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Edge data of a measured surface map of a circular optic result in large variance or “spectral leakage” 
behavior in the corresponding Power Spectral Density (PSD) data.  In this paper we present two new, 
alternative methods for reducing such variance in the PSD data by replacing the zeros outside the circular 
area of a surface map by non-zero values either obtained from a PSD fit (method 1) or taken from the inside 
of the circular area (method 2).   
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1. Introduction 

Some space optical systems such as Terrestrial Planet Finder Coronagraph (TPF-C) require large optics with very 
high surface quality [1]. The developmental cycle of such optical systems includes, but is not limited to, the 
following two steps:  (i) Deriving requirements or specs on the optical quality of individual optics before they are 
fabricated and (ii) evaluating the quality of those components against the pre-determined specs after they are 
fabricated.  One of the preferred metrics used for specifying the quality of optical surfaces is the PSD [2-4].  It is 
computed from the Fourier spectrum amplitude of the surface height map of an optic obtained from measurements 
of the bidirectional reflectance distribution function, from surface profiles measured using an optical or mechanical 
profiler, or by using an interferometer.  This paper is about calculating the PSD of an optic using its 2D surface map 
measured interferometrically.  
 Several different approaches have been reported on how to calculate PSD from surface height measurements [4-
8].  The main problem one encounters when calculating the 2D-PSD of a circular surface is the scattering of the PSD 
data when they are plotted as a function of radial spatial frequency, or “spectral leakage”.  This is caused by the 
sharp circular edge of the measured surface map and introduces large variance relative to the pre-determined spec.  
Until now using windowing filters (such as Hann or Welch windows), zero-padding and averaging multiple sub-
aperture PSDs have been the preferred methods used for reducing such variance in the calculated 2D-PSD data.  In 
this paper, we introduce two new, alternative methods for reducing the edge effects of a surface map on the 2D-PSD 
data.  The first method is applicable to the cases where the 1D-PSD obtained by radially averaging the 
corresponding 2D-PSD [8] can be roughly represented by an analytical PSD function, a function similar to the one 
used in the derivation of PSD specs.  In this method the zeros outside the circular area of a surface map are replaced 
by the data obtained from a PSD fit.  The second method is applicable to the cases where the shape of the optic does 
not cover the whole area of a square surface map.  In this method the zeros corresponding to the outside area of the 
optical surface are replaced by the data taken from those corresponding to the inside area of the optic following an 
edge-symmetry rule to be described below. 
 
2. Mathematical Description 

The discrete PSD of a surface map ),(cir yxh  of a circular optic is calculated from [8] 
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where the subscript “calc” means “calculated”.  The ],[ yx  and ],[ vu  pairs are the surface position and the spatial 
frequency variables in the horizontal and the vertical directions, respectively, and the ℑ  symbol represents a 2D-
FFT routine such as the fft2.m function in MATLAB.  The ],[ yx ∆∆  pair are the width and the height ( yx ∆=∆ for a 
square pixel) of each pixel, and the A  is the area of the whole hcir(x,y) map including all the zeros.  Indices 

Mm ,...,2,1=  and Nn ,...,2,1=  ( NM =  for a square surface map), respectively. We describe our new methods 
using an example of synthesized ),(cir yxh and its PSD data.  The synthesized surface map, h(x,y), is obtained from 
[8]  
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nmmn vu +=ρ  is the radial frequency, HPρ is the half-power 

frequency, p is the exponent of the inverse power-law, and σ0 is the RMS value of h(x,y).  1−ℑ  represents an 
inverse-FFT algorithm, such as the ifft2.m function in MATLAB, and φ(um,vn) is an anti-symmetric, randomly-
valued phase map satisfying πφπ ≤≤− .  Another important quantity used to compare different approaches in this 

paper is the “RMS Bias” defined as ),(/),(),( truecalcbias nmnmnm vuPSDvuPSDvu =σ  . It is a measure of the 
variance of the 2D-PSDcalc relative to 1D-PSDtrue or 1D-PSD spec.  In the ideal case, we have [Mean(σbias), 
STD(σbias)] = [1.00, 0.00], where “STD” means Standard Deviation.  We will use the latter to compare the 
performance of different PSD calculation approaches. 
 
3. Numerical Examples 

We compare the performance of our new methods with the direct PSD calculation and a Welch window (α=8) 
methods [8] using some numerical examples of synthesized hcir(x,y). The parameters used are: M∆x=N∆y=500mm, 
p=3, ρHP=2cyc/m, σ0=100nm, and M=N=512, where “cyc” means “cycles”.   

Our first example is about a PSD directly calculated from a hcir(x,y)=h(x,y)× cir(x,y), where h(x,y) was obtained 
using Eq. (2) and is shown by the map inside the black circle in Fig. 1(a), and cir(x,y) is a circular mask equaling to 
1 inside the black circle and to 0 otherwise.  In real applications, this hcir(x,y) is replaced by the measured surface 
map to be analyzed. The corresponding PSD data obtained using Eq. (1) are shown in Fig. 1(b) as a function of 
radial frequency, where the blue curve is the 1D-PSD obtained by radially averaging the corresponding 2D-PSD [8] 
and the green curve is the 1D-PSD obtained from the radial average of the original PSD function (or true PSD) 
defined in Eq. (2).  In real applications, the green curve is equivalent to a PSD spec.  In this case, the scattering of 
the 2D-PSDcalc is caused by the sharp circular edge of the hcir(x,y). 

 

   
Fig. 1. (a) hcir(x,y) and h(x,y).  (b) 2D- and 1D-PSD’s obtained from hcir(x,y) in part (a). (c) PSD’s obtained from the h (x,y) in part (a). 

 
Our first variance-reducing method works as follows.  We fit to the 1D-PSDcalc curve a PSD function using the 
following procedure:  (1) Choose an analytical function for 1D-PSDcalc. (2) Calculate a surface height map, hcalc(x,y), 
using the above PSD function and the spectral phase of the hcir(x,y).  (3)  Replace the values of hcir(x,y) outside the 
circular area with the values of hcalc(x,y) to obtain a new surface map, hi(x,y)= hcir(x,y)+[1- cir(x,y)]x hcalc

i(x,y), where 
the superscript “i” represents the PSD-fit iteration number.  (4) Calculate the (1D-PSD)i corresponding to the above 
hi(x,y). (5) Adjust the PSD parameter values in Eq. (2), and repeat Steps 1-4 for multiple iterations until the square-
sum of the difference of 1D-PSDcalc and (1D-PSD)i can no longer be reduced, using the spectral phase of hi(x,y) after 
the first iteration.  The surface map outside the circular area in Fig. 1(a) as well as the 2D-PSDcalc and 1D-PSDcalc 
results in Fig. 1(c) were obtained using this method after 100 PSD-fitting iterations.  In both Fig.1(b) and Fig.1(c), 
the 2D-PSDcalc data were re-scaled such that they have the same RMS value σ as that of the corresponding 2D-
PSDtrue, where ∑ ∑= == M

m
N
n nm AvuPSD1 1

2 /),(σ . For the 2D-PSDcalc in Fig. 1(b), the σbias parameters are 
[Mean(σbias), STD(σbias)] = [1.13, 0.53], but for the 2D-PSDcalc in Fig. 1(c) they are [1.01, 0.04], respectively.  That 
is, if the 1D-PSDcalc of a circular surface map can be fit by an analytical PSD function, then the variance of its 2D-
PSDcalc can be greatly reduced using the current method.  In this paper, we refer to this method as “Fitting Method”. 

Our second variance-reducing method is explained in Fig. 2(a).  In this method, the zero-value of hcir(x,y) at 
data point P’ is replaced by its value at data point P. In this figure, C is the center of the circular surface map, the 
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points P, B and P’ all lie on the line connecting C to P’, B is on the circular boundary, and PB=BP’.  In this paper, 
we refer to this method as “Filling Method”.  Note that some of the data points “filled” using this method repeat 
themselves.  For the current case of M = N = 512, we found 19.3% data points repeat once, and 2.7% data points 
repeat twice when picking the “nearest” points to replace the zeros outside the circular surface map area. 

The circular surface map hcir(x,y) in Fig.2(b) is the same as Fig. 1(a), but the data outside its circular boundary 
were obtained using this second method.  Figure 2(c) shows the statistical results of 2D-σbias obtained from 100 
realizations of hcir(x,y) using  Eq. (2).  Each realization is obtained from a unique set of random spectral phase map 
φ(um,vn).  In this figure, the case of “As is” corresponds to the 2D-σbias obtained from hcir(x,y) directly, keeping its 
zero values outside the circular area unchanged. The curve “Welch” corresponds to the case where a Welch window  

 

C(0,0)
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Fig. 2. (a) Method for replacing the zero at pixel P’ pixel with the value at pixel P.  (b) A surface map obtained using the method in part (a). (c) 

Histogram of 2D-σbias obtained in 100 hcir(x,y) realizations using three different methods. 
 
with α=8 is applied to each hcir(x,y) map.  The Welch window is defined as w(r) = 1 - | r / r0 |α, where r = (x2 + y2)1/2 
and r0 is the radius of the circular area shown by a black circle in Fig. 2(b).  A Welch window index of α=8 was 
found to represent a good compromise between smearing and leakage [7], so we used that value in our simulations.   
 The curve named “Filled” in Fig. 2(c) was obtained using the second method explained in Fig. 2(a).  Shown in 
the figure legends are [Mean(σbias), STD(σbias)] values resulted by the corresponding PSD calculation approaches.  
As we can see from STD(σbias)=0.532 of the “Filled” case, the “Filling Method” does not improve the scattering 
characteristics of the resulted 2D-PSDcalc data, but it greatly improves the Mean(σbias) value.  The “As is” approach 
yields Mean(σbias) > 1, and the “Welch” gives Mean(σbias) < 1, deviating from 1 by +9.2% and -6.2%, respectively.  
Therefore, if one chooses to use the Mean(σbias) as a metric to compare the measured PSD data with its spec, then 
the current “Filling Method” is the best method as compared to the other two approaches. 
 The “Filling Method” can also be used to an optical surface having an annular shape, that is, whose non-zero 
surface map values have an annular shape defined by rout ≥ r ≥ rin, where rout and rin are the radii of the outer and 
inner circular boundaries, respectively.  The only condition for this to work is rout – rin ≥ rin , which is the case in 
most real situations.  
 
4. Summary 

We have proposed two new, alternative methods, “fitting method” and “filling method”, to reduce the variance of 
the 2D-PSD data calculated from the measured surface height map of a circular optic.  We have compared the 
performance of these methods with the usual “as is” approach and a Welch window method using some examples of 
synthesized surface maps.  Trying all four approaches simultaneously to obtain both the 2D- and the 1D-PSD data 
when one has the resources and the need is desirable, and will allow one to gain a fairly good picture about the PSD 
error of a measured optical surface.  The information provided in this paper will enable one to do such calculation 
fairly easily.   
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