other considerations. The second point is the big improvement with 
baseline: with a baseline of 200 m, vs. the nominal 100 m assumed above, you need ½ 
the SNR, or ¼ the integration time, to achieve the same astrometric performance. 

4 Conclusions 
This article has primarily addressed dual-star interferometry for astrometry.  However, 
the technique is also well suited for imaging, too.  For this case, most of the systematic 
effects in Section  2 don’t matter as much; however, all of the SNR issues remain 
relevant.  Some things to consider for imaging applications: a) cophasing 
implementation:  feedback vs. feedforward, and performance with instrument vibrations; 
b) water vapor dispersion: if the reference and science wavelengths are different, this 
needs to be accounted for; c) correlation of phase-referencing light with the science light 
(dispersion, metrology, etc.); d) practical issues: acquiring faint stars, providing some 
control bandwidth on the faint star, and optimizing the observing sequence 
 
In conclusion, astrometry at ten’s of uas is allowed through the terrestrial atmosphere for 
a long-baseline dual-star interferometer.  However, the fundamental atmospheric limit is 
only one part of total instrument performance budget. Careful control of systematics is 
required, for the astrometric baseline, and for internal OPD and fringe measurements.  
Note in particular that the astrometric baseline for narrow-angle astrometry is generally 



different than the usual wide-angle baseline.  Beyond systematics, it’s important to pay 
attention to SNR in order to optimize performance on faint stars:  high SNR also just 
makes the measurements easier and faster. 
 
Some approaches for systematic control and optimization of SNR were described; better 
approaches are surely possible.   However, a couple of generally powerful approaches 
should be part of any implementation:  a fast switching architecture, to minimize the time 
scale over which stability is required, and use of longest baseline possible, limited by 
resolution of the target star, to exploit the inverse dependence on baseline of all error 
terms. 
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