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Towards Certification of a Space System 
Application of Fault Detection and Isolation 

Martin S. Feather and Lawrence Z. Markosian  

 
Abstract—Advanced fault detection, isolation and recovery 

(FDIR) software is being investigated at NASA as a means to the 
improve reliability and availability of its space systems. 
Certification is a critical step in the acceptance of such software. 
Its attainment hinges on performing the necessary verification 
and validation to show that the software will fulfill its 
requirements in the intended setting.  

Presented herein is our ongoing work to plan for the 
certification of a pilot application of advanced FDIR software in 
a NASA setting. We describe the application, and the key 
challenges and opportunities it offers for certification. 
 

Index Terms—Certification, Fault detection and isolation, 
Modeling, Risk Analysis, Software verification and validation, 
Testing  
 

I. INTRODUCTION 
ASA has a long-standing interest in health 
management[1]. The context for the work reported 

herein is an ongoing project to improve the reliability and 
availability of NASA’s manned space systems through health 
management technologies that perform system-wide 
integration and analysis of health data. The project is 
simultaneously following several opportunities for infusing 
health management applications into actual space system 
settings. One of these opportunities is pursuing use of 
advanced fault detection, isolation and recovery (FDIR) 
software during the several days or weeks of preparation and 
test of a space system prior to launch. The project plan calls 
for this software to be fed actual data from the sensors located 
both on the space system itself, and on the Ground Support 
Equipment (GSE) used to prepare and test the space system, 
and to execute, in real time, on computing platforms located at 
the launch facility. From this sensor data the software is to 
perform all the functions of FDIR – detecting when a fault has 
occurred, isolating where it is, and recommending the 

recovery action (e.g., repair/replacement or perhaps further 
diagnosis). Some especially stringent requirements on 
reliability and availability for launch motivate the need for the 
advanced FDIR technologies that this project will deploy, 
since they offer the potential to speed up fault detection, 
diagnosis and recovery, and thus avoid launch slips without 
compromising safety. Since the FDIR system will ultimately 
be used to make launch control decisions affecting manned 
space vehicles, it will need to be certified to the highest 
integrity standards, those defined in the NASA Human Rating 
Requirements 
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[2]. 
The initial deployment will be a proof of concept, operating 

on the actual data from the launch preparation, and yielding 
FDIR conclusions. Thus it will provide key evidence towards 
validation of the system. Initially its conclusions will not be 
part of the formal launch control or decision process, so for 
this initial deployment, certification to the human rating 
requirements is not necessary; it is sufficient to show that 
inclusion of the FDIR software does not degrade the operation 
of the existing launch control software. Ultimately, however, 
certification of this software to the human rating requirements 
will be required. 

Our concern is that the verification and validation (V&V) 
that forms the basis for such certification, has in the past been 
identified as a challenging area [3]. More recently, in [4] it is 
reported that health management software is “often inherently 
complex and difficult to validate”. In past papers we too have 
discussed V&V challenges [5], and have suggested that some 
of the maturing technologies for V&V will be well suited to 
addressing some of those challenges [6]. As part of the current 
project, we are tasked with establishing what it will take to 
certify the specific health management technologies under 
consideration, and then to actually perform (as much as 
possible of) the V&V that would underpin the certification of 
a selected one of those technologies. This paper summarizes 
our efforts to date in this regard. 

II. CERTIFICATION 

A. Definition 
The definition of software certification that applies to this 

work is as follows [7]: 
Certification is a verification product that is the 

authenticated evidence by authorized parties that a product or 
process meets specified requirements. 

Qualification is the verification process of confirming that a 

 N



 2

software system (or subsystem) is capable of satisfying its 
specified requirements in its operational environment and if 
successful, results in certification.   

 Note that verification lies at the heart of this definition, and 
that it is with respect to the requirements levied on the system 
within its “operational environment”, which bounds the scope 
of verification. 

B. Architecture 

The overall architecture of the project’s FDIR application to 
do the steps of fault detection and isolation is sketched in Fig. 
1. This diagram conveys both design time information flow 
and runtime information flow for the FDIR system. Design 
time information is used to create the several artifacts (sensor 
value processing code, fault probabilities, and mapping from 
sensor pass/fail test results to component failures) which are 
then used at run time to process sensor values and yield health 
status and diagnosis information. Sensors are present on both 
the space system being prepared and tested for launch, and the 
GSE being used to conduct those preparations and tests. 

Design time inputs include information about the space 
system and the GSE that is used to prepare and test that 
system. Examples of such information include schematics, 
Failure Modes and Effects Analyses (FMEA), Reliability 
Block Diagrams, Hazard Analyses and Fault Trees. This 
information is used at design time to guide the development of 
sensor value processing code, fault probabilities, and fault 
propagation paths. A commercially-available modeling 
product, TEAMS Designer® from Qualtech Systems, Inc. 
(QSI), is used to generate a dependence matrix (D-matrix) – a 
compact representation of the relationship between pass/fail 
observations and failures. Design-time construction of the D-
matrix for use in run-time reasoning is a hallmark of QSI’s 
approach – one of its advantages is that it enables run-time 
reasoning to be performed efficiently. As we will see, it also 

allows an appealing option for V&V to be organized around 
the D-matrix structure. 

Inputs to the runtime diagnostic software, TEAMS-RT®, 
include the D-matrix, the probabilities of individual faults 
(used to rank by likelihood the different sets of faults it finds 
to account for a given set of symptoms), and two run-time 
data sources: (1) sensor data to the sensor data processing 
code, which converts the data (typically readings of various 

physical parameters) into pass/fail indications, for 
example, by comparing a pressure value to a threshold, 
and by filtering noise; and (2) a command stream input, 
which provides indications of steps within the 
preparation and testing process–e.g., if some test of the 
space system is initiated, then the TEAMS-RT needs to 
be informed of that event to know that the sensor 
values should start to indicate responses to the test. 

III. V&V APPROACHES 
Certification rests upon adequate and successful 

V&V. In turn, V&V relies upon a combination of 
process assurance and product assurance. Process 
assurance is supported by following a sufficiently 
rigorous and documented development process. 
Product assurance is supported by the product’s passing 
a sufficient battery of tests, analyses, inspections, and 
demonstrations.  

Precursor testing of the FDIR software on actual 
space systems elements and/or GSE prior to the actual 
prelaunch phase (e.g., during testing of the individual 
subsystems within their respective test facilities) also 

contributes to the certification process.  

IV. WHAT COULD GO WRONG 
There is currently a draft set of requirements that apply to 

the diagnostic system as a whole. Many of the requirements 
are relatively general concerns (e.g., data compatibility with 
its operating environment). The functional requirements 
specific to the purpose of diagnostics – fault detection and 
isolation – are the ones that pose the novel challenges to V&V 
and certification, e.g., those that limit the allowable false 
negative and false positive detection rates. (A false negative is 
when the diagnostic system fails to report an actual fault in the 
space system or GSE; a false positive is when it reports a fault 
that has not actually occurred). For example, false positives 
might be limited to no more than one per 8 hours. 

To address these requirements, we have begun to list the 
ways that the diagnostic system could fail to meet its 
requirements. Fig. 2 shows the beginning portion of our start 
at a top-down fault tree for the false negative case. We can see 
that this fault tree includes both faults that originate from 
outside the diagnosis system (e.g., 1.1.1), and faults that 
originate from within the diagnosis system itself (e.g., 1.3.2).  

Figure 1 – FDIR Architecture 

Certification of the diagnostic system will need a major 
focus on the correctness of the diagnosis system itself. For this 
purpose we next consider what V&V methods might be 
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applied. For example, end-to-end tests in which the diagnosis 
system is hosted within a simulated environment (during 
which time faults of the space system or GSE are simulated to 
test whether the diagnostic system responds correctly) can be 
designed to reveal diagnostic system faults.  

V. CERTIFICATION CHALLENGES 
This section lists the major challenges faced by certification 

of this FDIR application. 

A. COTS and GOTS  software 
 The project plans to use Commercial Off The Shelf (COTS) 
software as part of the run time system, specifically TEAMS-
RT. Also, at design time, in addition to making use of 
TEAMS Designer, it uses the Spacecraft Health Inference 
Engine (SHINE), developed by NASA, to compile rule-based 
specifications into time- and space-efficient sensor data 
processing code. 

The relevant Software V&V standards require that COTS 
and GOTS software included within the application be 
certified to the same integrity levels as those required for the 
application as a whole. This therefore applies to TEAMS-RT. 
Conversely, since TEAMS-Designer and SHINE are used 
only at design time, they may not need to be certified – instead 
just the products of their use, which will be part of the 
application, will need certification. Nevertheless, there are 
reasons to consider whether and how we might certify the 
design-time tools, discussed next. 

B. Code generation 
Both TEAMS-Designer for generation of the D-matrix, and 

SHINE for generation of the sensor value processing code, are 
akin to code generators. The two approaches to certification of 
code generation are: certify the code generator and its inputs 
vs. certify the code that is generated. The pros and cons of the 
former approach with respect to the latter are as follows: 
• Pro: Promises to reduce the recertification effort: when 

there is need to adapt to a change (e.g., a change to the GSE), 
if the code generator has been certified, the main 
recertification effort will be to verify the changed inputs to 
that generator. The burden of retesting its (changed) outputs to 
verify their correctness will be circumvented (however they 
will still be involved in testing for purposes of overall 
validation). 1 False negative - space system or GSE fault not noticed 

1.1 Design-time inputs incorrect 
1.1.1 Space system and/or GSE information incorrect 

1.2 Run-time inputs incorrect 
1.2.1 Sensor values incorrect / missing 
1.2.2 Command stream information incorrect 

1.3 Run-time problems at interfaces between systems 
1.3.1 Sensors - Sensor processing code interface problems 
1.3.2 Sensor processing code - TEAMS-RT interface 

problems 
1.3.3 TEAMS-RT - TEAMS-RT (D-matrix modification) 

interface problems 
1.3.4 TEAMS-RT - GUI code interface problems 
1.3.5 GUI code - GUI hardware interface problems 

1.4 Diagnostic activities flawed 
1.4.1 Fault effect model incorrect 

1.4.1.1 Missing model elements 
1.4.1.2 Incorrect model elements 

• Pro: Offers the option of a different architecture that uses 
the code generation at run-time. 
• Con: Certification of the generator is likely to be a 
considerably greater effort than certification of its output. 
• Con: To minimize the effort of certifying code generators, 
certification, is usually done with respect to a circumscribed 
range of constructs and combinations thereof expected to be 
utilized during input to the code generator. There would thus 
be the need to determine what that range is. 
• Con: Might involve revisiting the development process of 
the code generation software, which could be a potentially 
large endeavor. 
• Con: We note that there are relatively few instances of code 
generation tools having been certified. In general, even 
language compilers are rarely certified to the highest integrity 
levels. This makes us wary of following this course. 

... 

Figure 2 – Fault Tree (part of) for False Negative In our case, we believe that for the sensor value processing 
code generation the preferred approach will be to certify the 
generated code rather than the generator (SHINE). In addition, 
colleagues of ours have developed a promising approach to 
automating the generation of test cases to provide adequate 
test case coverage of code of this nature [8][9]. Likewise for 
TEAMS-Designer, our preferred approach is to certify the D-
matrix it generates rather than TEAMS-Designer itself. 

An option that we have not fully investigated is to define a 
subset of TEAMS Designer that is sufficient to generate the 
D-matrices but lacks many of the ancillary design-level 
features of the complete tool, and certify only this subset. 

C. Reliance upon models and simulators 
This FDIR application’s development depends critically on 

both the correctness of the models (schematics, FMEAs etc) 
that are input to its design, and the simulations (GSE and 
space system simulators) that will be needed to test it. 

NASA has established standards for model and simulation 
accreditation [10]. This task will need to establish what is 
needed of the input models and simulations. For example, it 
must establish the level of fidelity and accuracy required of 
the simulations that will be used for testing. 

D. Test effort 
Since the application needs to detect faults, we will have to 

thoroughly test that it does so. This will require a large 
number of tests, due to the following factors: 
• There are anticipated to be dozens, possibly hundreds of 
individual fault classes that are of direct interest. 
• A given fault could occur at different phases in the space 
system preparation and test sequences and therefore will 
require tests in the context of each of those phases. 
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• Sequences of faults may occur, greatly expanding the set of 
contexts in which an individual fault appears. However, since 
it is likely that the first discovery of a fault will be grounds for 
interrupting the preparation and testing process, we may not 
need to handle this for more than a few cases. 

These tests will need to be executed in the context of the 
(accredited) simulations of the vehicle and GSE, checking that 
a deliberately simulated fault is correctly detected and 
reported by the application. Test automation will be vital, 
including test case generation, test execution (which 
encompasses driving the vehicle and GSE simulations as well 
as the application under test), evaluation of the correctness of 
the application’s outputs, and test results logging. We are 
optimistic that the construction of “reference 
implementations” [11] of critical components (e.g., TEAMS-
RT) will serve as “test oracles” for determination of 
correctness. 

E. Recertification 
It is almost inevitable that changes will be made to the 

space system and/or the GSE used to prepare and test it. These 
will lead to changes to FDIR’s design-time inputs (e.g., 
changed schematics, changed fault probabilities, changed 
FMEA information) and possibly to its runtime inputs (e.g., an 
additional input from a new sensor). What it will take to 
recertify FDIR in light of such changes? For traditional 
software code, it is acceptable to achieve recertification by 
performing a dependency analysis on the changes to 
determine what subset of the original tests, inspections, 
analyses and demonstrations need to be redone. We are 
optimistic that an analogous approach will be acceptable for 
this application. There are several steps we can take to make 
this easier: 
• Identify model development practices for how to model the 
spacecraft system and its GSE with TEAMS-Designer so as to 
minimize the extent of change to the model and, critically, to 
the D-matrix that results from that model. Our colleagues 
doing the modeling have already performed some experiments 
designed to reveal what some of those practices should be. 
• Provide support for analyzing and presenting the 
ramifications of input changes – for example, we may imagine 
a “diff”-like capability for comparing two D-matrices. 
• Find ways to decompose models such that changes to one 
sub-model will not affect the others, and so that recertification 
will need to focus primarily on the component that changed. 

VI. CONCLUSION 
The purpose of our work is to decide how best to approach 

the certification of a NASA space system FDIR application 
that utilizes novel health management technologies. Because 
of those novel technologies, we do not assume that standard 
V&V approaches will be the most appropriate or even 
sufficient. Instead, we examine how the application could 
potentially fail. This leads us to identification of the V&V 
practices needed to show absence of those points of failure. 
Some are standard V&V practices, to be applied in standard 

ways (e.g., checking consistency of software interfaces). 
Others prompt consideration of distinct choices (e.g., whether 
to attempt certification of the equivalent of code generators or 
instead to focus V&V on the generated artifacts). Some are 
motivated by generic concerns (level of effort of testing) but 
highly specific to the health management technologies in 
question as regards their feasibility and implementation (e.g., 
construction of reference implementations to serve as test 
oracles). As is commonly so, there are instances where 
choices among development alternatives have significant 
V&V ramifications, in which case it is important to recognize 
those early on, and choose accordingly. Our perspective on 
V&V challenges has helped us recognize some cases that stem 
from the novel technologies in use (e.g., different styles of 
TEAMS modeling that give rise to widely different numbers 
of artifacts to be subsequently V&V’d). The more general 
conclusion we draw from this is the value of rethinking V&V 
when novel technologies are being deployed.  
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