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Abstract
This paper develops an observing and processing scheme for narrow angle astrometry using a

single baseline interferometer without the aid of “grid” stars to characterize the interferometer
baseline vector in inertial space. The basic concept derives from the recognition that over a
narrow field the set of fundamental unknown instrument parameters that arise because the in-
terferometer baseline vector has large uncertainties (since there are no grid star measurements)
is indistinguishable from a particular set of unobservable errors in the determination of star
positions within the field. Reference stars within the narrow field of regard are used to circum-
vent the unobservable modes. Feasibility of the approach is demonstrated through analysis and
example simulations.
Keywords: astrometry, interferometry
Introduction. One of the main science objectives of the SIM PlanetQuest mission is to

survey nearby stars for earth analogue planets and determine their orbital parameters. The
astrometric requirement for such detection and characterization is on the order of 1uas single
measurement differential position accuracy. This accuracy is achieved in the narrow angle
observing mode in which the field of regard is restricted to about 1◦. The nominal narrow
angle observing scenario for the SIM PlanetQuest mission uses accurate grid stars over a 15◦
field obtained via the global astrometry mode to first determine the interferometer baseline
vector in inertial space. And then armed with this baseline vector knowledge the narrow angle
observations then use a set of astrometrically benign reference stars over the narrow angle field
that serves as a local reference frame to measure the motion of the target star. A fundamental
question regarding this paradigm is whether it is possible to avoid the grid star measurements
altogether and still satisfy the SIM PlanetQuest narrow angle astrometry requirements. (A
second, somewhat related question which is not addressed in this paper is what is the minimal
grid star accuracy required to achieve these requirements?) Affirmative answers to either of
these questions open up the option space for alternative mission concepts.
This paper develops an observing and processing scheme for narrow angle astrometry using

a single baseline interferometer without the aid of “grid” stars to characterize the interferometer
baseline vector in inertial space. The gridless scheme presented here is an evolution and refine-
ment of the ideas originally presented in [4]. The basic concept derives from the recognition that
over a narrow field the set of fundamental unknown instrument parameters that arise because
the interferometer baseline vector has large uncertainties (since there are no grid star measure-
ments) is indistinguishable from a particular set of unobservable errors in the determination of
star positions within the field. When three baseline orientations are used to derive In classical
astrometry utilizing overlapping plate models the star positions and instrument parameters are
solved simultaneously [2]. This technique has been successfully applied with the Hubble Space
Telescope (e.g. 1 The interferometric analogue of this technique is used in SIM PlanetQuest
global astrometry [3]. But because of operational constraints of the instrument, this type of
approach is proscribed when observations are restricted to the narrow field. At the concep-
tual level this difficulty is circumvented by the use of the reference stars to help determine the
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changes in the unobservable instrument modes as the particular narrow angle field is revisited
over the course of the mission. A principal drawback in the original approach developed in [4]
was the requirement of using three distinct baseline orientations of observations of the target and
reference stars at each epoch. While this requirement is not particularly onerous as a limited
use observation constraint within the PlanetQuest mission, it is very restrictive if it were the
principal mode of observation, as might be envisaged for other missions. This paper extends the
methods in [4] to allow for a two baseline orientation observing scenario. There are a number
of complications that arise because of this, and these are discussed.
1. Basic concepts. Let n denote a unit vector in R3 and define

D = {x : 〈x, n〉 = 0}. (1)
The vector n is near the a priori position of the target star (tens of arcseconds is O.K.), and D
represents the plane containing a sequence of nearly contemporaneous science baseline orienta-
tions. This plane will remain fixed through the lifetime of the mssion and small perturbations
from this plane are allowed, and we will quantify their magnitude.
Introduce two additional vectors m and p so that {m, p, n} form a right hand frame. Let

S denote the hemisphere with center at the origin with n ∈ S. Define the projection π from R3

onto D by
π(s) = s− 〈n, s〉n, (2)

for any s ∈ R3. Let D0 denote the image π(S) and note that π is an invertible map from S
onto D0 with π−1 : D0 → S is given by

π−1(x) = x+√1− |x|2n. (3)
Hence if s ∈ S with

s = 〈s,m〉m+ 〈s, p〉p+ 〈s,n〉n, (4)
then

π(s) = 〈s,m〉m+ 〈s, p〉p ∈ D0. (5)
Observe that the differential maps π∗ and π−1∗ between the corresponding tangent spaces to S
and D0 will also be needed. Since π is linear the differential π∗ restricted to a tangent vector h
to S at s ∈ S is simply

π∗(s) : h→ π(h), (6)
where π(h) is a tangent vector to D0 at π(s). And for any tangent vector k to x ∈ D0,

π−1
∗ (x) : k→ k − 〈x, k〉

√1− |x|2n. (7)

Next consider a set of observations of the science target with direction vector sT and reference
stars with direction vectors si. The nominal a priori positions of these objects will be denoted
with a superscript 0, and as remarked before, s0T = n. Introduce the perturbation vectors δsiso that the relationship between the true and nominal direction vectors is given as

si = s0i + δsi, i = T,1, ...,N. (8)
In a similar manner we take the nominal baseline vectors as Bj

0 and write the relationshipbetween the true and nominal baseline vectors as
Bj = Bj

0 + δBj. (9)
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The standard regularized delay equation (without noise or systematic error terms) has the
form

dji − 〈s0i ,Bj
0〉 = 〈Bj

0 , δsi〉+ 〈s0i , δBj〉 + cj + 〈δBj, δsi〉, i = T,1, ..., N, j = 1, ...,M. (10)
Without loss of generality we impose the Bj

0 to be constrained to lie in the m− p plane.
So far there are no approximations made in (10) above. Now we will introduce some simpli-

fications that will enable the formulation of the GNAA approach. First we restrict the δsi to be
tangent vectors. The error in the right side of this equation introduced by this assumption is on
the order of |B0||δsi|2. This is sub—picometer for a priori star position errors of 100mas. When
analyzing the sensitivity of the resulting equations we will see that this does not propagate to
astrometric errors of any consequence (small fraction of a uas). We would also like to dismiss
the quadratic term in (10). The assumption so far is that δBj is an unrestricted 3—vector. We
many assume that the components in the plane D are small as they represent knowledge errors.
However, the component δBjz which is out of the plane must be controlled. Let’s see how largethis component can be and still be disregarded. Here we will take advantage of the small narrow
angle field and write

δsi = k − 〈x, k〉
√1− |x|2 n, (11)

for a tangent vector k at x = π(s0i ). Now, |δsi| ≥ |k| by (11) above. Thus

|〈δBzn, δsi〉| ≤ |δBz| |x||δsi|
√1− |x|2 . (12)

But since |x| ≈ .02 and |δsi| ≈ 10−7, we need |δBz| ≈ 10−3, which corresponds to about a
picometer error, even with the conservative estimates of reference star position error and out of
plane baseline error. However, another restriction on δBz will appear later.
Note that

〈Bj
0 , δsi〉 = 〈Bj

0, hi〉, hi = π(δsi), (13)
since 〈B0j , n〉 = 0 for all j. Parameterize δBj as

δBj = εBj
0 + εjTE(Bj

0) + δBj
zn, (14)

where E is the rotation in m− p plane
E(m) = p, E(p) = −m. (15)

Note that δBj has a component out of the m− p plane. We allow cj, εjT , and δBjz to vary witheach baseline vector, but ε is fixed over the entire set of observations. External metrology is
used to keep track of the change in baseline length. But there is a second order effect in the
parameterization of δBj when the components orthogonal to the nominal baseline are large.
Since the model uses the projection of the baseline onto the plane D, a second order length
change in the baseline vector is introduced by the out of plane contribution via

B = B0 + εB0 + ω × (B0 + εB0) + 12ω × (ω ×B0). (16)
Observe that the last term above has a component in the B0 direction with magnitude

〈ω × (ω ×B0), B0
|B0|〉 =

|ω ×B0|2
|B0| . (17)
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This term contradicts the model assumption that ε is a fixed parameter in the model over
multiple baseline orientatons. To bound this error without conservatism requires tracking its
contribution to the final astrometric error. It will be shown that this error is significantly less
than the bound in (17).
This model is assume to hold on a single tile measurement in which M different baseline

orientations are made somewhat contemporaneously. Over the mission lifetime the following
model will be assumed to hold for the reference model tangent vectors:

hi(t) = hi(0) + tvi + πqi(t), (18)
where vi is the proper motion of reference star i and qi(t) is observed motion due to parallax.For simplicity we take

qi(t) = π[〈s0i , φ(t)〉s0i − φ(t)], (19)
where φ(t) is the position of the instrument in solar system barycenter coordinates and πi isthe parallax of the star. Note that this model assumes that the reference stars are accurately
modeled by just proper motion and parallax astrometric parameters. The model for the target
star is similar but allows for (non—parallax) nonlinear motion:

hT (t) = hT (0) + tvT + πqT (t) + r(t), (20)
where r(t) is the motion we wish to ultimately characterize.
An important point here is that all of these tangent vectors are in D; thus at various epochs

in the mission the underlying plane remains the same. It seems plausible that we may be able
implement the scenario inwhich only a pair of baseline orientations are used in a more flexible
way. Clearly each pair of baseline orientations defines its own plane. We can conceivably map
the tangent vectors from any epoch back to anyother epoch with a posteriori knowledge of the
plane (i.e. reconstructed attitudes of the baseline vector at each epoch). We will see that the
pointing requirement while restricting the same plane assumption is not very onerous, but it
may still be relaxed some more.
The matrix model. The single tile parameterization above generates a linear model for

the observations and unknown parameters. We will let h denote the star position differential
(h is a 2N vector with h(2i) = hi(1), h(2i+1) = hi(2)). The 3M +1 vector r shall denote the
vector of baseline and constant term parameters. And theMN vector y is the set of regularized
delay measurements. Thus we obtain

y = Ax+ η, x =
[h
r
]

, (21)

where η denotes measurement error.
The narrow angle observing scenario “chops” between the target and reference star ob-

servations to reduce the effect of time—varying errors in the instrument. So instead of a sin-
gle observation of the target star as modeled, the observation sequence goes more like this:
T → R1 → T → R2..., where T denotes an observation on the target star, Ri is an observationon the reference target, and the arrow denotes the transition between the observations (they are
not made simultaneously). The small modifications in the measurement model above required
to take advantage of the true observing scenario will be discussed shortly, but first we make
some very important observations about the basic linear model (21).
The overall objective is to detect and determine the motion r(t) from the measurements

y made over the mission lifetime. We first show that it is impossible to determine the basic
astrometric and instrument parameters, h and r, at the tile level as shown by the argument
below.
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Proposition 1. For M ≥ 3 the matrix A has a null space of dimension greater than or
equal to six.

Proof. Using the parameterization in (13)—(15)
dji − 〈s0i , Bj

0〉 = 〈Bj
0 , hi〉+ ε〈s0i ,Bj

0〉 + εjT 〈s0i , E(Bj
0)〉+ δBj

z〈s0i , n〉+ cj. (22)
Three elements of the null space corresponding to common rotations are immediately identified
by setting cj = 0, (j = 1, ...,M) and recalling (10):

δsi =m× si, δBj =m×Bj
0 , (23)

δsi = p× si, δBj = p×Bj
0 , (24)

δsi = n× si, δBj = n×Bj
0 . (25)

Recalling (13), this corresponds to

hi =
√

1− |π(s0i )|2m, δBj
z = −〈m,Bj

0〉, (26)

hi =
√

1− |π(s0i )|2p, δBj
z = −〈p,Bj

0〉, (27)
and

hi = E(π(s0i )), εjT = −1. (28)
From (22) it is very easy to identify three other elements of the null space. Namely we set
ε = εjT = δBjz = 0, together with hi = m and cj = −〈Bj

0 ,m〉 to get the first. We do the same
thing for the second, but with hi = p and cj = −〈Bj

0, p〉. And the last one is the dilation of the
field obtained by setting cj = εjT = δBjz = 0 together with hi = π(s0i ) and ε = −1. Using (7) we
can the map these null vectors back to the sphere if we like.///
Let these six identified null vectors be denoted as u1, ..., u6. Thus we have Aui = 0. Corre-sponding to the partition of x in (31) we may partition A as

A = [Ah Ar], (29)
so that

Ax = Ahh+Arr, x =
[h
r
]

. (30)
We will also have use for the partition of each of the ui as

ui =
[u+iu−i

]

, (31)

so that Aui = Ahu+i + Aru−i . Observe that four of these vectors (u+3 , ..., u+6 ) represent the“standard” affine transformation on a photographic plate. (See early paper and Hubble paper
on astrometry.)Namely, u+3 is an expansion of the field, u+4 is a rotation of the field, and u5 andu6 are the translations of the field. However, the first two vectors are nearly translations modulo
a small nonlinear function of the field position. We will see later that these contributions cannot
in general be neglected, except in the case that the distance between the target and reference
stars are (nearly) the same since then these vectors collapse to full translations. An important
point here is that the u+i only depend on the reference and target star nominal position vectors.We will see later that when M = 2, a seventh null vector appears such that its “+” component
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is a function of the baseline orientation vectors. This produces a significant difference in the
ultimate narrow angle processing scheme for the case of just two baseline orientations.
The chopped matrix is obtained by subtracting the row for each baseline orientation cor-

responding to the target star from each of the rows containing the reference star parameters.
This is tantamount to multiplying A on the left by an elementary matrix. Since an elementary
matrix is invertible, the chopped matrix, which is the product, has the same null space as A.
As a corollary to the above proposition we have the following.
Proposition 2. Let hi, i = T,1, ...N , denote the true tangent vector corrections to sT , ...sN ,

and let ĥT , ...ĥN denote the component of the estimate obtained from a least squares solution.
Then there exist constants α1, ..., α6 such that

hi − ĥi =
6

∑

j=1
αju+j , i = T, 1, ..., N, (32)

where the u+i are given in (31).
Proof. By Proposition 1, if x denotes the true parameter vector (astrometric and instrument

components) and x̂ is any other solution, then x− x̂ lies in the null space of A. This says that
there exist αj, j = 1, ..., 6 such that

x− x̂ =
6

∑

j=1
αjuj. (33)

The result now follows from the partitioning of the vectors.///
Obtaining the target star motion estimate: three baseline case. In this section we

will show how (32) can be used to generate the trajectory of the target star. There are two
fundamental issues to resolve in the course of producing this solution. The first is a matter of
sensitivity. That is, how stable is the solution ĥi with respect to the measurement noise vector η
in (21). The second issue is precisely how the unobservable modes in (32) are handled to obtain
the trajectory. This section will deal with these obstacles for the case of 3 or more baseline
orientations. The case of just 2 baseline orientations will be dealt with in the following section.
At each observation epoch tj estimates of hi(tj) are generated such that (32) holds. Thefirst thing to know is that the small perturbation, η, introduced into the measurement equation

(21) produces a small perturbation in the estimates ĥi(tj). That is, if we consider A† and just
partition the part off that produces the astrometric estimate:

ĥ(tj) = PA†y, P
[h
r
]

= h, (34)

then PA† has small norm. The magnitude is computed numerically and depends on the reference
star geometry. It is also be shown numerically that the null space for three baseline orientations
has dimension 6. Thus the null vectors are precisely those in Proposition 1.
Let U+ denote the subspace generated by u+j ; and let H0 denote a matrix with 6 columns

composed of any choice of six spanning vectors of U+. Then we may rearrange (32) so that

[hT (tj)
02N×1

]

+Hα =











ĥT (tj)
ĥ1(tj)...
ĥN (tj)











−








02×1
ĥ1(tj)...
ĥN (tj)









, (35)
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for the proper choice of the six vector α of coefficients of the spanning vector set. In a more
compact notation we may write (35) as

H
[hT (tj)α

]

= ĥ(tj) − h0(tj), (36)

where it is understood that ĥ(tj) is the first term on the right and h0(tj) is the second term,
and the matrix H is defined from H0 adn (35) in the obvious manner. Note that ĥ(tj) is known,
but h0(tj) is not. However h0(tj) is the vector of true perturbations of the reference stars and
these by assumption obey (18). Thus we have

h0(tj) = h0(t0) + (tj − t0)V 0 +Q(tj), Q(tj) =






π1q1(tj)...
πN qN (tj)





 , (37)

and v is the vector of proper motions. We note that h0(t0), V 0, and πi are all unknown.Now consider H†, and let K denote the submatrix defined by its first two rows. Then K
operating on the right side of (36) yields hT (tj). The result of this is

hT (tj) = Kĥ(tj)−Kh0(tj). (38)
Now ĥ(tj) is the least squares estimate obtained from the regularized delay measurements, and
thus is known. However h0(tj) is not known. But observe that

Kh0(tj) = Kh0(t0) + (tj − t0)Kv0 +KπQ(tj), j = 1, ..., Nvisits, (39)
where Nvisits is the total number of visits to the narrow angle field. Now recall that since H is
independent of tj , then K is also. Thus there are two vectors h and v such that

Kh0(tj) = h, Kv0 = v, j = 1, ...,Nvisits. (40)
Now

πqi(tj) = πi[〈si, φ(tj)〉〈si,m〉 − 〈si, φ(tj)〉]m+ πi[〈si, φ(tj)〉〈si, p〉 − 〈si, φ(tj)〉]p. (41)
And φ(t) is of the form

φ(t) = a sin(t)e1 + b cos(t)e2, (42)
for orthogonal unit vectors e1 and e2 that span the ecliptic plane. Thus

πq(tj) = π[ami sin(t) + bmi cos(t)]m+ π[api sin(t) + bpi cos(t)]p, (43)
for constants ami, bmi. Next write K = [K1 K2 · · ·KN ], where each Ki is a 2× 2 submatrix ofK. Then

KπQ(tj) = ∑

i
Ki

[ ami sin(t) + bmi cos(t)]
api sin(t) + bpi cos(t)

]

=
[Am sin(t) +Bm cos(t)
Ap sin(t) +Bp cos(t)

]

, (44)

for some constantsAm,Ap, Bm,Bp. In general these constants are unknown unless the parallaxes
are known (and then there would be a small error due to the uncertainty in the positions of the
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stars). However, what is most significant is that these constants are independent of time. So
now we have the relationship

hT (tj) = Kĥ(tj) + h0 + (tj − t0)v +
[Am sin(t) +Bm cos(t)
Ap sin(t) +Bp cos(t)

]

. (45)
On the right side of the equation only the first term is known and obtained from the observations.
But note that the subsequent terms constitute, respectively, a position offset, a proper motion,
and a periodic component with one year period. These terms are indistinguishable from the
contributions of the target star proper motion, parallax, and position error at the initial epoch.
Recall the model of target star motion defined in (20). Let P denote the projection onto the
space of motions spanned by proper motion, one year periods (without harmonics), and constant
offset. Then P has the same range as the matrix

J =
[ J0 0
0 J0

]

, J0 =






1 t1 − T0 sin(t1) cos(t1)... ... ... ...
1 tNvisits − T0 sin(tNvisits) cos(tNvisits)





 . (46)

Applying the projection I −P to (20) annihilates the proper motion and all motions with pure
one year periods (in particular the parallax of the target). Thus applying I − P to (45) results
in

(I −P )r = (I − P )Kĥ. (47)
The term on the right is determined from the data. Thus the projection of the “interesting”
part of the trajectory of the target onto the orthogonal complement of proper motion and pure
one year periods is observable.
Obtaining the target star motion estimate: two baseline case In the two baseline

case a 7th vector appears in the null space of A, which necessitates a few changes in the data
reduction process. What makes the largest change however, is that this vector is dependent on
the orientation, and thus the spanning set of vectors for the null space changes from epoch to
epoch. In the event that a fixed pointing can be used, then this is not an issue. But because of
solar exclusion angles, etc., this case is only realizable for a very small portion of the sky. Thus
in general we may expect this 7th null vector to not be fixed (recall that the linear combinations
of the null vectors are in general never the same, regardless of whether the pointing is the same
or not). So to define this new null vector let B0

1 and B0
2 denote the nominal baseline orientations.We set the astrometric differentials so that they are all orthogonal to baseline B0

1 :
〈B0

1 , hi〉 = 0, i = T, ..., N, (48)
together with c1 = ε = 0 and δB1 = 0. Next we determine δB2 to satisfy

〈B0
2 , hi〉+ 〈s0i , δB2〉 = 0, i = T, ...N, (49)

with c2 = 0. It is easily shown that the following choices work:
hi〈EB0

2 , s0i 〉w/d, w = E(B0
1 )/|E(B0

1 )|, d = 〈B0
2 ,w〉, (50)

withe δB2 = E(B0
2).Let w = E(B1)/|E(B1)|, and set d = 〈B0

2 ,w〉. For j = 1, ..., N, g(j) = 〈E(B0
2 ), s0j〉/d. Thenthe associated star astrometric parameter is [g(1)w · · · g(N)w]. This is the new unobservable

motion.
The processing now proceeds just as in the three baseline orientation case, except now the

matrix H in (36) has an additional column to accommodate the extra null space vector and

8



since this vector changes from epoch to epoch, the submatrix K comprised by the first two row
of H† is no longer constant over the mission. This necessitates a change in the dimension of the
subspace of motions corresponding to the proper motion and parallax of the reference stars.
Now we give an example of this method. We implement the SIM PlanetQuest narrow an-

gle scenario which relies on grid stars and compare it with the two baseline orientation gridless
solution. Proper motions, parallax, are included in these examples. In addition a single measure-
ment error of 1uas is also present. Both simulations use 100 2—D measurements made uniformly
over a 5 year period. The target star has two planets with circular orbits of periods .83 and
1.66 years with amplitudes of 3uas and 2uas, respectively. The first figure below shows the
trajectories determined by the two methods. The trajectory on the left uses grid information,
while the trajectory on the right is the result of the two baseline orientation gridless processing.
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Figure 1. Target star trajectory signals produced with gridless (left) and grid (right)
astrometry.

The actual proof is in the pudding however. We applied the super—resolution technique MUSIC
to these signals to pull out the two largest harmonics that are present. These peaks are shown
in the figure below. Note that the data created with either the solution that uses the grid and
the gridless data readily identify these peaks.
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Figure 2. Estimation of periods – gridless (left) and grid (right).

Concluding remarks. Basic feasibility has been established for a gridless two baseline
orientation approach to narrow angle astrometry. Future work will concentrate on further com-
parisons with the full grid approach. Notably these would include actually extracting planetary
orbits from the data, the effect of nonuniform sampling, and a more complete characterization
of the effects of parallax on the detection and determination of planetary orbits with periods
close to one year.
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