
 1

Towards Certification of a Space System
Application of Fault Detection and Isolation

Martin S. Feather and Lawrence Z. Markosian

Abstract—Advanced fault detection, isolation and recovery

(FDIR) software is being investigated at NASA as a means to the
improve reliability and availability of its space systems.
Certification is a critical step in the acceptance of such software.
Its attainment hinges on performing the necessary verification
and validation to show that the software will fulfill its
requirements in the intended setting.

Presented herein is our ongoing work to plan for the
certification of a pilot application of advanced FDIR software in
a NASA setting. We describe the application, and the key
challenges and opportunities it offers for certification.

Index Terms—Certification, Fault detection and isolation,
Modeling, Risk Analysis, Software verification and validation,
Testing

I. INTRODUCTION
ASA has a long-standing interest in health
management[1]. The context for the work reported

herein is an ongoing project to improve the reliability and
availability of NASA’s manned space systems through health
management technologies that perform system-wide
integration and analysis of health data. The project is
simultaneously following several opportunities for infusing
health management applications into actual space system
settings. One of these opportunities is pursuing use of
advanced fault detection, isolation and recovery (FDIR)
software during the several days or weeks of preparation and
test of a space system prior to launch. The project plan calls
for this software to be fed actual data from the sensors located
both on the space system itself, and on the Ground Support
Equipment (GSE) used to prepare and test the space system,
and to execute, in real time, on computing platforms located at
the launch facility. From this sensor data the software is to
perform all the functions of FDIR – detecting when a fault has
occurred, isolating where it is, and recommending the

recovery action (e.g., repair/replacement or perhaps further
diagnosis). Some especially stringent requirements on
reliability and availability for launch motivate the need for the
advanced FDIR technologies that this project will deploy,
since they offer the potential to speed up fault detection,
diagnosis and recovery, and thus avoid launch slips without
compromising safety. Since the FDIR system will ultimately
be used to make launch control decisions affecting manned
space vehicles, it will need to be certified to the highest
integrity standards, those defined in the NASA Human Rating
Requirements

Manuscript received Aug 15th, 2008. Research described in this paper was

carried out at NASA Ames Research Center and at the Jet Propulsion
Laboratory, California Institute of Technology, under a contract with the
National Aeronautics and Space Administration.

M. S. Feather is with the Jet Propulsion Laboratory, California Institute of
Technology, Pasadena, CA 91109 USA (corresponding author to provide
phone: 818-354-1194; fax: 818-393-1362; e-mail:
Martin.S.Feather@jpl.nasa.gov).

L. Z. Markosian, is with Perot Systems Government Services at NASA
Ames Research Center, Moffett Field, CA 94035 USA (e-mail:
Lawrence.Z.Markosian@nasa.gov).

[2].
The initial deployment will be a proof of concept, operating

on the actual data from the launch preparation, and yielding
FDIR conclusions. Thus it will provide key evidence towards
validation of the system. Initially its conclusions will not be
part of the formal launch control or decision process, so for
this initial deployment, certification to the human rating
requirements is not necessary; it is sufficient to show that
inclusion of the FDIR software does not degrade the operation
of the existing launch control software. Ultimately, however,
certification of this software to the human rating requirements
will be required.

Our concern is that the verification and validation (V&V)
that forms the basis for such certification, has in the past been
identified as a challenging area [3]. More recently, in [4] it is
reported that health management software is “often inherently
complex and difficult to validate”. In past papers we too have
discussed V&V challenges [5], and have suggested that some
of the maturing technologies for V&V will be well suited to
addressing some of those challenges [6]. As part of the current
project, we are tasked with establishing what it will take to
certify the specific health management technologies under
consideration, and then to actually perform (as much as
possible of) the V&V that would underpin the certification of
a selected one of those technologies. This paper summarizes
our efforts to date in this regard.

II. CERTIFICATION

A. Definition
The definition of software certification that applies to this

work is as follows [7]:
Certification is a verification product that is the

authenticated evidence by authorized parties that a product or
process meets specified requirements.

Qualification is the verification process of confirming that a

 N

 2

software system (or subsystem) is capable of satisfying its
specified requirements in its operational environment and if
successful, results in certification.

 Note that verification lies at the heart of this definition, and
that it is with respect to the requirements levied on the system
within its “operational environment”, which bounds the scope
of verification.

B. Architecture

The overall architecture of the project’s FDIR application to
do the steps of fault detection and isolation is sketched in Fig.
1. This diagram conveys both design time information flow
and runtime information flow for the FDIR system. Design
time information is used to create the several artifacts (sensor
value processing code, fault probabilities, and mapping from
sensor pass/fail test results to component failures) which are
then used at run time to process sensor values and yield health
status and diagnosis information. Sensors are present on both
the space system being prepared and tested for launch, and the
GSE being used to conduct those preparations and tests.

Design time inputs include information about the space
system and the GSE that is used to prepare and test that
system. Examples of such information include schematics,
Failure Modes and Effects Analyses (FMEA), Reliability
Block Diagrams, Hazard Analyses and Fault Trees. This
information is used at design time to guide the development of
sensor value processing code, fault probabilities, and fault
propagation paths. A commercially-available modeling
product, TEAMS Designer® from Qualtech Systems, Inc.
(QSI), is used to generate a dependence matrix (D-matrix) – a
compact representation of the relationship between pass/fail
observations and failures. Design-time construction of the D-
matrix for use in run-time reasoning is a hallmark of QSI’s
approach – one of its advantages is that it enables run-time
reasoning to be performed efficiently. As we will see, it also

allows an appealing option for V&V to be organized around
the D-matrix structure.

Inputs to the runtime diagnostic software, TEAMS-RT®,
include the D-matrix, the probabilities of individual faults
(used to rank by likelihood the different sets of faults it finds
to account for a given set of symptoms), and two run-time
data sources: (1) sensor data to the sensor data processing
code, which converts the data (typically readings of various

physical parameters) into pass/fail indications, for
example, by comparing a pressure value to a threshold,
and by filtering noise; and (2) a command stream input,
which provides indications of steps within the
preparation and testing process–e.g., if some test of the
space system is initiated, then the TEAMS-RT needs to
be informed of that event to know that the sensor
values should start to indicate responses to the test.

III. V&V APPROACHES
Certification rests upon adequate and successful

V&V. In turn, V&V relies upon a combination of
process assurance and product assurance. Process
assurance is supported by following a sufficiently
rigorous and documented development process.
Product assurance is supported by the product’s passing
a sufficient battery of tests, analyses, inspections, and
demonstrations.

Precursor testing of the FDIR software on actual
space systems elements and/or GSE prior to the actual
prelaunch phase (e.g., during testing of the individual
subsystems within their respective test facilities) also

contributes to the certification process.

IV. WHAT COULD GO WRONG
There is currently a draft set of requirements that apply to

the diagnostic system as a whole. Many of the requirements
are relatively general concerns (e.g., data compatibility with
its operating environment). The functional requirements
specific to the purpose of diagnostics – fault detection and
isolation – are the ones that pose the novel challenges to V&V
and certification, e.g., those that limit the allowable false
negative and false positive detection rates. (A false negative is
when the diagnostic system fails to report an actual fault in the
space system or GSE; a false positive is when it reports a fault
that has not actually occurred). For example, false positives
might be limited to no more than one per 8 hours.

To address these requirements, we have begun to list the
ways that the diagnostic system could fail to meet its
requirements. Fig. 2 shows the beginning portion of our start
at a top-down fault tree for the false negative case. We can see
that this fault tree includes both faults that originate from
outside the diagnosis system (e.g., 1.1.1), and faults that
originate from within the diagnosis system itself (e.g., 1.3.2).

Figure 1 – FDIR Architecture

Certification of the diagnostic system will need a major
focus on the correctness of the diagnosis system itself. For this
purpose we next consider what V&V methods might be

 3

applied. For example, end-to-end tests in which the diagnosis
system is hosted within a simulated environment (during
which time faults of the space system or GSE are simulated to
test whether the diagnostic system responds correctly) can be
designed to reveal diagnostic system faults.

V. CERTIFICATION CHALLENGES
This section lists the major challenges faced by certification

of this FDIR application.

A. COTS and GOTS software
 The project plans to use Commercial Off The Shelf (COTS)
software as part of the run time system, specifically TEAMS-
RT. Also, at design time, in addition to making use of
TEAMS Designer, it uses the Spacecraft Health Inference
Engine (SHINE), developed by NASA, to compile rule-based
specifications into time- and space-efficient sensor data
processing code.

The relevant Software V&V standards require that COTS
and GOTS software included within the application be
certified to the same integrity levels as those required for the
application as a whole. This therefore applies to TEAMS-RT.
Conversely, since TEAMS-Designer and SHINE are used
only at design time, they may not need to be certified – instead
just the products of their use, which will be part of the
application, will need certification. Nevertheless, there are
reasons to consider whether and how we might certify the
design-time tools, discussed next.

B. Code generation
Both TEAMS-Designer for generation of the D-matrix, and

SHINE for generation of the sensor value processing code, are
akin to code generators. The two approaches to certification of
code generation are: certify the code generator and its inputs
vs. certify the code that is generated. The pros and cons of the
former approach with respect to the latter are as follows:
• Pro: Promises to reduce the recertification effort: when

there is need to adapt to a change (e.g., a change to the GSE),
if the code generator has been certified, the main
recertification effort will be to verify the changed inputs to
that generator. The burden of retesting its (changed) outputs to
verify their correctness will be circumvented (however they
will still be involved in testing for purposes of overall
validation). 1 False negative - space system or GSE fault not noticed

1.1 Design-time inputs incorrect
1.1.1 Space system and/or GSE information incorrect

1.2 Run-time inputs incorrect
1.2.1 Sensor values incorrect / missing
1.2.2 Command stream information incorrect

1.3 Run-time problems at interfaces between systems
1.3.1 Sensors - Sensor processing code interface problems
1.3.2 Sensor processing code - TEAMS-RT interface

problems
1.3.3 TEAMS-RT - TEAMS-RT (D-matrix modification)

interface problems
1.3.4 TEAMS-RT - GUI code interface problems
1.3.5 GUI code - GUI hardware interface problems

1.4 Diagnostic activities flawed
1.4.1 Fault effect model incorrect

1.4.1.1 Missing model elements
1.4.1.2 Incorrect model elements

• Pro: Offers the option of a different architecture that uses
the code generation at run-time.
• Con: Certification of the generator is likely to be a
considerably greater effort than certification of its output.
• Con: To minimize the effort of certifying code generators,
certification, is usually done with respect to a circumscribed
range of constructs and combinations thereof expected to be
utilized during input to the code generator. There would thus
be the need to determine what that range is.
• Con: Might involve revisiting the development process of
the code generation software, which could be a potentially
large endeavor.
• Con: We note that there are relatively few instances of code
generation tools having been certified. In general, even
language compilers are rarely certified to the highest integrity
levels. This makes us wary of following this course.

...

Figure 2 – Fault Tree (part of) for False Negative In our case, we believe that for the sensor value processing
code generation the preferred approach will be to certify the
generated code rather than the generator (SHINE). In addition,
colleagues of ours have developed a promising approach to
automating the generation of test cases to provide adequate
test case coverage of code of this nature [8][9]. Likewise for
TEAMS-Designer, our preferred approach is to certify the D-
matrix it generates rather than TEAMS-Designer itself.

An option that we have not fully investigated is to define a
subset of TEAMS Designer that is sufficient to generate the
D-matrices but lacks many of the ancillary design-level
features of the complete tool, and certify only this subset.

C. Reliance upon models and simulators
This FDIR application’s development depends critically on

both the correctness of the models (schematics, FMEAs etc)
that are input to its design, and the simulations (GSE and
space system simulators) that will be needed to test it.

NASA has established standards for model and simulation
accreditation [10]. This task will need to establish what is
needed of the input models and simulations. For example, it
must establish the level of fidelity and accuracy required of
the simulations that will be used for testing.

D. Test effort
Since the application needs to detect faults, we will have to

thoroughly test that it does so. This will require a large
number of tests, due to the following factors:
• There are anticipated to be dozens, possibly hundreds of
individual fault classes that are of direct interest.
• A given fault could occur at different phases in the space
system preparation and test sequences and therefore will
require tests in the context of each of those phases.

 4

• Sequences of faults may occur, greatly expanding the set of
contexts in which an individual fault appears. However, since
it is likely that the first discovery of a fault will be grounds for
interrupting the preparation and testing process, we may not
need to handle this for more than a few cases.

These tests will need to be executed in the context of the
(accredited) simulations of the vehicle and GSE, checking that
a deliberately simulated fault is correctly detected and
reported by the application. Test automation will be vital,
including test case generation, test execution (which
encompasses driving the vehicle and GSE simulations as well
as the application under test), evaluation of the correctness of
the application’s outputs, and test results logging. We are
optimistic that the construction of “reference
implementations” [11] of critical components (e.g., TEAMS-
RT) will serve as “test oracles” for determination of
correctness.

E. Recertification
It is almost inevitable that changes will be made to the

space system and/or the GSE used to prepare and test it. These
will lead to changes to FDIR’s design-time inputs (e.g.,
changed schematics, changed fault probabilities, changed
FMEA information) and possibly to its runtime inputs (e.g., an
additional input from a new sensor). What it will take to
recertify FDIR in light of such changes? For traditional
software code, it is acceptable to achieve recertification by
performing a dependency analysis on the changes to
determine what subset of the original tests, inspections,
analyses and demonstrations need to be redone. We are
optimistic that an analogous approach will be acceptable for
this application. There are several steps we can take to make
this easier:
• Identify model development practices for how to model the
spacecraft system and its GSE with TEAMS-Designer so as to
minimize the extent of change to the model and, critically, to
the D-matrix that results from that model. Our colleagues
doing the modeling have already performed some experiments
designed to reveal what some of those practices should be.
• Provide support for analyzing and presenting the
ramifications of input changes – for example, we may imagine
a “diff”-like capability for comparing two D-matrices.
• Find ways to decompose models such that changes to one
sub-model will not affect the others, and so that recertification
will need to focus primarily on the component that changed.

VI. CONCLUSION
The purpose of our work is to decide how best to approach

the certification of a NASA space system FDIR application
that utilizes novel health management technologies. Because
of those novel technologies, we do not assume that standard
V&V approaches will be the most appropriate or even
sufficient. Instead, we examine how the application could
potentially fail. This leads us to identification of the V&V
practices needed to show absence of those points of failure.
Some are standard V&V practices, to be applied in standard

ways (e.g., checking consistency of software interfaces).
Others prompt consideration of distinct choices (e.g., whether
to attempt certification of the equivalent of code generators or
instead to focus V&V on the generated artifacts). Some are
motivated by generic concerns (level of effort of testing) but
highly specific to the health management technologies in
question as regards their feasibility and implementation (e.g.,
construction of reference implementations to serve as test
oracles). As is commonly so, there are instances where
choices among development alternatives have significant
V&V ramifications, in which case it is important to recognize
those early on, and choose accordingly. Our perspective on
V&V challenges has helped us recognize some cases that stem
from the novel technologies in use (e.g., different styles of
TEAMS modeling that give rise to widely different numbers
of artifacts to be subsequently V&V’d). The more general
conclusion we draw from this is the value of rethinking V&V
when novel technologies are being deployed.

ACKNOWLEDGMENT
The research described in this paper was carried out at

NASA Ames Research Center and at the Jet Propulsion
Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space
Administration. The authors thank the entire FDIR
development team for their insights and advice, and especially
for their patience with our many questions.

REFERENCES
[1] First International Forum on Integrated System Health Engineering and

Management in Aerospace Nov 7-10 , 2005, Napa, CA:
http://ti.arc.nasa.gov/projects/ishem/index.php

[2] NASA Human-Rating Requirements for Space Systems. NPR 8705.2B,
2008.

[3] G.B. Aaseng, “Blueprint for an Integrated Vehicle Health Management
System,” Proceedings of the 20th Conference on Digital Avionics
Systems, October 2001, pp. 3C1/1 – 3C1/11 vol. 1.

[4] R. Mackey, “Technology Readiness Levels and Maturation Approaches
for Integrated System Health Management Technologies,” Proc. of the
Integrated System Health Engineering Management Conf., Nov.2005.

[5] L. Markosian, M.S. Feather and D. Brinza, “V&V of ISHM for Space
Exploration,” Proc. of the Integrated System Health Engineering
Management Conf., Nov. 2005.

[6] M.S. Feather and L.Z. Markosian, “Emerging Technologies for V&V of
ISHM Software for Space Exploration,” Proc. of the IEEE Aerospace
Conf. Big Sky, MT, March 2006.

[7] Constellation Program Software Verification and Validation Plan. CxP
70086, 2007.

[8] Saswat Anand, Corina S. Pasareanu, Willem Visser, “JPF-SE: A
Symbolic Execution Extension to Java PathFinder,” Proc. of the
Thirteenth International Conf. on Tools and Algorithms for the
Construction and Analysis of Systems, 24 March – 1 April 2007.

[9] Corina S. Pasareanu, Peter C. Mehlitz, David H. Bushnell, Karen
Gundy-Burlett, Michael Lowry, Suzette Person and Mark Pape,
“Combining Unit-level Symbolic Execution and System-level Concrete
Execution for Testing NASA Software”, ISSTA, Seattle, 2008.

[10] NASA-STD-7009 Standard for Models and Simulations. 07/08/2008
http://standards.nasa.gov/released/NASA/NASA_STD_7009_APPROV
D_2008_07_11.pdf

[11] P. Curran, “Conformance Testing: An Industry Perspective”, Sun
Microsystems.

http://ti.arc.nasa.gov/projects/ishem/index.php
http://standards.nasa.gov/released/NASA/NASA_STD_7009_APPROVD_2008_07_11.pdf
http://standards.nasa.gov/released/NASA/NASA_STD_7009_APPROVD_2008_07_11.pdf

	I. INTRODUCTION
	II. Certification
	A. Definition
	B. Architecture

	III. V&V Approaches
	IV. What Could Go Wrong
	V. Certification Challenges
	A. COTS and GOTS software
	B. Code generation
	C. Reliance upon models and simulators
	D. Test effort
	E. Recertification

	VI. Conclusion

